

Discrete Mathematics

On the Lattice of Convex Sublattices

R.Subbarayan ${ }^{1}$ and A.Vethamanickam ${ }^{2}$
${ }^{1}$ Mount Zion College of Engineering and Technology, Pudukkottai, Tamilnadu, India 622507.
${ }^{2}$ Department of Mathematics, Kamarajar Arts College, Surandai Tamilnadu, India.

ARTICLE INFO

Article history:

Received: 11 April 2012;
Received in revised form:
5 September 2012;
Accepted: 15 September 2012;

Keywords

Posets,
Lattices,
Convex Sublattice,
Eulerian Lattices,
Simplicial Eulerian Lattice.

Abstract

Let L be a finite lattice. A sublattice K of a lattice L is said to be convex if $a, b \in K ; c \in L$, $\mathrm{a} \leq \mathrm{c} \leq \mathrm{b}$ imply that $\mathrm{c} \in \mathrm{K}$. Let $\mathrm{CS}(\mathrm{L})$ be the set of convex sublattices of L including the empty set. Then CS(L) partially ordered by inclusion relation, forms an atomic algebric lattice. Let P be a finite graded poset. A finite graded poset P is said to be Eulerian if its MÖbius function assumes the value $\mu(\mathrm{x} ; \mathrm{y})=(-1)^{1(\mathrm{x} ; \mathrm{y})}$ for all $\mathrm{x} \leq \mathrm{y}$ in P , where $1(\mathrm{x}, \mathrm{y})=\rho(\mathrm{y})$ - $\rho(\mathrm{x})$ and ρ is the rank function on P . In this paper, we prove that the lattice of convex sublattices of a Boolean algebra B_{n}, of rank $n, C S\left(B_{n}\right)$ with respect to the set inclusion relation is a dual simplicial Eulerian lattice. But the structure of the lattice of convex sublattices of a non- Boolean Eulerian lattice with respect to the set inclusion relation is not yet clear.

© 2012 Elixir All rights reserved.

Introduction

The study of lattice of convex sublattices of a lattice was started by K.M. Koh [3], in the year 1972. He investigated the internal structure of a lattice L , in relation to $\mathrm{CS}(\mathrm{L})$, like so many others for various algebraic structures such as groups, Boolean algebras, directed graphs and so on.

In [3], several basic properties of $\mathrm{CS}(\mathrm{L})$ have been studied and proved that "If L is complemented then $\mathrm{CS}(\mathrm{L})$ is complemented". Also, the connection of the structure of CS(L) with those of the ideal lattice $\mathrm{I}(\mathrm{L})$ and the dual ideal lattice $\mathrm{D}(\mathrm{L})$ are examined. K.M. Koh, derived the best lower bound and upper bound for the cardinality of $\operatorname{CS}(\mathrm{L})$, where L is finite. In a subsequent paper[1], C.C. Chen, and K.M. Koh, proved that $C S(L x K) \cong[(C S(L)-\emptyset) X(C S(K)-\emptyset)] \cup \emptyset$ Finally, they proved that when L is a finite lattice and $\operatorname{CS}(\mathrm{L}) \cong \mathrm{CS}(\mathrm{M})$ and if L is relatively complemented (complemented) then M is relatively complemented (complemented). This is true for Eulerian lattices, since an Eulerian lattice is relatively complemented. These results gave motivation for us to look into the connection between L and $\mathrm{CS}(\mathrm{L})$ for Eulerian lattices which are a class of lattices not defined by identities. Since a B_{n}, Boolean algebra of rank of n, for $n=1 ; 2 \ldots$, is Eulerian, we start looking into the structure of $\mathrm{CS}\left(\mathrm{B}_{\mathrm{n}}\right)$.

In section 3, we prove that $\operatorname{CS}\left(B_{n}\right)$, the lattice of convex sublattices of B_{n} with respect to the set inclusion relation is a dual simplicial Eulerian lattice. But the structure of the lattice of convex sublattices of non-Boolean Eulerian lattice with respect to the set inclusion relation is not yet clear.

Preliminaries

Throughout this section CS(L) is equipped with the partial order of set inclusion relation.
Definition 2.1. A finite graded poset P is said to be Eulerian if its MÖbius function assumes the value $\mu(x, y)=(-1)^{l(x ; y)}$ for all $x \leq y$ in P, where $l(x, y)=\rho(y)-\rho(x)$ and ρ is the rank function on P.

