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Introduction  

        As the demand for more powerful and flexible computing 

devices increases, more   and   more System-on- Chip (SoC) is 

being developed. Many SoCs comprise Application Specific 

Integrated Circuits (ASICs) that are offered by several 

companies. The Advanced RISC Machines (ARM) 

microprocessor is very popular for SoC solutions. Today it is 

fair to say that the ARM Embedded Technology is universally 

recognized as an industry standard for ASIC design for 

portable applications. Creating and applying powerful, portable  

and  at the same  time  re-usable  intellectual  Property (IP),  

capable  of  enhancing  an ARM  core  is  therefore  of 

utmost importance  to any ASIC design centre. 

        The Advanced Microcontroller Bus Architecture (AMBA) 

is an open standard, on-chip bus specification that details a 

strategy for the interconnection and management of functional  

blocks  that  makes  up a SoC. AMBA  defines  a signal  

protocol  for  the connection  of multiple  blocks  in a SoC.  It 

facilitates the development of embedded processors (e.g., ARM 

microprocessors) with multiple peripherals. AMBA enhances a 

reusable design methodology by defining a common bus 

structure for SoC modules. SoCs, and in particular ARM-based  

SoCs, are well suited for communication applications,    

including cable modems, xDSL, Voice-over-IP (VoiP) and 

Internet appliances, handheld devices (e.g., Personal Digital 

Assistants), GSM and UMTS systems, digital video cameras, 

handsets, and so forth. SoCs can also be used by the automotive 

industries, e.g. for handling   tasks inside a car. 

      With the popularization of the SoCs in the above mentioned   

communication and multimedia   field, the high bandwidth  

requirement  has  become  a  bottle  neck  of  the SoCs. 

Advanced High-performance Bus (AHB) is high performance 

system bus that used widely in industry, and SDRAM   is the  

 main memory for most of SoCs system. Thus, it is valuable to 

improve the memory access speed for the SoCs. 

        The AMBA AHB is for high-performance, high clock 

frequency     system modules.   The AHB acts as the high- 

performance system backbone bus. AHB supports the efficient 

connection  of  processors,  on-chip  memories  and  off-chip 

external  memory  interfaces  with  low-power  peripheral 

macrocell functions.   AHB is also specified to ensure ease of 

use in an eff1cient design flow using synthesis and automated 

test techniques. AHB multiple bus masters and provides high-

bandwidth operation, and AMBA AHB implements the features 

required for high-performance, high clock frequency systems 

including burst transfers, s p l i t  transactions, single-cycle   bus 

master handover, single-clock edge operation, non-tristate 

implementation, and wider data bus con- figurations (64/128 

bits). 

Description of AMBA AHB bus. 

        An  AMBA  AHB  design  may  include  one  or  more  bus 

masters, typically a system would contain at least the processor 

and the test interface .   However,   it   would   also be common   

for   a   Direct   Memory   Access   (DMA)   or Digital Signal 

Processor (DSP) to be included as bus masters.  The  external    

memory   interface, the Advanced Peripheral Bus (APB) Bridge 

and any internal memory are the most common AHB slaves. 

Any other peripheral in the system could also be included as an 

AHB slave. However, low-bandwidth peripherals typically 

reside on the APB. 

 
Fig. 1 A typical AMBA architecture
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A typical AMBA AHB system design includes the following 

components: 

AHB Master- A bus master is able to initiate read and write 

operations by providing an address and control information.  

Only one bus master is allowed to actively use the bus at any 

one time. 

AHB Slave - A bus slave responds to a read or write 

operation within a given address-space range. The bus slave 

signals back to the active master the success, failure or waiting 

of the data transfer. 

AHB Arbiter - The bus arbiter ensures that only one bus 

master at a time is allowed to initiate data transfers. Even though 

the arbitration protocol is fixed, any arbitration algorithm, such 

as highest priority or fair access can be implemented depending 

on the application requirements. An AHB would include only 

one arbiter, although this would be trivial in single bus master 

systems. 

