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ABSTRACT

This paper describes the method for solving vibration problem of ring shaped electro—
magneto -elastic plate of polygonal (Triangle, Square, Pentagon and Hexagon) cross-
sections using Fourier Expansion Collocation Method. A mathematical model is developed
to study the wave propagation in a electro-magneto-elastic plate of polygonal cross-sections
using the theory of elasticity. The frequency equations are obtained from the arbitrary cross
sectional boundary conditions, since the boundary is irregular in shape; it is difficult to
satisfy the boundary conditions along the inner and outer surface of the plate directly.
Hence, the Fourier Expansion Collocation Method is applied along the boundary to satisfy
the boundary conditions. The roots of the frequency equations are obtained by using the
secant method, applicable for complex roots. The computed non-dimensional frequencies
are plotted in the form of dispersion curves and its characteristics are discussed. The
problem may be extended to any kinds of cross-sections by using the proper geometrical
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Introduction

The wave propagation in magneto-electro-elastic materials
has gained considerable importance since last decade. The
electro-magneto-elastic materials exhibit a desirable coupling
effect between electric and magnetic fields, which are useful in
smart structure applications. These materials have the capacity
to convert one form of energy namely, magnetic, electric and
mechanical energy to another form of energy. The composite
consisting of piezoelectric and piezomagnetic components have
found increasing application in engineering structures,
particularly in smart/intelligent structure system. The magneto-
electro-elastic materials are used as magnetic field probes,
electric packing, acoustic, hydrophones, medical, ultrasonic
image processing, sensors and actuators with the responsibility
of magnetic-electro-mechanical energy conversion.

A method, for solving wave propagation in arbitrary and
polygonal cross-sectional plates and to find out the phase
velocities in different modes of vibrations namely longitudinal,
torsional and flexural, by constructing frequency equations was
devised by (Nagaya, 1981a, 1981b, 1981c, 1983a, 1983b). He
formulated the Fourier expansion collocation method for this
purpose and the same method is used in this problem.The three-
dimensional behavior of magnetoelectroelastic laminates under
simple support has been studied by (Pan, 2001) and (Pan and
Heyliger, 2002). An exact solution for magnetoelectroelastic
laminates in cylindrical bending has also been obtained by (Pan
and Heyliger, 2003). (Pan and Han, 2005) studied the exact
solution for functionally graded and layered magneto-electro-
elastic plates. (Feng and Pan, 2008) discussed the dynamic
fracture behavior of an internal interfacial crack between two
dissimilar magneto-electro-elastic plates. (Buchanan, 2003)
developed the free vibration of an infinite magneto-electro-
elastic cylinder. (Dai and Wang, 2005, 2006) have studied
thermo-electro-elastic transient responses in piezoelectric hollow
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structures and hollow cylinder subjected to complex loadings.
Later (Kong et al, 2009) presented the thermo-magneto-dynamic
stresses and perturbation of magnetic field vector in a non-
homogeneous hollow cylinder. (Annigeri et al, 2006, 2007,
2006) studied respectively, the free vibration of clamped-
clamped magneto-electro-elastic cylindrical shells, free vibration
behavior of multiphase and layered magneto-electro-elastic
beam, free vibrations of simply supported layered and
multiphase magneto-electro-elastic cylindrical shells. (Hon et al,
2008) analyzed a point heat source on the surface of a semi-
infinite transversely isotropic electro-magneto-thermo-elastic
materials. (Sharma and Mohinder Pal, 2004) developed the
Rayleigh-Lamb waves in magneto-thermo-elastic homogeneous
isotropic plate. Later (Sharma and Thakur, 2006) studied the
effect of rotation on Rayleigh-Lamb waves in magneto-thermo-
elastic media. (Gao and Noda, 2004) presented the thermal-
induced interfacial cracking of magnetoelectroelastic materials.
(Bin et al, 2008) studied the wave propagation in non-
homogeneous magneto-electo-elastic plates. (Ponnusamy, 2007,
2011, 2012) have studied the wave propagation in generalized
thermo-elastic cylinder of arbitrary cross section, thermoelastic
and generalized thermo elastic plates of arbitrary and polygonal
cross-sections respectively. (Ponnusamy and Rajagopal, 2010,
2011) have studied, the wave propagation in a generalized
thermo elastic solid cylinder of arbitrary cross-section and in a
homogeneous transversely isotropic thermo elastic solid cylinder
of polygonal cross-sections respectively using the Fourier
expansion collocation method.
Formulation of the Problem