An equivalent definition for an Eulerian poset is as follows:
Lemma 2.2 [8] A finite graded poset P is Eulerian if and only if all intervals $[x, y]$ of length $l \geq 1$ in P contain an equal number of elements of odd and even rank.
Example: Every Boolean algebra of rank n is Eulerian and the lattice C_{4} of Figure 1 is an example for a non-modular Eulerian lattice. Also, every C_{n} is Eulerian for $n \geq 4$.

Figure 1
Lemma 2.3 [10] If L_{l} and L_{2} are two Eulerian lattices then $L_{1} X$ L_{2} is also Eulerian.

We note that any interval of an Eulerian lattice is Eulerian and an Eulerian lattice cannot contain a three element chain as an interval. For more structures of Eulerian lattices, see [12]
Definition 2.4 A poset P is called Simplicial if for all $t \neq 1 \in P$, $[0, t]$ is a Boolean algebra and P is called Dual Simplicial if for all $t \neq 0 \in P,[t, 1]$ is a Boolean algebra.
The following remark is the example 1.1.17 in the book of R.P.Stanley [9]
$\operatorname{Remark} 2.5 \sum_{i=0}^{n}\binom{a}{i}\binom{b}{n-i}=\binom{a+b}{n}$

[^0]Theorem 2.6 The lattice of convex sublattices of a Boolean algebra B_{n} of rank $n, C S\left(B_{n}\right)$ with respect to the set inclusion relation is a dual simplicial Eulerian lattice.
Proof: It is clear that rank of $\operatorname{CS}\left(B_{n}\right)$ is $n+1$.
First we prove that the interval $\left[\emptyset, B_{n}\right]$ is Eulerian.
That is to prove that this interval has same number of elements of odd and even rank.

Let a_{i} be the number of elements of rank i in $\operatorname{CS}\left(B_{n}\right)$.
Since the elements of rank 1 in $\operatorname{CS}\left(B_{n}\right)$ are just the singleton subsets of B_{n}, we have, $a_{1}=2^{n}$.

The rank two elements in the interval $\left[\emptyset, \mathrm{B}_{\mathrm{n}}\right]$ are the twoelement chains.

We have to determine the total number of two-element chains in B_{n}. Since there are $\binom{\boldsymbol{n}}{\mathbf{1}}$ atoms in B_{n}, the number of two-element chains containing 0 in B_{n} is $\binom{\boldsymbol{n}}{\boldsymbol{1}}$ Since there are $\binom{\boldsymbol{n}-\mathbf{1}}{\mathbf{1}}$ edges emanating from an atom in B_{n} there are $\binom{\boldsymbol{n}}{1}\binom{\boldsymbol{n}-\mathbf{1}}{\mathbf{1}}$ two-element chains containing an atom in B_{n}.

A rank two element is connected by $\binom{\boldsymbol{n}-\mathbf{2}}{\mathbf{1}}$ edges to some of the rank three elements and since there are $\binom{\boldsymbol{n}}{\mathbf{2}}$ rank 2 elements in B_{n}, we have the number of two-element chains from the rank two elements of B_{n} are $\binom{\boldsymbol{n}}{\mathbf{2}}\binom{\boldsymbol{n}-\mathbf{2}}{\mathbf{1}}$. Similarly, the total number of two-element chains from the rank three
elements are $\binom{n}{3}\binom{n-3}{1}$.
Considering all the elements upto rank $\mathrm{n}-1$ the total number of two element chains in B_{n} is

$$
\begin{aligned}
\mathrm{a}_{2}= & \binom{n}{1}+\binom{n}{1}\binom{n-1}{1}+\binom{n}{2}\binom{n-2}{1}+\binom{n}{3}\binom{n-3}{1} \\
& +\ldots+\binom{n}{n-1}\binom{n-(n-2)}{1}
\end{aligned}
$$

A rank three element in $\left[\emptyset, B_{n}\right]$ is a sublattice B_{2} of B_{n}. There are $\binom{\boldsymbol{n}}{\mathbf{2}}$ rank two elements in B_{n}.

Therefore, the number of B_{2} 's containing 0 is $\binom{\boldsymbol{n}}{\mathbf{2}}$
There are $\binom{\boldsymbol{n}}{\mathbf{1}}$ atoms in B_{n}. If a is an atom then $[\mathrm{a}, 1] \cong$ B_{n-1}.

From ' a ' to a rank three element in $[a, 1]$ we have a sublattice B_{2} with a as the lowest element.

