
Jayapraveen.D et al./ Elixir Comp. Sci. & Engg. 51A (2012) 11115-11119

11115

Introduction

 As the demand for more powerful and flexible computing

devices increases, more and more System-on- Chip (SoC) is

being developed. Many SoCs comprise Application Specific

Integrated Circuits (ASICs) that are offered by several

companies. The Advanced RISC Machines (ARM)

microprocessor is very popular for SoC solutions. Today it is

fair to say that the ARM Embedded Technology is universally

recognized as an industry standard for ASIC design for

portable applications. Creating and applying powerful, portable

and at the same time re-usable intellectual Property (IP),

capable of enhancing an ARM core is therefore of

utmost importance to any ASIC design centre.

 The Advanced Microcontroller Bus Architecture (AMBA)

is an open standard, on-chip bus specification that details a

strategy for the interconnection and management of functional

blocks that makes up a SoC. AMBA defines a signal

protocol for the connection of multiple blocks in a SoC. It

facilitates the development of embedded processors (e.g., ARM

microprocessors) with multiple peripherals. AMBA enhances a

reusable design methodology by defining a common bus

structure for SoC modules. SoCs, and in particular ARM-based

SoCs, are well suited for communication applications,

including cable modems, xDSL, Voice-over-IP (VoiP) and

Internet appliances, handheld devices (e.g., Personal Digital

Assistants), GSM and UMTS systems, digital video cameras,

handsets, and so forth. SoCs can also be used by the automotive

industries, e.g. for handling tasks inside a car.

 With the popularization of the SoCs in the above mentioned

communication and multimedia field, the high bandwidth

requirement has become a bottle neck of the SoCs.

Advanced High-performance Bus (AHB) is high performance

system bus that used widely in industry, and SDRAM is the

 main memory for most of SoCs system. Thus, it is valuable to

improve the memory access speed for the SoCs.

 The AMBA AHB is for high-performance, high clock

frequency system modules. The AHB acts as the high-

performance system backbone bus. AHB supports the efficient

connection of processors, on-chip memories and off-chip

external memory interfaces with low-power peripheral

macrocell functions. AHB is also specified to ensure ease of

use in an eff1cient design flow using synthesis and automated

test techniques. AHB multiple bus masters and provides high-

bandwidth operation, and AMBA AHB implements the features

required for high-performance, high clock frequency systems

including burst transfers, s p l i t transactions, single-cycle bus

master handover, single-clock edge operation, non-tristate

implementation, and wider data bus con- figurations (64/128

bits).

Description of AMBA AHB bus.

 An AMBA AHB design may include one or more bus

masters, typically a system would contain at least the processor

and the test interface . However, it would also be common

for a Direct Memory Access (DMA) or Digital Signal

Processor (DSP) to be included as bus masters. The external

memory interface, the Advanced Peripheral Bus (APB) Bridge

and any internal memory are the most common AHB slaves.

Any other peripheral in the system could also be included as an

AHB slave. However, low-bandwidth peripherals typically

reside on the APB.

Fig. 1 A typical AMBA architecture

Tele:

E-mail addresses: jay2524@gmail.com

 © 2012 Elixir All rights reserved

Design of memory controller based on AMBA AHB protocol
Jayapraveen.D

and T.Geetha Priya

Veltech Multitech Dr.Rangarajan Dr,Sakunthala Engineering College, Avadi, TamilNadu, India

ABSTRACT

The performance of a computer system is heavily dependent on the characteristics of it’s

interconnect architecture. A poorly designed system bus can throttle the transfer of

instructions and data between memory and processor, or between peripheral devices and

memory. This communication bottleneck is the focus of attention among many

microprocessor and system manufacturers have adopted a number of bus standards. Hence

memory access time has been a bottleneck which limits system performance. Memory

controller (MC) is designed to tackle this problem. The Advanced Microcontroller Bus

Architecture (AMBA) specification defines an on chip communications standard for

designing high-performance embedded microcontrollers. This paper focuses on how to build

an AMBA Advanced High performance Bus (AHB) based memory controller that can work

efficiently in multi- master and multi- slave communication model.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 25 January 2012;

Received in revised form:

13 October 2012;

Accepted: 27 October 2012;

Keywords

ARM;

AMBA;

Memory Controller,

AHB bus,

Arbiter,

Decoder.