       AHB decoder -   The AHB decoder is used to decode the 

address of each transfer and provide a select signal for the 

slave that is involved in the transfer. A single centralized 

decoder is required in all AHB implementations. 

       The AMBA AHB bus  protocol i s  designed t o  be used 

wi t h  a  centra l  m u l t i p l e x e r    interconnection   scheme. 

Using this scheme all bus masters drive out the address and 

control signals indicating the transfer they wish to perform 

and the arbiter determines which master has its address and 

control signals routed to all of the slaves. A central decoder 

is also required to control the read data and response signal 

multiplexer, which selects the appropriate signals from the 

slave that is involved in the transfer. Fig.1 illustrates the 

structure r e q u i r e d  t o  implement a n  AM B A    AHB 

d e s i g n  with three masters and four slaves. 

       Before an AMBA AHB transfer can commence the bus 

master must be granted access to the bus. This process is started 

by the master asserting a request signal to the arbiter. Then the 

arbiter indicates when the master will be granted use of the bus. 

A granted bus master starts an AMBA AHB transfer by driving 

the address and control signals. These signals provide 

information on the address, direction and width of the transfer, 

as well as an indication if the transfer forms part of a burst. 

Two different forms of burst transfers are allowed: incrementing 

bursts, which do not wrap at address boundaries; and wrapping 

bursts, which wrap at particular address boundaries. A write data 

bus is used to move data from the master to a slave, while a read 

data bus is used to move data from a slave to the master. 

 
Fig.2 An AMBA A H B  design with three masters and four 

slaves. 

        Every   transfer   consists   of an address   and control 

cycle a n d  o n e  o r  m o r e  c y c l e s  f o r  t h e  d a t a .  The 

address cannot be extended and therefore all slaves must sample 

the address during this time. The data, however, can be extended 

using the HREADY signal. When LOW this signal causes wait 

states to be inserted into the transfer and allows extra time for 

the slave to provide or sample data. 

        During a transfer the slave shows the status using the 

response signals, HRESP [l:O]: 

OKAY: The OKAY response is used to indicate that the 

transfer is progressing normally and when HREADY goes 

HIGH this shows the transfer has completed success- fully. 

      ERROR: The ERROR response indicates that a transfer error 

has occurred and the transfer has been unsuccessful. 

     RETRY and SPLIT: Both the RETRY and SPLIT transfer 

responses indicate that the transfer cannot complete 

immediately, but the bus master should continue to attempt the 

transfer. 

       In normal operation a master is allowed to complete all 

the transfers in a particular burst before the arbiter grants 

another master access to the bus. However, in order to avoid 

excessive arbitration latencies it is possible for the arbiter to 

break up a burst and in such cases the master must re-arbitrate 

for the bus in order to complete the remaining transfers in the 

burst. An  AHB  transfer  has  two  distinct  sections:  the 

address phase, which lasts only a single cycle; and the data 

phase,  which  may require  several  cycles.  This is achieved 

using the HREADY   signal.  In a simple transfer with no wait 

states, the master drives the address and control signals onto the 

bus after the rising edge of HCLK and the slave then samples 

the address and control information on the next rising edge of 

the clock. After the slave has sampled the address and control it 

can start to drive the appropriate response and this is sampled 

by the bus master on the third rising edge of the clock. 

        This simple example demonstrates how the address and 

data phases of the transfer occur during different clock periods.  

In fact, the address phase of any transfer occurs during the data 

phase of the previous transfer. This overlapping of address and 

data is fundamental to the pipelined nature of the bus and allows 

for high performance operation, while still providing adequate 

time for a slave to provide the response to a transfer. 

          Every transfer can be classified into one of four different 

types, as indicated by the HTRANS [l :0] signals as shown in 

Table 1. 

       Furthermore, the AHB supports BURST transfer. Four, 

eight and sixteen-beat bursts are defined in the AMBA AHB 

protocol, as well as undefined-length bursts and single transfers. 