Since there are $\binom{\boldsymbol{n}-\mathbf{1}}{\mathbf{2}}$ such rank three elements we have the number of such B_{2} 's is $\binom{\boldsymbol{n}-\mathbf{1}}{\mathbf{2}}$

In all, the number of B_{2} 's with an atom as the lowest element is $\binom{\boldsymbol{n}}{\mathbf{1}}\binom{\boldsymbol{n}-\mathbf{1}}{\mathbf{2}}$
Similarly, the number of B_{2} 's with a rank two element as the lowest element is $\binom{\boldsymbol{n}}{\mathbf{2}}\binom{\boldsymbol{n}-\mathbf{2}}{\mathbf{2}}$.
Proceeding like this, we get,

$$
\begin{aligned}
\mathrm{a}_{3}= & \binom{n}{2}+\binom{n}{1}\binom{n-1}{2}+\binom{n}{2}\binom{n-2}{2}+\binom{n}{3}\binom{n-3}{2} \\
& +\ldots+\binom{n}{n-2}\binom{n-(n-2)}{2}
\end{aligned}
$$

Continuing like this, we get,

$$
\begin{aligned}
\mathrm{a}_{4}= & \binom{n}{3}+\binom{n}{1}\binom{n-1}{3}+\binom{n}{2}\binom{n-2}{3}+\binom{n}{3}\binom{n-3}{3} \\
& +\ldots+\binom{n}{n-3}\binom{n-(n-3)}{3}
\end{aligned}
$$

and so on
$\mathrm{a}_{\mathrm{n}-2}=\binom{n}{n-3}+\binom{n}{1}\binom{n-1}{n-3}+\binom{n}{2}\binom{n-2}{n-3}+$

$$
\binom{n}{3}\binom{n-3}{n-3}
$$

$\mathrm{a}_{\mathrm{n}-1}=\binom{n}{n-2}+\binom{n}{1}\binom{n-1}{n-2}+\binom{n}{2}\binom{n-2}{n-2}$
$\mathrm{a}_{\mathrm{n}}=\binom{n}{n-1}+\binom{n}{1}\binom{n-1}{n-1}$
Case(i) : Suppose n is even.

$$
\begin{aligned}
& a_{1}-a_{2}+a_{3}-\ldots-a_{n-2}+a_{n-1}-a_{n} \\
& =2^{n}-\left\{\binom{n}{1}+\binom{n}{1}\binom{n-1}{1}+\binom{n}{2}\binom{n-2}{1}-\binom{n}{3}\right. \\
& \left.\binom{n-3}{1}+\cdots+\binom{n}{n-1}\binom{n-(n-2)}{1}\right\} \\
& +\left\{\binom{n}{2}+\binom{n}{1}\binom{n-1}{2}+\binom{n}{2}\binom{n-2}{2}+\binom{n}{3}\right. \\
& \left.\binom{n-3}{2}+\cdots+\binom{n}{n-2}\binom{n-(n-2)}{2}\right\}- \\
& \left\{\binom{n}{3}+\binom{n}{1}\binom{n-1}{3}+\binom{n}{2}\binom{n-2}{3}+\right. \\
& \left.\binom{n}{3}\binom{n-3}{3}+\cdots+\binom{n}{n-3}\binom{n-(n-3)}{3}\right\} \\
& -\ldots-\left\{\binom{n}{n-3}+\binom{n}{1}\binom{n-1}{n-3}+\binom{n}{2}\right. \\
& \left.\binom{n-2}{n-3}+\binom{n}{3}\binom{n-3}{n-3}\right\}+\left\{\binom{n}{n-2}+\right. \\
& \left.\binom{n}{1}\binom{n-1}{n-2}+\binom{n}{2}\binom{n-2}{n-2}\right\}-\left\{\binom{n}{n-1}+\right. \\
& \left.\binom{n}{1}\binom{n-1}{n-1}\right\} \text {. } \\
& =2^{\mathrm{n}}-\left[\binom{n}{1}-\binom{n}{2}+\binom{n}{3}-\binom{n}{4}+\cdots+\binom{n}{n-1}\right]- \\
& \binom{n}{1}\left[\binom{n-1}{1}-\binom{n-1}{2}+\right. \\
& \left.\binom{n-1}{3}-\cdots-\binom{n-1}{n-2}+\binom{n-1}{n-1}\right]-\binom{n}{2} \\
& {\left[\begin{array}{c}
n-2 \\
1
\end{array}\right)-\binom{n-2}{2}+\binom{n-2}{3}-\cdots-} \\
& \left.\binom{n-2}{n-3}+\binom{n-2}{n-2}\right]-\binom{n}{3}\left[\binom{n-3}{1}-\right. \\
& \binom{n-3}{2}+\binom{n-3}{3}-\cdots-\binom{n-3}{n-4}+ \\
& \left.\binom{n-3}{n-3}\right]-\cdots-\binom{n}{n-1}\left[\binom{n-(n-1)}{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2^{n}-\left[2-(1-1)^{n}\right]-\binom{n}{1}\left[1-(1-1)^{n-1}\right]- \\
& =\binom{n}{2}\left[1-(1-1)^{n-2}\right]-\ldots-\binom{n}{n-1} \\
& =2^{n}-2-\binom{n}{1}-\binom{n}{2}-\binom{n}{3}-\binom{n}{4}-\ldots-\binom{n}{n-1} \\
& = \\
& 2^{n}-\left[2+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\binom{n}{4}+\ldots+\binom{n}{n-1}\right. \\
& =2^{n}-(1+1)^{n} \\
& =2^{n}-2^{n}=0
\end{aligned}
$$