Elixir Comp. Sci. & Engg. 51A (2012) 11115-11119

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Jayapraveen.D et al./ Elixir Comp. Sci. & Engg. 51A (2012) 11115-11119

11116

A typical AMBA AHB system design includes the following

components:

AHB Master- A bus master is able to initiate read and write

operations by providing an address and control information.

Only one bus master is allowed to actively use the bus at any

one time.

AHB Slave - A bus slave responds to a read or write

operation within a given address-space range. The bus slave

signals back to the active master the success, failure or waiting

of the data transfer.

AHB Arbiter - The bus arbiter ensures that only one bus

master at a time is allowed to initiate data transfers. Even though

the arbitration protocol is fixed, any arbitration algorithm, such

as highest priority or fair access can be implemented depending

on the application requirements. An AHB would include only

one arbiter, although this would be trivial in single bus master

systems.

 AHB decoder - The AHB decoder is used to decode the

address of each transfer and provide a select signal for the

slave that is involved in the transfer. A single centralized

decoder is required in all AHB implementations.

 The AMBA AHB bus protocol i s designed t o be used

wi t h a centra l m u l t i p l e x e r interconnection scheme.

Using this scheme all bus masters drive out the address and

control signals indicating the transfer they wish to perform

and the arbiter determines which master has its address and

control signals routed to all of the slaves. A central decoder

is also required to control the read data and response signal

multiplexer, which selects the appropriate signals from the

slave that is involved in the transfer. Fig.1 illustrates the

structure r e q u i r e d t o implement a n AM B A AHB

d e s i g n with three masters and four slaves.

 Before an AMBA AHB transfer can commence the bus

master must be granted access to the bus. This process is started

by the master asserting a request signal to the arbiter. Then the

arbiter indicates when the master will be granted use of the bus.

A granted bus master starts an AMBA AHB transfer by driving

the address and control signals. These signals provide

information on the address, direction and width of the transfer,

as well as an indication if the transfer forms part of a burst.

Two different forms of burst transfers are allowed: incrementing

bursts, which do not wrap at address boundaries; and wrapping

bursts, which wrap at particular address boundaries. A write data

bus is used to move data from the master to a slave, while a read

data bus is used to move data from a slave to the master.

Fig.2 An AMBA A H B design with three masters and four

slaves.

 Every transfer consists of an address and control

cycle a n d o n e o r m o r e c y c l e s f o r t h e d a t a . The

address cannot be extended and therefore all slaves must sample

the address during this time. The data, however, can be extended

using the HREADY signal. When LOW this signal causes wait

states to be inserted into the transfer and allows extra time for

the slave to provide or sample data.

 During a transfer the slave shows the status using the

response signals, HRESP [l:O]:

OKAY: The OKAY response is used to indicate that the

transfer is progressing normally and when HREADY goes

HIGH this shows the transfer has completed success- fully.

 ERROR: The ERROR response indicates that a transfer error

has occurred and the transfer has been unsuccessful.

 RETRY and SPLIT: Both the RETRY and SPLIT transfer

responses indicate that the transfer cannot complete

immediately, but the bus master should continue to attempt the

transfer.

 In normal operation a master is allowed to complete all

the transfers in a particular burst before the arbiter grants

another master access to the bus. However, in order to avoid

excessive arbitration latencies it is possible for the arbiter to

break up a burst and in such cases the master must re-arbitrate

for the bus in order to complete the remaining transfers in the

burst. An AHB transfer has two distinct sections: the

address phase, which lasts only a single cycle; and the data

phase, which may require several cycles. This is achieved

using the HREADY signal. In a simple transfer with no wait

states, the master drives the address and control signals onto the

bus after the rising edge of HCLK and the slave then samples

the address and control information on the next rising edge of

the clock. After the slave has sampled the address and control it

can start to drive the appropriate response and this is sampled

by the bus master on the third rising edge of the clock.

 This simple example demonstrates how the address and

data phases of the transfer occur during different clock periods.

In fact, the address phase of any transfer occurs during the data

phase of the previous transfer. This overlapping of address and

data is fundamental to the pipelined nature of the bus and allows

for high performance operation, while still providing adequate

time for a slave to provide the response to a transfer.

 Every transfer can be classified into one of four different

types, as indicated by the HTRANS [l :0] signals as shown in

Table 1.

