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Introduction 

The study of lattice of convex sublattices of a lattice was 

started by K.M. Koh [3], in the year 1972. He investigated the 

internal structure of a lattice L, in relation to CS(L), like so 

many others for various algebraic structures such as groups, 

Boolean algebras, directed graphs and so on.  

In [3], several basic properties of CS(L) have been studied 

and proved that "If L is complemented then CS(L) is 

complemented". Also, the connection of the structure of CS(L) 

with those of the ideal lattice I(L) and the dual ideal lattice D(L) 

are examined. K.M. Koh, derived the best lower bound and 

upper bound for the cardinality of CS(L), where L is finite. In a 

subsequent paper[1], C.C. Chen, and K.M. Koh,  proved that 

CS(LxK)  [(CS(L) - ) X (CS(K) - )]  Finally, they 

proved that when L is a finite lattice and CS(L)  CS(M) and if 

L is relatively complemented (complemented) then M is 

relatively complemented (complemented). This is true for 

Eulerian lattices, since an Eulerian lattice is relatively 

complemented. These results gave motivation for us to look into 

the connection between L and CS(L) for Eulerian lattices which 

are a class of lattices not defined by identities. Since a Bn, 

Boolean algebra of rank of n, for n = 1; 2…, is Eulerian, we start 

looking into the structure of CS(Bn).  

In section 3, we prove that CS(Bn), the lattice of convex 

sublattices of Bn with respect to the set inclusion relation is a 

dual simplicial Eulerian lattice. But the structure of the lattice of 

convex sublattices of non-Boolean Eulerian lattice with respect 

to the set inclusion relation is not yet clear. 

Preliminaries 

Throughout this section CS(L) is equipped with the partial 

order of set inclusion relation. 

Definition 2.1 . A finite graded poset P is said to be Eulerian if 

its M bius function assumes the value (x, y) = (-1)
l(x;y)

 for all 

x y in P, where l(x, y) = (y)- (x) and  is the rank function 

on P. 

An equivalent definition for an Eulerian poset is as follows: 

Lemma 2.2 [8] A finite graded poset P is Eulerian if and only if 

all intervals [x, y] of length l  1 in P contain an equal number 

of elements of odd and even rank. 

Example: Every Boolean algebra of rank n is Eulerian and the 

lattice C4 of Figure 1 is an example for a non-modular Eulerian 

lattice. Also, every Cn is Eulerian for n 4. 

 
Figure 1 

Lemma 2.3 [10] If L1 and L2 are two Eulerian lattices then L1 X 

L2 is also Eulerian. 

We note that any interval of an Eulerian lattice is Eulerian 

and an Eulerian lattice cannot contain a three element chain as 

an interval. For more structures of Eulerian lattices, see [12] 

Definition 2.4 A poset P is called Simplicial if for all t  P, 

[0, t] is a Boolean algebra and P is called Dual Simplicial if for 

all t  P, [t, 1] is a Boolean algebra. 

The following remark is the example 1.1.17 in the book of 

R.P.Stanley [9] 

Remark 2.5  =  
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Theorem 2.6 The lattice of convex sublattices of a Boolean 

algebra Bn of rank n, CS(Bn) with respect to the set inclusion 

relation is a dual simplicial Eulerian lattice. 

Proof: It is clear that rank of CS(Bn) is n + 1. 

First we prove that the interval [  Bn] is Eulerian. 

That is to prove that this interval has same number of 

elements of odd and even rank. 

Let ai be the number of elements of rank i in CS(Bn). 

Since the elements of rank 1 in CS(Bn) are just the singleton 

subsets of Bn, we have,  a1 = 2
n
. 

The rank two elements in the interval [  Bn] are the two-

element chains. 

We have to determine the total number of two-element 

chains in Bn. Since there are   atoms in Bn , the number of 

two-element chains containing 0 in Bn is  Since there are 

 edges emanating from an atom in Bn there are 

 two-element chains containing an atom in Bn. 

A rank two element is connected by edges to 

some of the rank three elements and since there are  rank 2 

elements in Bn, we have the number of two-element chains from 

the rank two elements of Bn are  . Similarly, the 

total number of two-element chains from the rank three 

elements are  . 

Considering all the elements upto rank n - 1 the total 

number of two element chains in Bn  is 

a2 = +  +  +     

        + … +  

A rank three element in [  Bn] is a sublattice B2 of Bn. 

There are  rank two elements in Bn. 

Therefore, the number of B2's containing 0 is  

There are atoms in Bn . If a is an atom then [a, 1]  

Bn-1. 

From ‘a’ to a rank three element in [a, 1] we have a 

sublattice B2 with a as the lowest element. 

Since there are  such rank three elements we have 

the number of such B2's is  

In all, the number of B2's with an atom as the lowest 

element is   

Similarly, the number of B2's with a rank two element as the 

lowest element  is  .  

Proceeding like this, we get,  

a3 = +  +  +    

        + … +  

Continuing like this, we get, 

a4 = +  +  +    

        + … +  

and so on 

an-2 = +  +  +              

            

an-1 = +  +   

an = +  

Case(i) : Suppose n is even. 

a1 – a2 + a3 – … - an-2 + an-1 - an 

   = 2
n
 –       

                

           

              

                     

            

   

           

            

        . 