Therefore, $a_{1}-a_{2}+a_{3}-\ldots-a_{n-2}+a_{n-1}-a_{n}=0$
Case(i): Suppose n is odd.

$$
\binom{n}{2}\left[1-(1-1)^{n-2}\right]-\cdots-\binom{n}{n-1}
$$

$$
=2^{n}-\binom{n}{1}-\binom{n}{2}-\binom{n}{3}-\binom{n}{4}-\cdots-\binom{n}{n-1}
$$

$$
=2^{n}-\left[\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\binom{n}{4}+\cdots+\binom{n}{n-1}\right.
$$

$$
\left.=2^{n}-(1+1)^{n}-2\right]
$$

$$
=2^{n}-2^{n}+2=2
$$

Therefore, $a_{1}-a_{2}+a_{3}-\ldots-a_{n-2}+a_{n-1}-a_{n}=2$
Hence the interval $\left[\begin{array}{l}\emptyset, \\ B_{n}\end{array}\right]$ has the same number of elements of odd and even rank.

Now we are going to claim that $\operatorname{CS}\left(B_{n}\right)$ is dual simplicial:

Let a be any element of rank k in B_{n}. We have to calculate the number of elements of rank r in $\left[\{\boldsymbol{a}\}_{,} B_{n}\right]$ in the lattice $\operatorname{CS}\left(B_{n}\right)$.
The number of atoms of $\left[\{\boldsymbol{a}\}, B_{n}\right]$ is equal to $n-k+k=n$, since $[0, \mathrm{a}] \cong \mathrm{B}_{\mathrm{k}}$ and $[a, 1] \xlongequal{\cong} \mathrm{B}_{\mathrm{n}-\mathrm{k}}$, and so the number of edges containing a in $[0, \mathrm{a}]$ and $[\mathrm{a}, 1]$ are respectively k and $\mathrm{n}-\mathrm{k}$.
A rank 2 element in $\left[\{\boldsymbol{a}\}, B_{n}\right]$ is a B_{2} containing a.
There are three possibilities, namely, either a may be in the top or a may be in the middle or a may be in the bottom of the B_{2}.

$$
\begin{aligned}
& \binom{n}{1}\left[\binom{n-1}{1}-\binom{n-1}{2}+\right. \\
& \left.\binom{n-1}{3}-\cdots-\binom{n-1}{n-2}+\binom{n-1}{n-1}\right]-\binom{n}{2} \\
& {\left[\binom{n-2}{1}-\binom{n-2}{2}+\binom{n-2}{3}-\cdots-\right.} \\
& \left.\binom{n-2}{n-3}+\binom{n-2}{n-2}\right]-\binom{n}{3}\left[\binom{n-3}{1}-\right. \\
& \binom{n-3}{2}+\binom{n-3}{3}-\cdots-\binom{n-3}{n-4}+ \\
& \left.\binom{n-3}{n-3}\right]-\cdots-\binom{n}{n-1}\left[\binom{n-(n-1)}{1}\right] \\
& =2^{n}-\left[-(1-1)^{n}\right]-\binom{n}{1}\left[1-(1-1)^{n-1}\right]-
\end{aligned}
$$

The B_{2} 's with a in the top is an upper inerval in $[0, a]$. Therefore, the number of such B_{2} 's are exactly $\binom{\boldsymbol{k}}{\mathbf{2}}$.