 Furthermore, the AHB supports BURST transfer. Four,

eight and sixteen-beat bursts are defined in the AMBA AHB

protocol, as well as undefined-length bursts and single transfers.

Both incrementing and wrapping bursts are sup- ported in the

protocol. Incrementing bursts access sequential locations and the

address of each transfer in the burst is just an increment of

the previous address. For wrapping bursts, if the start address of

the transfer is not aligned to the total number of bytes in the

burst then the address of the transfers in the burst will wrap

when the boundary is reached. For example, a four-beat

wrapping burst of word (4-byte) accesses will wrap at 16-byte

boundaries. Therefore, if the start address of the transfer is

Ox34, then it has four transfers to addresses Ox34, Ox38, Ox3C

and Ox30.

 Burst information is provided using HBURST [2:0] and

the eight possible types are defined in Table 2.

 The burst size indicates the number of beats in the burst,

not the number of bytes transferred. The total amount of data

transferred in a burst is calculated by multiplying the number

of beats by the amount of data in each beat, as indicated

by HSIZE[2:0]. There are certain circumstances when a burst

will not be allowed to complete and therefore it is important

that any slave design which makes use of the burst information

can take the correct course of action if the burst is terminated

early.

Detailed description Of the Memory Controller

 According to the present architecture, there is

Jayapraveen.D et al./ Elixir Comp. Sci. & Engg. 51A (2012) 11115-11119

11117

provided a memory control apparatus including at least

one memory access master for issuing a memory access

instruction including a HLEN signal that represents the burst

length of the transmitting data; and a memory access controller

for controlling the access to the memory on the basis of the

HLEN signal generated by the memory access master.

 According to another aspect of the present architecture,

there is provided a memory access controller having at least

one memory access slave for receiving a memory access

instruction issued by corresponding memory access master,

generating a memory access request and feeding the

information of the memory access controller back to the

corresponding memory access master, the memory access

instruction issued by the corresponding memory access

master includes a HLEN signal that represents the burst

length of the transmitting data; at least one HLEN signal

decoder for decoding the HLEN signal included in the

memory access instruction issued by the corresponding

memory access master; an arbiter for receiving the memory

access request generated by the memory access slave and

sorting the received memory access requests to generate

sequential access commands; a command buffer for

sequentially storing the access commands generated by the

arbiter; and a command controller for reading the access

command stored in the command buffer and generating a

memory access instruction to control the transmission of the

data.

Fig.3 Structure of the SoC system with Memory controller

 According to a further aspect of the present structure there is

provided a memory access control method comprising the steps

of issuing at least one memory access instruction including a

HLEN signal that represents the burst length of the transmitting

data; and controlling the access to the memory on the basis of

the HLEN signal. There is also provided a memory access

control method comprising receiving a memory access

instruction, the memory access instruction includes a HLEN

signal that represents the burst length of the transmitting

data; generating a memory access request on the basis of the

memory access instruction; decoding the HLEN signal;

receiving the memory access request and sorting the received

memory access requests to generate sequential access

commands; sequentially storing the access commands; and

reading the access command and generating a memory

access instruction to control the transmission of the data.

 Computer programs for implementing the above memory

access control methods are also provided. In addition, computer

program products stored on at least one computer readable

medium comprising the program codes for

implementing the above said memory access control methods

are also provided.

 The enhanced AHB according to the present structure adds

one signal HLEN [3:0] from AHB masters to slave, to

indicate the actual burst length of the transfer from 1 to 16. The

enhanced AHB according to the present structure resolves the

cycle waste issues and improves the performance simply

for those transfers being not 1, 4, 8 or 16 transfer, and it is

back compatible the AHB protocol and needs only very

small change. The enhanced ARB according to the present

structure is briefly summarized as following.

1) To give another signals HLEN [3:0], which rep- resent burst

length from 1 to 16 respectively. The burst length = HLEN+l.

The HLEN keeps the same cycle as HBURST. It will assert in

AHB address phase by AHB master and sampled by AHB

slave when HTRANS-NON- SEQ in the first data phase.

2) For fixed burst length transfer, the HLEN should be equal

with the original HBURST length if the burst length transfer is

unknown for the AHB master in some cases.

