Some Results Concerned to the Generalized Functions of Fractional Calculus

Kishan Sharma ${ }^{1}$ and V. S. Dhakar ${ }^{2}$
${ }^{1}$ Department of Mathematics, NRI Institute of Technology and Management, Jhansi Road, Gwalior-474001, India.
${ }^{2}$ Suresh Gyan Vihar University, Jaipur(Rajasthan), India.

ARTICLE INFO

Article history:

Received: 6 September 2012;
Received in revised form:
30 September 2012;
Accepted: 8 October 2012;

Keywords

Riemann-Liouville fractional derivative operator, RiemannLiouville fractional integral operator, K-function.

1. Introduction:

The function which is introduced and studied by MittagLeffler[4,5] in terms of the power series given below

$$
\begin{equation*}
E_{\alpha}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{\Gamma(\alpha n+1)}, \quad(\alpha>0) \tag{1.1}
\end{equation*}
$$

A generalization of this series in the following form

$$
\begin{equation*}
E_{\alpha, \beta}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{\Gamma(\alpha n+\beta)}, \quad(\alpha, \beta>0) \tag{1.2}
\end{equation*}
$$

> is given by Wiman[3].

The K-function[9] is given by

$$
{ }_{p}^{\alpha, \beta ; \gamma} K_{q}\left(a_{1}, \ldots,{ }^{\left.a_{p} ; b_{1}, \ldots, b_{q} ; x\right)=}\right.
$$

$$
\begin{equation*}
{ }_{p}^{\alpha, \beta ; \gamma} K_{q}(x)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n \ldots} . .\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots} . .\left(b_{q}\right)_{n}} \frac{(\gamma)_{n} x^{n}}{n!\Gamma(\alpha n+\beta)} \tag{1.3}
\end{equation*}
$$

where $\alpha, \beta, \gamma \in C, R(\alpha)>0 \quad$ and $\quad\left(a_{i}\right)_{n}(i=1,2, \ldots, p)$ and $\left(b_{j}\right)_{n}(j=1,2, \ldots, q)$ are the Pochhammer symbols. Further details of this function are given by [9].

The Riemann-Liouville operator of fractional integral of order v is given by

$$
\begin{equation*}
I_{x}^{v}\{f(x)\}=\frac{1}{\Gamma(v)} \int_{0}^{x}(x-t)^{v-1} f(t) d t \tag{1.4}
\end{equation*}
$$

provided that the integral exists.
The Riemann-Liouville operator of fractional derivative of order v is defined $[1,6,7,8]$ in the following form

$$
\begin{equation*}
D_{x}^{v}\{f(x)\}=\frac{1}{\Gamma(v)} \frac{d^{n}}{d x^{n}} \int_{0}^{x} \frac{f(t)}{(x-t)^{v+n-1}} d t,(n-1<v<n) \tag{1.5}
\end{equation*}
$$

provided that the integral exists.

2. Fractional Calculus Operators and K-Function:

 Let$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n \ldots} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots} \ldots\left(b_{q}\right)_{n}} \frac{(\gamma)_{n}(c x)^{n}}{(n!)^{2}} \tag{2.1}
\end{equation*}
$$

where ${ }^{c}$ is an arbitrary constant.
The fractional integral operator of order v is given by

$$
\begin{aligned}
& I_{x}^{v}\{f(x)\}=\frac{1}{\Gamma(v)} \int_{0}^{x}(x-\tau)^{v-1} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots(}\left(b_{q}\right)_{n}} \frac{(\gamma)_{n}(c \tau)^{n}}{(n!)^{2}} d \tau \\
& =\frac{1}{\Gamma(v)} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n \ldots} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots} \ldots\left(b_{q}\right)_{n}} \frac{(\gamma)_{n} c^{n}}{(n!)^{2}} \int_{0}^{x}(x-\tau)^{v-1} \tau^{n} d \tau \\
& \quad=x^{\nu} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots} \ldots\left(b_{q}\right)_{n}} \frac{(\gamma)_{n}(c x)^{n}}{n!\Gamma(v+n+1)}
\end{aligned}
$$

By using (1.3), the above equation can be written as

$$
\begin{equation*}
=x^{\nu}{ }_{p}, \nu K_{q}(c x) \tag{2.2}
\end{equation*}
$$

We define

$$
\begin{equation*}
\Omega(c, v, \gamma, p, q, x)=x^{\nu}{ }_{p}^{1, v+1 ; \gamma}(c x) \tag{2.3}
\end{equation*}
$$

Now, the fractional differential operator of order μ is given by

$$
D_{x}^{\mu}\{f(x)\}=D^{k}\left\{I_{x}^{k-\mu} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n \ldots . .}\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots . .}\left(b_{q}\right)_{n}} \frac{(\gamma)_{n}(c x)^{n}}{(n!)^{2}}\right\}
$$

On simplifying, we arrive at

$$
\begin{aligned}
& =D^{k}\left\{x^{k-\mu} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n \ldots} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots} \ldots\left(b_{q}\right)_{n}} \frac{(\gamma)_{n}(c x)^{n}}{n!\Gamma(k-\mu+n+1)}\right. \\
& =x^{-\mu} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots} \ldots\left(b_{q}\right)_{n}} \frac{(\gamma)_{n}(c x)^{n}}{n!\Gamma(n+1-\mu)}
\end{aligned}
$$