The top elements in the B_{2} 's with a as a middle element are just the n-k atoms of the interval $[a, 1]$

We observe that a B_{2} with a in the middle has one of the atoms of $[a, 1]$ as the top element and one of the co-atoms of $[0$; a] as the bottom element.

Now, fix an atom in $[a, 1]$. Since there are k co-atoms in $[0, a]$ the number of B_{2} 's with this atom as a top element and a in the middle is k .

This is true for every atom in [a,1]. Since there are $n-k$ such atoms the total number of B_{2} 's having a in the middle is $\binom{\boldsymbol{n}-\boldsymbol{k}}{\mathbf{1}} \boldsymbol{X}\binom{\boldsymbol{k}}{\mathbf{1}}$

The B_{2} 's with a in the bottom is a lower interval in $[a, 1]$. Therefore, the number of such B_{2} 's are $\binom{\boldsymbol{n}-\boldsymbol{k}}{2}$
Hence the total number of rank 2 elements in $\left[\{\boldsymbol{a}\}, B_{n}\right]$ is $\binom{k}{2}+\binom{n-k}{1} X\binom{k}{1}+\binom{n-k}{2}=\binom{n}{2}$

The rank 3 elements in $\left[\{\boldsymbol{a}\}, B_{n}\right]$ is isomorphic to B_{3} containing a.

There are four possibilities, namely, a may be a top element or may be a rank 1 element or may be a rank 2 element or may be a bottom element of B_{3}.

The B_{3} 's with a in the top is an upper interval in $[0, a]$. Therefore, the number of such B_{3} 's are exactly $\binom{\boldsymbol{k}}{\mathbf{3}}$

Suppose that a is a rank 2 element of the B_{3} 's, that is, a coatom of the $B_{3}{ }^{\prime} s$.

For a typical such B_{3} an atom in $[a ; 1]$ is the topmost element.

Below this a there are two atoms of this B_{3} which belong to [0,a].

That atoms are just the coatoms of [0, a]. Now, fix an atom in $[a, 1]$.

The number of B_{3} 's with this atom as the topmost element is $\binom{\boldsymbol{k}}{2}$, since there are k coatoms in [0, a]. This is true for every atom in $[\mathrm{a}, 1]$.

Therefore, there are exactly $\binom{\boldsymbol{n}-\boldsymbol{k}}{\mathbf{1}}\binom{\boldsymbol{k}}{2}$ such B_{3} 's.
Suppose that a is a rank 1 element of the B_{3} 's, that is an atom of the $B_{3}{ }^{\prime} s$.
The lowest element of such a typical B_{3} is a co-atom in [0, a]. Now, fix a co-atom in [0, a]. The number of B_{3} 's with this coatom as the lowest element is $\binom{\boldsymbol{n}-\boldsymbol{k}}{\mathbf{2}}$, since there are $n-\mathrm{k}$ atoms in $[a, 1]$. This is true for every co-atom in $[0 ; a]$.

Therefore, the number of such B_{3} 's are $\binom{\boldsymbol{n}-\boldsymbol{k}}{2}\binom{\boldsymbol{k}}{1}$.
The B_{3} 's with a in the bottom is a lower interval in $[\mathrm{a}, 1]$.
Therefore, the number of such B_{3} 's are exactly $\binom{\boldsymbol{n}-\boldsymbol{k}}{3}$
Thus the total number of rank 3 elements in $\left[\{\boldsymbol{a}\}, B_{n}\right]$ is $\binom{k}{3}+\binom{n-k}{1}\binom{k}{2}+$
$\binom{n-k}{2}\binom{k}{1}+\binom{n-k}{3}=\binom{n}{3}$