3) For increment unfixed burst length transfer, the HLEN will

be ignored by AHB slave. It is suggested that increment

usage should be avoided except the burst length is larger than

16.

4) It is option for memory controller to add HLEN_ EN, which

choose whether the HLEN or HBURST will be used as burst

length to back compatible AHB.

5) The HBURST will be kept to back compatible AHB, and

gives information about wrap, increment and single transfer.

 The AHB master portion has a plurality of AHB masters,

w h i c h s e n d o u t a c c e s s r e q u e s t s t o t h e S D R A M

memory controller. The AHB interface portion comprises: a

plurality of AHB slaves arranged corresponding to the

plurality of AHB masters respectively, which receive the

access requests from the plurality of AHB masters , and issue

requests to the arbiter when the HTRANS is NONSEQ; a

plurality of HLEN decoders , arranged corresponding to the

plurality of AHB masters respectively, which decode the AHB

control signals and the HLEN signals and send the decoded

signals as well as other AHB control signals to the arbiter of

the memory controller. The A H B i n t e r f a c e p o r t i o n

a l s o receives the feedback information from the controller core

portion, processes the received information and sends back to

the AHB master portion.

 The controller core portion mainly includes: an

arbiter that receives the requests from the respective AHB

slaves , sorts these requests, selects and sends the AHB

command to the command buffer through the command &

address MUX ; a command buffer that sequentially stores

the plurality of commands from the AHB interface portion; and

a command controller that reads the command stored in the

command buffer , generates corresponding memory access

command for accessing the memory and controls the data

transfer. The AHB master drives the bus address, control signals

and HLEN signals at the rising edge of the clock. The

respective AHB master can decide whether to issue the HLEN

signals or not on the basis of its situation.

 Next, the AHB slave sample the bus address, control

signals and the HLEN signals at the next rising edge of the

clock. If the HTRANS signal is NONSEQ, the AHB slave

issues a request to the arbiter. Then, the HLEN decoder judges

whether the HLEN_EN signal is 1. If the HLEN_EN is 1, the

AHB slave selects the HLEN as the burst length. Otherwise,

the AHB slave selects the decoded HBURST signal as the

burst length. The decoder of the HBURST signal also generates

the related INCR, WRAP, FULL_PAGE signal described in

the above table 2, so as to indicate the type of the burst. All these

signals and the other AHB control signals are send to the

command & address MUX.

 After that, the arbiter in the memory controller samples the

Jayapraveen.D et al./ Elixir Comp. Sci. & Engg. 51A (2012) 11115-11119

11118

request signals of the AHB slave, sorts all the transfer requests,

selects one of the requests and send the control signals related to

the selected request to the command buffer in the memory

controller.

 Next, the command controller in the memory controller,

on the basis of the current operation status of the memory

and the non performed command status (for read or written

command, it also includes the information on belonging to

which bank and line and the information indicating the HLEN

length) in the command buffer, re-sorts the commands by

using optimum arithmetic and issues the next command at

suitable timing to mask the waiting cycles. If the type of the

current operated AHB request is INCR, the issuing of the next

command is prohibited and the burst length is ignored,

since i t i s u n k n o w n w h e n t h e c u r r e n t c o m m a n d w i l l

b e finished. At the same time, the memory controller

also monitors the HTRANS signal of the AHB master current

performing memory access. If the HTRANS signal is

NONSEQ o r IDLE, i t indicates t h a t t h e AHB a s k s f o r

interrupting the current transfer, and then the memory

controller i s s u e s the next command (if the next command has

not been sent out).

Fig.4.Flowchart of the AMBA AHB memory controller.

 Then, the memory controller reads data from the memory or

writes data to the memory according to the timing sequence of

the memory. After the memory controller reads the data, it sends

the read data to the AHB. Then, the AHB slave samples and

drives the response signal to set HREADY as 1, so as to inform

the AHB master that the data transfer has been finished. Next,

the AHB master samples the HREADY signal. And the AHB

master judges whether the HREADY signal is 1. If the

HREADY signal is 1, the AHB master issues the next

command and the process returns back to the initial step.

Simulation

Conclusion

 In the prior AHB, only when the first data arrives, can the

burst transfer completion be known, and thus the data will be

received at the third cycles after issuing the command. However,

according the enhanced AHB of the present structure,

since the end time can be known at the first cycle of the burst,

the command of the other masters can be send out in advance,

and thus the data D1 can be arrived two cycles earlier than the

prior AHB. Accordingly, the SDRAM access performance can

be improved.