   = 2
n
- [         

               [   

  +    

            [   +   
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= 2
n
 –  -   -  

              - . . . -  

  = 2
n 

    ...  

   = 2
n 

   ...  

   =  2
n 

 

   = 2
n 

- 2
n 

= 0 

Therefore, a1 – a2 + a3 – … - an-2 + an-1 - an = 0 

Case(i) : Suppose n is odd. 

a1 – a2 + a3 – … - an-2 + an-1 - an 

             2
n
-[     

                [  

  +    

                 [   +   

             

              

              

  =  2
n
 –     

            

  =  2
n

    

   =  2
n 

    

   =  2
n

  

   = 2
n 

- 2
n 

+ 2= 2 

Therefore, a1 – a2 + a3 – … - an-2 + an-1 - an = 2 

Hence the interval [  Bn] has the same number of elements of 

odd and even rank. 

Now we are going to claim that CS(Bn) is dual simplicial: 

 

Let a be any element of rank k in Bn. We have to calculate the 

number of elements of rank r in [ Bn] in the lattice CS(Bn). 

The number of atoms of [ Bn] is equal to n- k + k = n, since 

[0, a]  Bk and [a, 1] Bn-k, and so the number of edges 

containing a in [0,a] and [a,1] are respectively k and n-k. 

A rank 2 element in [ Bn] is a B2 containing a. 

There are three possibilities, namely, either a may be in the 

top or a may be in the middle or a may be in the bottom of the 

B2. 

 

 

The B2's with a in the top is an upper inerval in [0, a]. 

Therefore, the number of such B2's are exactly . 

The top elements in the B2's with a as a middle element are 

just the n-k atoms of the interval [a, 1] 

We observe that a B2 with a in the middle has one of the 

atoms of [a, 1] as the top element and one of the co-atoms of [0; 

a] as the bottom element. 

Now, fix an atom in [a, 1]. Since there are k co-atoms in   

[0, a] the number of B2's with this atom as a top element and a in 

the middle is k. 

This is true for every atom in [a,1]. Since there are n - k 

such atoms the total number of B2's having a in the middle is 
 

The B2's with a in the bottom is a lower interval in [a,1]. 

Therefore, the number of such B2's are  

Hence the total number of rank 2 elements in [ Bn] is  

 

The rank 3 elements in [ Bn] is isomorphic to B3 

containing a.  

There are four possibilities, namely, a may be a top element 

or may be a rank 1 element or may be a rank 2 element or may 

be a bottom element of B3. 

The B3's with a in the top is an upper interval in [0, a]. 

Therefore, the number of such B3's are exactly  

Suppose that a is a rank 2 element of the B3's, that is, a co-

atom of the B3's.  

For a typical such B3 an atom in [a; 1] is the topmost 

element.  

Below this a there are two atoms of this B3 which belong to 

[0,a].  

That atoms are just the coatoms of [0, a]. Now, fix an atom 

in [a, 1].  

The number of B3's with this atom as the topmost element is 

, since there are k coatoms in [0, a]. This is true for every 

atom in [a, 1]. 

Therefore, there are exactly  such B3's. 

Suppose that a is a rank 1 element of the B3's, that is an 

atom of the B3's.  

The lowest element of such a typical B3 is a co-atom in [0, a]. 

Now, fix a co-atom in [0, a]. The number of B3's with this co-

atom as the lowest element is ,  since there are n-k 

atoms in [a, 1]. This is true for every co-atom in [0; a]. 

Therefore, the number of such B3's are  

The B3's with a in the bottom is a lower interval in [a,1]. 

Therefore, the number of such B3's are exactly  

Thus the total number of rank 3 elements in [ Bn] is 
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 Similarly, we can write the total number of elements of rank r in  

as  

 , 

by remark 2.11. 

The terms in the number of Br's are of the form  

where x + y = r. 

The Br+1's containing these Br's are obtained by moving up or 

down by one rank. 

Therefore, we get a Br+1 by adding 1 with x or with y. 

Therefore, either (x + 1) + y = r + 1 or x + (y + 1) = r + 1. 

Therefore, a typical term in the number of Br+1's is of the form, 

 or  

The number of elements of rank r + 1 in [ Bn] is  

 

, by remark 2.11. 

Therefore, [ Bn]is a Boolean lattice of rank n. 

If we take any upper interval then it is a subinterval of one of the 

intervals of the form [ Bn]. 

Since [ Bn] is Boolean any subinterval is also Boolean. 

Therefore, every upper interval is Boolean. 

Hence , CS(Bn) is a dual simplicial Eulerian Lattice. 

Conclusion 

A Boolean algebra Bn is a particular case of an Eulerian 

lattice for which we proved CS(Bn) is a dual simplicial Eulerian 

lattice under the set inclusion relation. For a non-Boolean 

Eulerian lattice we can not decide the structure. For lattices of 

small ranks CS(L) is Eulerian. So, we strongly believe that 

CS(L) would be Eulerian yet it is still open. 
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