Similarly, we can write the total number of elements of rank r in
$\operatorname{as}\binom{\boldsymbol{k}}{\boldsymbol{r}}+\binom{\boldsymbol{n}-\boldsymbol{k}}{\mathbf{1}}\binom{\boldsymbol{k}}{\boldsymbol{r}-\mathbf{1}}+$
$\binom{n-k}{2}\binom{k}{r-2}+\binom{n-k}{3}\binom{k}{r-3}+\cdots+\binom{n-k}{r-2}\binom{k}{2}+\binom{n-k}{r-1}\binom{k}{1}+\binom{n-k}{r}=\binom{n}{r}$,
by remark 2.11 .
The terms in the number of B_{r} 's are of the form $\binom{\boldsymbol{n}-\boldsymbol{k}}{\boldsymbol{x}}\binom{\boldsymbol{k}}{\boldsymbol{y}}$
where $\mathrm{x}+\mathrm{y}=\mathrm{r}$.
The $\mathrm{B}_{\mathrm{r}+1}$'s containing these B_{r} 's are obtained by moving up or down by one rank.
Therefore, we get a $\mathrm{B}_{\mathrm{r}+1}$ by adding 1 with x or with y .
Therefore, either $(x+1)+y=r+1$ or $x+(y+1)=r+1$.
Therefore, a typical term in the number of $\mathrm{B}_{\mathrm{r}+1}$'s is of the form,
$\binom{n-k}{x+1}\binom{k}{y}$ or $\binom{n-k}{x}\binom{k}{y+1}$
The number of elements of rank $\mathrm{r}+1$ in $\left[\{\boldsymbol{\alpha}\}, \mathrm{B}_{\mathrm{n}}\right]$ is $\binom{k}{r+1}+\binom{n-k}{1}\binom{k}{r}+$
$\binom{n-k}{2}\binom{k}{r-1}+\binom{n-k}{3}\binom{k}{r-2}+\cdots+\binom{n-k}{r}\binom{k}{1}+\binom{n-k}{r+1}=\binom{n}{r+1}$
, by remark 2.11.
Therefore, $\left[\{\boldsymbol{a}\}, \mathrm{B}_{\mathrm{n}}\right]$ is a Boolean lattice of rank n .
If we take any upper interval then it is a subinterval of one of the intervals of the form $\left[\{\boldsymbol{a}\}, B_{n}\right]$.
Since $\left[\{\boldsymbol{a}\}, B_{n}\right]$ is Boolean any subinterval is also Boolean.
Therefore, every upper interval is Boolean.
Hence, $\mathrm{CS}\left(\mathrm{B}_{\mathrm{n}}\right)$ is a dual simplicial Eulerian Lattice.

Conclusion

A Boolean algebra B_{n} is a particular case of an Eulerian lattice for which we proved $\operatorname{CS}\left(\mathrm{B}_{\mathrm{n}}\right)$ is a dual simplicial Eulerian lattice under the set inclusion relation. For a non-Boolean Eulerian lattice we can not decide the structure. For lattices of
small ranks $\mathrm{CS}(\mathrm{L})$ is Eulerian. So, we strongly believe that CS(L) would be Eulerian yet it is still open.

References

[1] Chen, C.C., Koh, K.M.: On the lattice of convex sublattices of a finite lattice, Nanta Math. 5, 92-95 (1972).
[2] Gratzer G., General Lattice Theory, Birkhauser Verlag, Basel, 1978.
[3] Koh, K.M., On the lattice of convex sublattices of a finite lattice, Nanta Math. 5, 18-37 (1972).
[4] Lavanya, S., Parameshwara Bhatta, S, A New approach to the lattice of convex sublattices of a lattice, Algebra Univ. 35, 63-71 (1996).
[5] Ramana Murty, P.V., On the lattice of convex sublattices of a lattice, Southeast Asian Bulletin of Mathematics. 26, 51-55 (2002).
[6] Rota, C.G., On the foundations of Combinatorial theory I, Theory of Mobius functions, Z.Wahrschainlichkeitstheorie. 2 (1964)340-368.
[7] Stanley, R.P., Some aspects of groups acting on finite posets, J.Combinatoria theory, A. 32, 131-161 (1982).
[8] Stanley, R.P., A Survey of Eulerian Posets, Ploytops: abstract, convex and computational, Kluwer Acad. Publ., Dordrecht, 1994, pp 301-333.
[9] Stanley, R.P., Enumerative Combinatorics, Vol 1, Wordsworth \& Brooks/Cole, 1986.
[10] Santhi, V.K., Topics in Commutative Algebra, Ph.D thesis, Madurai Kamaraj University, 1992.
[11] Vethamanickam, A.,Topics in Universal Algebra, Ph.D thesis, Madurai Kamaraj University, 1994.
[12] Vethamanickam, A., Subbarayan, R., Some simple extensions of Eulerian lattices, Acta Math. Univ. Comenianae, 79, No 1, 47-54 (2010).

[^0]: Tele:
 E-mail addresses: rsubbarayan2010@gmail.com