We consider a homogeneous transversely isotropic
magneto-electro-elastic ring shaped plate of polygonal cross-
sections with thickness h and occupying the space0<Z <L, L
is the length of plate considered along the z- axis is shown in
Figure 2. The system displacements and stresses are defined by
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the cylindrical co-ordinates r, & and z. The governing equations
of motion, electric and magnetic conduction equation in the
absence of body force are
-1 -1
Oy +r Cro.0 +Urz,z +r (O-rr _069) = pu,tt
Orgr T r’la&g 9 t05,+ 2r‘10 =pVy

-1
Oy t1 0p gt 0, +17 ‘o, = pW,

2,7

@)

The electric conduction equation is
D,,+r'D,+r'D,,+D,, =0
The Magnetic conduction equation is
B,+r'B,+r'B,,+B,,=0
Where
O =Cii€ +Cp8y +Cis8,, —€5F, — 03y H

g0 = Cio€rr +C11€yp +Ci i€, —€5E, -Gy H,
03, = Cig€, +Ci3€y +C3€,, —€5E, —QsH
O,y = 2CE,y
Oy, =2C48,,
o,, =2C,€,

@)

®3)

—€5 Ea — 05 H
z_elsEr_qler (4)
Dr = 2e15erz + ‘911Er + mllH
D, = 2e€,, +&,E, +m,H
D, =¢y (err + €4 ) +858, +é5E, +MyH,

Q)

and

B, =208, +m,E, +4,H,

B, = 20,58, + My E, +24,H,

B, =0 (err +€0 ) +058,, +MyE, + 15H, (6)
Where o,,,049,05:0,9,0,,0g, are the stress components,

C11,C12,Ci3,Ca3,Caq, @Nd  Cgg are elastic constants, &, &;5 are the
dielectric constants, 4., 153are the magnetic permeability

coefficients, e5;,e55,65 are the  piezoelectric ~ material
coefficients, 03,043, 0hsare the piezomagnetic material
coefficients, —my;,mg;are the magneto-electric material
coefficients, p is the mass density of the material, D,,D,and

D, are the electric displacements,
magnetic displacements components.
The strain ¢;; are related to the displacements corresponding to

B,,Byand B,are the

the cylindrical coordinates (r,6,z) are given by

e . =u

rr r

e@@ = r_l (Vﬂ +U) ezz = \N,Z

= %(v,Z + r‘lvvﬂ) €, = %(r‘luﬂ +v, — r‘lv)

€

z

1
e =—(U W
rz 2( ,z+ ,r) (7)

where u, v and w are the mechanical displacements along the
radial, circumferential and axial directions respectively.

The Electric field vector E;(i=r,6,z) is related to the electric
potential E as
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OE 1 6E E
E--Z E,=—=Z and E, = 8
" Y Y=Y ®

Similarly, the magnetic field vector H; (i=r,6,z)is related to
the magnetic potential H as
oH 10H oH

H=——,Hy=—=-—and H, =—— 9
oo % roe oz ©)

Substituting the Egs. (4)-(9) in the Egs. (1)-(3), we obtain the set
of displacement equations as follows;

-1 -2 -2 -
(U 477U, =10 Gt G, + (G 4, )TV,

+(C44 +C13)W,rz +(631 +615)E,rz +(qal + qlS) H,=pu,

_(Cu +C ) I’_ZVH

(10a)

(G 6 )T (6 + G )T 4 (V, +17v, — TG0, 4,07,
+(C44 +C13)rilw‘ez +(es1 +els)r71E,az +((131 +q15)r71H,az =pVy
(10b)
(c44 +(:13)(u‘rz + rilu,z + r71v,92)+c44 (W,rr + rilw,r +W,6€)+C33sz +e33E,zz
+q33H‘zz +e15(E,rr + r_lE,r + r_2 E,(Jﬂ)'l' qlS(H‘rr + r_lH,r + r_ZH,SG) = pwn
(10c)
e15 (Wrr + r71\N,r + r72W,65)+(e31 + elS)(u,rz + rilu,z + r71v,92)+633w,zz _833E‘zz
~MyH , =, (o +1E, +17E ) =My (H  +17H, +1?H ) =0
(10d)
q15 (W + er + erW )+ (q31 + qls)(u,rz + rlu,z + rilv,ﬁz ) + qSSW,zz - m33E,zz
~ttgH =y (B +17E, +17E gy )=t (H, +17H, +17H ) =0

