
Paritosh Bapat et al./ Elixir Comp. Sci. & Engg. 50 (2012) 10351-10353

10351

Introduction

Software security is the process of designing, building, and

testing software for security. Software developers build software

that can withstand attack. In this way, the development process

identifies and removes problems in the software itself. Building

secure software is an important responsibility of software

developer. Cyber attacks are getting common these days

therefore claims about software reliability and safety must

include provision for built in security of the software. There is a

need to avail and use the tools, knowledge and guidance that

will improve security of software. This means that software at

the level of an individual component, program or application

will be attack-resistant. It was in 2001 that the developers,

architects, and computer scientists started systematically

studying how to build secure software.

Importance

Software is present everywhere. Services provided in

different sectors depend on software that performs accurately. It

enables and controls business operations and nation’s critical

infrastructure. Critical functions are dependent on software

which makes it a high valued target. Because of this dependency

terrorist and criminals approach malicious attackers in order to

target Software controlled system. Software also protects other

software. Routers, firewall, encryption system are implemented

through the use of software. On a personal level, our financial

transactions are exposed to the Internet and implemented using

web service technologies. We shop, bank, pay taxes, buy

insurance, invest online. Therefore software security matters.

How Threat Works

Hackers exploit vulnerabilities present in the software.

Vulnerabilities that can be exploited by attackers to perform

code injection attacks are an important kind of implementation

error. They exploit errors in the software code which create

abnormal condition in the software. The hackers need not know

the version of the software. An exploit-kit such as Eleanor,

crimepack etc is used for attacking. Malicious software also

known as malware, help hackers disrupt users’ computer

operation, gather sensitive information, or gain unauthorized

access to a computer system. It can be software, script or code.

These kits work by creating a web server, a php page on some

random host that just serves malware and exploits the victim's

browser or his flash or downloads a pdf and exploits his pdf

reader. By merely clicking a link or browsing to the affected

page or downloading and running a file, the handling application

is exploited and the attacker drops his executable on the host. It

is not always possible to use safe languages like Java or C#.

Moreover, many programmers have expertise in C-like

languages and they use them in order to develop new products.

In certain cases, the use of C-like languages is necessary for

system software as programmers need direct access to memory,

which is not possible in safe languages. Vulnerabilities are the

consequences of memory management errors occurring in C-like

languages. Using such vulnerabilities, an attacker can overwrite

memory locations that the execution environment relies on to

execute programs accurately. Virus, Trojan horse, unauthorized

access, Buffer overflows come under the top vulnerabilities and

threat category. The “Code Red” worm exploited a buffer

overflow to be able to run arbitrary code on the vulnerable

machine, allowing it to spread by copying itself to the hosts it

infected. Such vulnerabilities are an important issue in C

language.

Software Development Life Cycle

Software development process which is security enhanced

is important to achieve secure software. It roots out

vulnerabilities or exploitable defects from software. It also

ensures that the defects do not occur again. Sound practices and

principles are applied throughout the life cycle. Scope of

development activities is expanded so that security is given the

same importance as it is given to functional and non-functional

requirements of the software. Risk management activities and

checkpoints are integrated throughout the life cycle so that the

software can resist and recover from attacks. This expansion

affects the software development lifecycle in following ways.

Tele:

E-mail addresses: shivanics.vit@gmail.com

 © 2012 Elixir All rights reserved

Software Security
Paritosh Bapat

1
 and Shivani Dole

2

Department of IT, VIT University, Vellore, Tamil Nadu-632014.

Department of CSE, VIT University, Vellore, Tamil Nadu-632014.

ABSTRACT

This paper untangle the idea of software security and applying sound practices to the phases

of software development life cycle that design and develop software and subject all phases

to risk analysis and testing. It focuses on importance of secure software and unveils why and

how attackers target software. It brings into light some of the exploitable software defects

and certain methods to make software less vulnerable to attacks. It also presents the idea of

software testing and its goal with the perspective of considering security as an important

requirement to test.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 7 July 2012;

Received in revised form:

16 August 2012;

Accepted: 6 September 2012;

Keywords

Software;

Software Security;

Vulnerabilities;

Software Development Life Cycle;

Threat Modeling.