Both incrementing and wrapping bursts are sup- ported in the 

protocol. Incrementing bursts access sequential locations and the 

address of each transfer in the burst is just an increment of 

the previous address.  For wrapping bursts, if the start address of 

the transfer is not aligned to the total number of bytes in the 

burst then the address of the transfers in the burst will wrap 

when the boundary is reached.  For example, a four-beat 

wrapping burst of word (4-byte) accesses will wrap at 16-byte 

boundaries.  Therefore, if the start address of the transfer is 

Ox34, then it has four transfers to addresses Ox34, Ox38, Ox3C 

and Ox30. 

        Burst information is provided using HBURST [2:0] and 

the eight possible types are defined in Table 2. 

       The burst size indicates the number of beats in the burst, 

not the number of bytes transferred. The total amount of data 

transferred in a burst is calculated by multiplying the number 

of  beats  by  the  amount  of  data  in  each  beat,  as indicated 

by HSIZE[2:0]. There are certain circumstances when a burst 

will not be allowed to complete and therefore it is important 

that any slave design which makes use of the burst information 

can take the correct course of action if the burst is terminated 

early. 

Detailed description Of the Memory Controller 

       According   to   the   present   architecture,   there   is 
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provided a memory    control   apparatus   including   at   least 

one memory access master for issuing a memory access 

instruction including a HLEN signal that represents the burst 

length of the transmitting  data; and a memory access controller 

for controlling  the  access  to the  memory  on the  basis  of the 

HLEN signal generated  by the memory  access master. 

        According    to another    aspect of the present architecture, 

there is provided a memory access controller having at least  

one  memory  access  slave  for  receiving  a memory access 

instruction issued by corresponding memory access  master,  

generating     a  memory  access  request  and feeding the 

information of the memory access controller back to  the  

corresponding  memory  access  master,  the  memory access 

instruction    issued   by   the   corresponding    memory access 

master  includes  a  HLEN  signal  that  represents  the burst 

length of the transmitting data; at least one HLEN signal 

decoder  for  decoding  the  HLEN  signal  included  in  the 

memory   access   instruction   issued   by   the   corresponding 

memory access master; an arbiter for receiving the memory 

access request generated by the memory access slave and 

sorting the received memory access requests to generate 

sequential access commands;    a command buffer for 

sequentially storing the access commands generated by the 

arbiter; and a command   controller   for reading the access 

command stored  in  the  command  buffer  and  generating  a 

memory access instruction  to control  the transmission  of the 

data. 

 
Fig.3 Structure of the SoC system with Memory controller 

       According to a further aspect of the present structure there is 

provided a memory access control method comprising the steps 

of issuing at least one memory access instruction including a 

HLEN signal that represents the burst length of the transmitting  

data; and controlling the access to the memory  on the basis of 

the HLEN signal. There is also provided a memory access 

control method comprising     receiving     a   memory access   

instruction,   the memory access instruction includes a HLEN 

signal that represents   the burst   length of the transmitting  

data;  generating a memory  access request on the basis of the 

memory access instruction;  decoding the HLEN signal; 

receiving the memory  access  request  and  sorting  the received  

memory access requests to generate sequential access 

commands; sequentially storing the access commands; and 

reading  the  access    command    and  generating    a  memory 

access  instruction to control the transmission  of the data. 

        Computer programs for implementing the above memory 

access control methods are also provided. In addition, computer 

program products stored on at least one computer readable   

medium   comprising         the   program   codes   for 

implementing the above said memory access control methods 

are also provided. 

       The enhanced AHB according to the present structure adds 

one signal HLEN [3:0] from AHB masters to slave, to 

indicate the actual burst length of the transfer from 1 to 16. The 

enhanced AHB according to the present structure  resolves  the 

cycle  waste  issues  and  improves  the  performance  simply 

for those  transfers  being  not  1, 4, 8 or 16 transfer,  and  it is 

back   compatible   the AHB   protocol   and needs only very 

small change. The enhanced ARB according to the present 

structure is briefly summarized   as following. 

1) To give another signals HLEN [3:0], which rep- resent burst 

length from 1 to 16 respectively.  The burst length = HLEN+l. 

The HLEN keeps the same cycle as HBURST.  It will assert in 

AHB address phase by AHB master and sampled by AHB 

slave when HTRANS-NON- SEQ in the first data phase. 