 The enhanced AHB bus according to the present structure

can be implemented at RTL level by modifying original

AHB memory controller. SDRAM bus utilization can be

increased. That means the performance can be improved. Based

on different application case, a 5% to 15% performance

improvement can be achieved. The simulation is built on only

two AHB masters work at the same time, if more masters

added; the bus utilization can be improved from 10-20% for

typical multimedia application. Because most current designs

are based on AHB design, the enhanced ARB protocol is very

valuable because it improves the memory system performance

dramatically with only very small change, and it is especially

important for multimedia application when the memory

access becomes the system bottle neck. It also is very

convenient for AXI master to be used in an AHB bus system

with such enhanced bus performance with very low performance

loss compared to AXI protocols.

References

1). Building an AMBA AHB compliant Memory Controller, Hu

Yueli, Yang Ben, 2011 Third International Conference on

Measuring Technology and Mechatronics Automation.

2). “AMBA Specification (Rev2.0)”, ARM Inc.

3). PrimeCell AHB SRAM/NOR Memory Controller, Technical

Reference Manual, ARM Inc.

4). AHB E x a m p l e A M B A S y s t e m , T e c h n i c a l

R e f e r e n c e Manual, ARM Inc.

5). Carter, J.; Hsieh,W., “Impulse: building a smarter

memory controller”, High-Performance Computer Architecture,

Dept. Of Comput. Sci., Utah Univ., Salt Lake City, UT.

6). Clifford E. Cummings, “Synthesis and scripting

Techniques for Designing Multi-Asynchronous Clock Designs”,

Sunburst Design, Inc.

7). Design and Analysis of Dynamically Configurable Bus

Arbiters for SoCs S.Hema Chitra, P.T.Vanathi, ICGST- PDCS,

Volume 8, Issue 1, December 2008.

8). Simulation and Synthesis Techniques for Asynchronous

FIFO Design, Clifford E. Cummings, Sunburst Design, Inc.

9). AMBA dedicated DMA Controller with Multiple Masters

using VHDL, Archana Tiwari & D.J.Dahigaonkar, International

Journal of Information Technology and Knowledge

Management, January-June 2011, Volume 4, No. 1, pp. 285-

288.

Jayapraveen.D et al./ Elixir Comp. Sci. & Engg. 51A (2012) 11115-11119

11119

Table 2
HBURST[2:0] TYPE DESCRIPTION

000 SINGLE single transfer

001 INCR incrementing burst of

unspecified length

010 WRAP4 4-beat wrapping burst

011 INCR4 4-beat incrementing burst

100 WRAP8 8-beat wrapping burst

101 INCR8 8-beat incrementing burst

110 WRAP16 16-beat wrapping burst

111 INCR16 16-beat incrementing burst

Table 1
HTRANS[1:0] TYPE DESCRIPTION

00

IDLE

Indicates that no data transfer is required. The IDLE
transfer type is used when a bus master is granted the bus, but does not wish to perform a data transfer.

Slaves must always provide a zero wait state OKAY

response to IDLE transfers and the transfer should be ignored by the slave.

01

BUSY

The BUSY transfer type allows bus masters to insert
IDLE cycles in the middle of bursts of transfers. This transfer type indicates that the bus master is continuing with a burst of transfers, but

the next transfer cannot take place immediately. When a master uses the BUSY transfer type the address and control signals must reflect

the next transfer in the
burst.

The transfer should be ignored by the slave. Slaves must always provide a zero wait state OKAY response, in the same way that they

respond to IDLE transfers.

10

NONSEQ

Indicates the first transfer of a burst or a single transfer.
The address and control signals are unrelated to the previous transfer.

Single transfers on the bus are treated as bursts of one and therefore the transfer type is NONSEQUENTIAL.

11

SEQ

The remaining transfers in a burst are SEQUENTIAL and

the address is related to the previous transfer. The control information is identical to the previous transfer. The address is equal to the

address of the previous transfer plus the size (in bytes). In the case of a wrapping burst the address of the transfer wraps at the address
boundary equal to the size (in bytes) multiplied by the number of beats in the transfer (either 4, 8 or 16).