Elixir Comp. Sci. & Engg. 50 (2012) 10351-10353

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Paritosh Bapat et al./ Elixir Comp. Sci. & Engg. 50 (2012) 10351-10353

10352

Requirement specification

Assessment of risk and vulnerabilities is carried out while

finding out, analyzing and documenting functional requirements

specification. This helps to capture non functional security

requirements that will put a check on identified risks and

vulnerabilities which when addressed through the system’s

design should be able to reflect mitigations or reductions in risk.

That is how these requirements are included in software

specification which otherwise would not have been included.

Some percentage of vulnerabilities injected during requirement

activities are removed during requirement analysis or by

developing cases that represent abnormal condition.

Software design

It defines the overall structure of the software from a

security perspective and identifies those portions of the software

whose correct functioning is essential to system security. It

determines how the software will operate and how modules will

work together in order to provide software specific

functionalities. So it should be analyzed such that functions are

not exposed to attackers. The selection of programming

language, tools and components should be such that there is no

vulnerability present in the software. At the design and

architecture level, a system must be coherent and present unified

security architecture. Security analysts should uncover and rank

risks so that mitigation can begin. Disregarding risk analysis at

this level leads to costly problems later.

Implementation

During the implementation phase, the software developers

perform coding, testing and integrating the software. At the code

level, implementation flaws are discovered by static analysis

tools which scan source code for common vulnerabilities. The

usage of safe languages such as Java and C# gives programmers

less direct access to memory and can thus prevent bugs from

occurring. Bugs that are present in source code should be taken

into account which might result in incorrect functionalities of the

software and make it behave in an unintended way. Garbage

collecting languages, do not allow programmers to manually

free memory, removing the problem of dangling pointer

references. Safe languages will usually not allow the

programmer to directly manipulate pointers or perform pointer

arithmetic, preventing an important cause of buffer overflows.

Applying static analysis code scanning tools and security testing

tools and conducting security code reviews are common

practices in order to remove certain percentage of vulnerability

in software.

Software Testing

The software testing includes security reviews and tests that

are driven not by verification of requirements objectives but by

the need to identify any vulnerability in the software that the

new threats can successfully target.Security criteria will be

generated for software’s unit and integration test plan. These

tests checks whether software development phases have met

security exit criteria. Testing security functionality with standard

functional testing techniques and risk-based security testing are

performed based on attack patterns and threat models.

Distribution and deployment

Any residual security issue is removed by cleaning the code

before distribution of software. When the software is installed,

certain configuration parameters are set to protect the software

in deployment. This phase marks the end of sound practices that

are applied throughout the software development lifecycle.

Evolution

Testing Implementation

Requirement

Analysis

Design
SDLC

Software Development

Life Cycle

Figure 1 Software Development Life Cycle

Threat Modeling

Threat modeling is a technique that adapts security risk

analysis that makes analyst to think like an attacker while

systematically exploring the software. It is an iterative process

that starts during the architecture or high-level design phase. It

has become an important part of software development lifecycle

process. It is a description of security aspects. In order to know

the mitigation steps that must be taken, threats are modeled by

the architecture team. Set of possible attacks and the potential

harm to the software are determined which helps to take

measures in advance to eradicate the threat.

Identify Security

Objectives

Software Overview

Decompose

Software

Identify

Vulnerabilities

Identify Threats

Figure 2 Threat Modeling

Enhance Software Security

Software defects can be avoided if software developers are

equipped in order to recognize security implication of design

and implementation that they choose. They should be able to

anticipate the security implications of unexpected behavior of

software functionalities when combined together or of even

simple defects occurring in it. Various methods make different

trade-offs in terms of performance, effectiveness, memory cost,

compatibility, etc.

MDA

Model Driven Architecture (MDA) is a software design

approach for the development of software systems. It is based on

generating code from Unified Modeling Diagrams. Main aim is

to separate design from architecture. The design addresses the

functional requirement architecture and provides infrastructure

by which non functional requirements are realized. By using

MDA, developers need to write small as well as less complex

code. Thus the software contains fewer design and coding error.