2) For fixed burst length transfer, the HLEN should be equal 

with the original HBURST length if the burst length transfer is 

unknown for the AHB master in some cases. 

3) For increment unfixed burst length transfer, the HLEN   will 

be ignored   by AHB slave. It is suggested   that increment   

usage should be avoided except the burst length is larger than 

16. 

4) It is option for memory controller to add HLEN_ EN, which 

choose whether the HLEN or HBURST will be used as burst 

length to back compatible AHB. 

5)  The HBURST will be kept to back compatible AHB, and 

gives information about wrap, increment and single transfer. 

        The AHB master portion has a plurality of AHB masters, 

w h i c h  s e n d  o u t  a c c e s s  r e q u e s t s  t o  t h e  S D R A M  

memory controller. The AHB interface  portion  comprises:  a 

plurality of AHB slaves  arranged   corresponding to the 

plurality  of  AHB  masters  respectively,  which  receive  the 

access requests  from the plurality of AHB masters , and  issue 

requests to the arbiter  when the HTRANS  is NONSEQ;  a 

plurality of HLEN decoders , arranged corresponding to the 

plurality of AHB masters  respectively, which decode the AHB 

control signals and the HLEN signals and send the decoded 

signals as well as other AHB control signals to the arbiter of 

the  memory     controller.  The A H B  i n t e r f a c e  p o r t i o n  

a l s o  receives the feedback information from the controller core 

portion, processes the received information and sends back to 

the AHB master portion. 

        The   controller   core   portion   mainly   includes:   an 

arbiter   that  receives  the  requests  from  the  respective AHB 

slaves  ,  sorts  these  requests,  selects  and  sends  the  AHB 

command  to the command  buffer  through  the command  & 

address  MUX ;  a command buffer    that sequentially stores 

the plurality of commands from the AHB interface portion; and 

a command  controller  that reads the command  stored in the 

command   buffer , generates corresponding memory access 

command for accessing  the memory  and controls  the data 

transfer. The AHB master drives the bus address, control signals 

and HLEN signals at the rising edge of the clock.  The 

respective AHB master can decide whether to issue the HLEN 

signals or not on the basis of its situation. 

        Next, the AHB slave sample the bus address, control 

signals and the HLEN signals at the next rising edge of the 

clock. If the HTRANS signal is NONSEQ, the AHB slave 

issues a request to the arbiter. Then, the HLEN decoder judges 

whether the HLEN_EN signal is 1. If the HLEN_EN is 1, the 

AHB slave selects the HLEN as the burst length. Otherwise, 

the AHB slave selects the decoded HBURST signal as the 

burst length. The decoder of the HBURST signal also generates 

the related INCR, WRAP, FULL_PAGE signal described in 

the above table 2, so as to indicate the type of the burst. All these 

signals and the other AHB control signals are send to the 

command & address MUX. 

      After that, the arbiter in the memory controller samples the 
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request signals of the AHB slave, sorts all the transfer requests, 

selects one of the requests and send the control signals related to 

the selected request to the command buffer in the memory 

controller. 

       Next,  the command controller  in the  memory   controller,  

on the  basis  of  the  current operation status of the memory 

and the non performed command    status  (for  read  or  written 

command,   it  also includes  the information  on belonging  to 

which  bank and line and the information  indicating the HLEN 

length) in the command   buffer, re-sorts the commands   by 

using optimum arithmetic and issues the next command at 

suitable timing to mask the waiting cycles. If the type of the 

current operated AHB request is INCR, the issuing of the next 

command is prohibited    and the burst    length    is ignored, 

since i t  i s  u n k n o w n  w h e n  t h e  c u r r e n t  c o m m a n d  w i l l  

b e  finished. At the same   time,   the   memory   controller   

also monitors    the HTRANS signal of the AHB master current 

performing memory access.   If the   HTRANS   signal   is 

NONSEQ o r  IDLE, i t  indicates t h a t  t h e  AHB a s k s  f o r  

interrupting   the current transfer, and then the memory 

controller i s s u e s  the next command (if the next command has 

not been sent out). 

