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1. Introduction:  

The function which is  introduced and studied by Mittag-

Leffler[4,5] in terms of the power series given below 
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A generalization of this series in the following form 
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is given by Wiman[3].  

 

The K-function[9] is given by 
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where 
0)(,,,   RC

 and 
),...,2,1()( pia ni 

and 

njb )( ),...,2,1( qj 
are the Pochhammer symbols. Further 

details of this function are given by [9]. 

The Riemann-Liouville operator of fractional integral of 

order   is given by  
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provided that the integral exists.  

The Riemann-Liouville operator of fractional derivative of order 
  is defined[1,6,7,8] in the following form  

)1(,
)(

)(

)(

1
)}({

0
1 nndt

tx

tf

dx

d
xfD

x

nn

n

x 


   





  
 5.1

 
provided that the integral exists.  

2. Fractional Calculus Operators and K-Function: 

Let  
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where c is an arbitrary constant. 

 

The fractional integral operator of  order  is given by  
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By using (1.3), the above equation can be written as  
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We define 

),,,,,( xqpc 
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Now, the fractional differential operator of order  is given by  
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On simplifying, we arrive at 
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Again, by using(1.3), the above equation can be written as     
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We also define 
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3.  Properties  of the functions ( , , , , , )c p q x   
and 

),,,,,( xqpc  : 

Theorem 3.1  If c is an arbitrary constant then 

I x
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Proof:  

From the definition of  the fractional integral (1.4), we have 
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Using (2.3), it reduces to 
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On simplifying and using (2.3), we arrive at  
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Hence proved. 

Theorem 3.2  If c is an arbitrary constant then 
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Proof: By the definition of the fractional derivative (1.5), we get 
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Applying(2.3), we arrive at  
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This proves theorem(3.2). 

Theorem 3.3  If cC ,0)Re(,   is an arbitrary constant 

then 
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Theorem 3.4  If cC ,0)Re(,   is an arbitrary constant 

then 
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Remarks: If we take p=q=o in above theorems we will get[2]. 
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