Object Oriented Model

Unified Modeling Language is the industry-standard

language for specifying, visualizing, constructing and

documenting the developmental phases of software. Security is a

non functional requirement in object oriented modeling. It is

possible to specify security aspect in UML model by a set of

UML security stereotype. It guides developers by annotating

vulnerable model parts or places where a flaw can occur. This

also helps to generate test cases.

Paritosh Bapat et al./ Elixir Comp. Sci. & Engg. 50 (2012) 10351-10353

10353

Agile Methods

It promotes development of high quality software. Certain

key practices in agile methods reduce the vulnerable defects that

are present in the software like simple design, continuous testing

and pair programming. Pair programming ensures higher quality

code, enhanced trust and learning. Programmers working in

pairs produce shorter programs with better designs and fewer

bugs than programmers working alone. Continuous Testing is

achieved when uninterrupted tests run twenty four hours a day,

seven days a week, and the results of this testing can be

efficiently processed. It increases product quality by detecting

more defects in a shorter period of time. One objective of agile

development is to put minimal software into production as

quickly as possible and then enhance it. Use of this technique for

security has several benefits and drawbacks. The nature of an

evolving design leaves the product vulnerable to the problems of

an add-on product. Leaving requirements open does not ensure

that security requirements will be properly implemented into the

system. However, if threats were analyzed and appropriate

security requirements were developed before the software was

designed, secure or trusted software could result.

Software Testing

It verifies that the software is secure. It does this by unit as

well as integration testing. It detects security defects, coding

error and other vulnerabilities that are present in the software. It

demonstrates the secure behavior of software when subjected to

threats or attack. In addition, it verifies that software exhibits its

required security property in any condition.

The goal of security in software is to withstand or resist

attacks and recover rapidly from attacks that cannot be resisted

or withstood. The test plan for software security should include

test cases that are not included in requirement based testing. The

test cases should demonstrate as follows:

 The software behaves consistently under any condition.

 Areas of code are not exploited by attackers.

 Integration of modules of software is consistently secure.

 Even if the software fails it is not exposed to attackers.

 Exception and error handling are able to resolve all faults and

error and does not leave the software exposed to attackers.

Conclusion

Software security is about building secure software or

making sure that software is secure and educating software

developers, architects and users about how to build secure

software. Software is critical and increasingly exposed to threats

posed by malicious, recreational hackers, cyber terrorists or

cyber criminals. In addition to this, demand for better and

improved functionalities along with time constraint does not

allow careful specification of design, implementation, coding

and testing. As a result there are number of areas developed in

the software with defects and flaws. All these reasons make the

software vulnerable. Most technologists acknowledge this

undertaking’s importance, but they need some help in

understanding how to tackle it. Security holes in software are

common. Exploring software security best practices helps in this

direction. Security enhanced software development life cycle

ensures mitigation strategies against threat attacking the

vulnerabilities right from the beginning of software

development. Software defects can also be avoided by

methodologies like Model Driven Architecture, Object Oriented

Model and Agile Methods. Such expansion of ideas in this field

and increasing demand of software everywhere makes it

mandatory to consider software security a high value discipline

in software engineering.

References

[1] Software Security,

http://www.microsoft.com/security/sdl/default

[2] Joe Jarzombek, Karen Mercedes Goertzel. "Security in the

Software Life Cycle".

[3] Karine P. Peralta, Alex M. Orozco, Avelino F. Zorzo, Flavio

M. Oliveira. "Specifying Security Aspects in UML Models".

[4] Prof. Dr. W. JOOSEN, Prof. Dr.F. PIESSENS. "Efficient

countermeasures for software vulnerabilities due to memory

management errors".

[5] MDA, http://en.wikipedia.org/wiki/Model-

driven_architecture.

[6] Bugs, http://en.wikipedia.org/wiki/Software_bug

[7] Threat Modeling, http://en.wikipedia.org/wiki/Threat_model.

[8] Gary McGraw, “Software Security”.

http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Threat_model