 
Fig.4.Flowchart of the AMBA AHB memory controller. 

      Then, the memory controller reads data from the memory or 

writes data to the memory according to the timing sequence of 

the memory. After the memory controller reads the data, it sends 

the read data to the AHB. Then, the AHB slave samples and 

drives the response signal to set HREADY as 1, so as to inform 

the AHB master that the data transfer has been finished. Next, 

the AHB master samples the HREADY signal. And the AHB 

master judges whether the HREADY signal is 1. If the 

HREADY  signal  is  1,  the  AHB  master  issues  the  next 

command and the process returns back to the initial step. 

Simulation 

 

 

 
Conclusion 

       In the prior AHB, only when the first data arrives, can the 

burst transfer completion be known, and thus the data will be 

received at the third cycles after issuing the command. However,   

according   the   enhanced   AHB   of   the   present structure,  

since the end time can be known  at the first cycle of the burst, 

the command of the other  masters can be send out in advance, 

and thus the data D1 can be arrived two cycles earlier than the 

prior AHB. Accordingly, the SDRAM access performance can 

be improved. 

       The enhanced AHB bus according to the present structure 

can be implemented  at  RTL level  by modifying original 

AHB memory controller. SDRAM bus utilization can be 

increased. That means the performance can be improved. Based 

on different application case, a 5% to 15% performance 

improvement can be achieved. The simulation is built on only 

two  AHB  masters  work  at  the  same  time,  if  more  masters 

added; the bus utilization can be improved from 10-20% for 

typical multimedia application. Because most current designs 

are based on AHB design, the enhanced ARB protocol is very 

valuable because it improves the memory system   performance 

dramatically with only very small change, and it is especially 

important for multimedia  application     when     the     memory      

access becomes the system bottle neck. It also is very 

convenient for AXI master to be used in an AHB bus system 

with such enhanced bus performance with very low performance 

loss compared to AXI protocols. 
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Table 2 
HBURST[2:0] TYPE DESCRIPTION 

000 SINGLE single transfer 

001 INCR incrementing burst of 

unspecified length 

010 WRAP4 4-beat wrapping burst 

011 INCR4 4-beat incrementing burst 

100 WRAP8 8-beat wrapping burst 

101 INCR8 8-beat incrementing burst 

110 WRAP16 16-beat wrapping burst 

111 INCR16 16-beat incrementing burst 

 

Table 1 
HTRANS[1:0] TYPE DESCRIPTION 

 
 

00 

 
 

IDLE 

Indicates  that  no  data  transfer  is  required.  The  IDLE 
transfer type is used when a bus master is granted the bus, but does not wish to perform a data transfer. 

Slaves  must  always  provide  a  zero  wait  state  OKAY 

response  to  IDLE  transfers  and  the  transfer  should  be ignored by the slave. 

 
 

 

 
01 

 
 

 

 
BUSY 

The  BUSY  transfer  type  allows  bus  masters  to  insert 
IDLE cycles in the middle of bursts of transfers. This transfer type indicates that the bus master is continuing with a burst of transfers, but 

the next transfer cannot take place immediately. When a master uses the BUSY transfer type the address and control signals must reflect 

the next transfer in the 
burst. 

The transfer should be ignored by the slave. Slaves must always provide a zero wait state OKAY response, in the same way that they 

respond to IDLE transfers. 

 
 

10 

 
 

NONSEQ 

Indicates the first transfer of a burst or a single transfer. 
The  address  and  control  signals  are  unrelated  to  the previous transfer. 

Single transfers on the bus are treated as bursts of one and therefore the transfer type is NONSEQUENTIAL. 

 

 

 
11 

 

 

 
SEQ 

The remaining transfers in a burst are SEQUENTIAL and 

the address is related to the previous transfer. The control information is identical to the previous transfer. The address is equal to the 

address of the previous transfer plus the size (in bytes). In the case of a wrapping burst the address  of  the  transfer  wraps  at  the  address  
boundary equal to the size (in bytes) multiplied by the number of beats in the transfer (either 4, 8 or 16). 

 