Again, by using(1.3), the above equation can be written as

$$
\begin{equation*}
=x^{-\mu}{ }_{p}^{1,1-\mu ; K_{q}}(c x) \tag{2.4}
\end{equation*}
$$

We also define

$$
\begin{equation*}
\Omega(c,-\mu, \gamma, p, q, x)=x^{-\mu}{ }_{p} K_{q}, 1-\mu ; \gamma(c x) \tag{2.5}
\end{equation*}
$$

Tele:

E-mail addresses: drkishansharma2006@rediffmail.com

3. Properties of the functions $\Omega(c, v, \gamma, p, q, x)$

$\Omega(c,-\mu, p, \gamma, q, x)$:
Theorem 3.1 If c is an arbitrary constant then

$$
\begin{equation*}
I_{x}^{\lambda} \Omega(c, v, \gamma, p, q, x)=\Omega(c, \lambda+v, \gamma, p, q, x) \tag{3.1}
\end{equation*}
$$

Proof:

From the definition of the fractional integral (1.4), we have

$$
\begin{align*}
& I_{x}^{\lambda} \Omega(c, v, \gamma, p, q, x)=\frac{1}{\Gamma(\lambda)} \int_{0}^{x}(x-\tau)^{\lambda-1} \\
& \quad \Omega(c, v, \gamma, p, q, \tau) d \tau \tag{3.2}
\end{align*}
$$

Using (2.3), it reduces to

$$
=\frac{1}{\Gamma(\lambda)} \int_{0}^{x}(x-\tau)^{\lambda-1} \tau^{\nu} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots} \ldots\left(b_{q}\right)_{n}} \frac{(\gamma)_{n}(c \tau)^{n}}{n!\Gamma(v+n+1)} d \tau
$$

On substituting $\tau=z x$, it yields

$$
\begin{equation*}
=\frac{1}{\Gamma(\lambda)} x^{\lambda+\nu} \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n \ldots}} \frac{\left.(\gamma)_{q}\right)_{n}(c x)^{n}}{n!\Gamma(v+n+1)} \int_{0}^{1}(1-z)^{\lambda-1} z^{k+v} d z \tag{3.3}
\end{equation*}
$$

On simplifying and using (2.3), we arrive at

$$
\begin{equation*}
I_{x}^{\lambda} \Omega(c, v, \gamma, p, q, x)=\Omega(c, \lambda+v, \gamma, p, q, x) \tag{3.4}
\end{equation*}
$$

Hence proved.
Theorem 3.2 If c is an arbitrary constant then
$D_{x}^{\lambda} \Omega(c, v, \gamma, p, q, x)=\Omega(c, v-\lambda, \gamma, p, q, x)$
Proof: By the definition of the fractional derivative (1.5), we get

$$
\begin{aligned}
D_{x}^{\lambda} \Omega(c, v, \gamma, p, q, x) & =D^{k}\left\{I_{x}^{k-\lambda} K(c, v, p, q, x)\right\} \\
& =D^{k}\left\{x^{k v-\lambda^{1, k+v-\lambda+1 ; \gamma}}{ }_{p} K_{q}(c x)\right.
\end{aligned}
$$

Applying(2.3), we arrive at
$D_{x}^{\lambda} \Omega(c, v, \gamma, p, q, x)=\Omega(c, v-\lambda, \gamma, p, q, x)$
This proves theorem(3.2).
and Theorem 3.3 If $\mu \in C, \operatorname{Re}(\mu)>0, c$ is an arbitrary constant then
$I_{x}^{\lambda} \Omega(c,-\mu, \gamma, p, q, x)=\Omega(c, \lambda-\mu, \gamma, p, q, x)$
Theorem 3.4 If $\mu \in C, \operatorname{Re}(\mu)>0, c_{\text {is }}$ an arbitrary constant then
$D_{x}^{\lambda} \Omega(c,-\mu, \gamma, p, q, x)=\Omega(c,-\lambda-\mu, \gamma, p, q, x)$
Remarks: If we take $\mathrm{p}=\mathrm{q}=\mathrm{o}$ in above theorems we will get[2].
Acknowledgement:
The authors are thankful to Prof. H.M.Srivastava (Canada), Prof. R.K.Saxena (India), Prof. Renu Jain(India) and the referees. Their comments definitely help to improve the quality of the manuscript.

References

[1] A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holand Mathematics Studies, 204, Elsevier. New York- London, 2006.
[2]A.K. Shukla and J.C. Prajapati, Some Remarks on Generalized Mittag-Leffler Function, Proyecciones.Vol. 28 No.1(2009),27-34.
[3] A. Wiman, Uber die Nullsteliun der Fuctionen $E_{\alpha}(x)$, Acta Math. 29, 217-234.
[4] G. M. Mittag-Leffler, Sur la nuovelle function $\mathrm{E}_{\alpha}(\mathrm{x})$. C.R.Acad.Sci. Paris(2) 137(1903), 554-558.
[5] G. M. Mittag-Leffler, Sur la representation analytique de'une branche uniforme une function monogene, Acta. Math. 29(1905), 101-181.
[6] I. Podlubny, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Mathematics in Science and Engineering, Vol. 198, Acadmic Press, Califonia, 1999.
[7] Keith B. Oldham, Jerome Spanier, The Fractional Calculus; Theory and Applications of Differentiation and integration to Arbitrary Order, Academic Press, New York and London(1974). ISBN 0-12-525550-0.
[8] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York etc (1993).
[9]K. Sharma, Application of Fractional Calculus Operators to Related Areas, Gen. Math. Notes. (2011), 33-40.