(10e)
Solution of the Problem
The Egs. (10) is a coupled partial differential equation with
three displacements and magnetic and electric conduction
components. To uncouple the Egs. (10), we follow (Sharma and
Sharma, 2002) and seek the solutions in the following form

u=> ¢, [(rfll//nlg —¢n'r)+<rfll/_/n’9 ~ ., )}
v=> ¢, [(—I’_1¢nﬁ —Wn,r)+(—r_1<75n,9 Y., )}
W =3 [W,, +Wa, ]

E=Y&,|E,, +En: |

H=>&[H, +Hn|

where & =12 forn=0, & =1
¢ (r.0), v, (r.0),E,(r,0),H,(r,0)are the displacement
potentials for the symmetric mode and
¢, (r,0), w7, (r,0),En(r,0),Hn(r,0) are the displacement

potentials for the anti symmetric mode of vibrations.
Substituting the Eq.(11) in (10), we get

2 2

(11)
forn>1,

0 0 ow, ok, oH,
[CN“C Wi pm}» ~(cg )" p (eal+e15) -0y 402 U L)
[Cll 1 044662 p j¢n (013 CAA)a;/\ZI (e31 e15) ”E (qiﬂ qlS)aaZn 0 (12b)
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, & & 3 s . &
(CMVl +C33?—p¥}wn _(93+044)07V1¢n +(315v1 +833¥) E, X = L t _ mmza (_:” — Ci élj — ei
[qlsv + 0 aZJH =0 a, g:a/L " L Cas | €
(12¢)
2 2 ) - 0; 2 _ PO a —  MmyCy,
[eﬁVf+eaaa—2]Wn—(eM+eﬁ)ﬁVf¢"—[Euvf+faai2]En‘[W1Vf+maa%]Hn:0 (12d) qij =1 0O%= mi; = ij
a a a o Qa5 Cas O35
2 52 2 2 & 2 az
[qlﬁvl+q33¥jwn_(q3l+q15)vl¢n_[mllvl+m33%]En_[uuV1+ruﬁ3?an:0 (129) ; /UU 44 Eij _ gijc44
j 2 2
and Uss , €5 and using the Egs. (15) and (16) in
V2 o° o° 0 the Egs. (14) and (13), we get
C +CyYy——pPp— = - - - - P
6671 a4 822 P atz Y 13) (CuVZ —tz +Qz)¢n _(1+C13)tLWn —(e31+e15)tLEn —(q31+q15)tLHn =0
where , , (Vz +QF C33t )W +(1+ C13)t V2¢ +(615V2 )En +(E]15V§ —tE)Hn =0
o 10 190
v2-9 29, - _ - - — —
Yoot ror r?od? ( eV, —t )Wn+( 31+e15)'[LV§¢n+(833'[f—811V§)En+(m33tf—m11V§)Hn =0
The Eqg. (13) gives purely transverse wave, which is not _ _ _ _ _
affected by the electric and magnetic field. This wave is ( f)Wn+(q31+q15)tLV§¢n+(m33tf—mWﬁ)En+(y33tf—ynV§)Hn =0

polarized in the planes perpendicular to the z-axis and it may be 17
referred as the simple harmonic wave. We assume that the and (17)

iwt
disturbance is time harmonic through the factor€“ @ s -
g (Cesvg—ti-i-ﬂz)l//n =0

angular velocity and hence, the system of Egs. (12a)-(12e) (18)
becomes 2 10 2
2 o n
o W, oH 2
1V12+C44 2+ N Cl3+c44 . 31 5 31+ 15 n:O v =_+____
(Cl & pw}p () (o ) (0 0e) T Where X% Xox X2
(149) The Eqg. (17) is a homogeneous linear equation which has a
[%Vf+C44i22+pw2]¢n—(013+c44) oW, (en+ els)af ~(a+a0) 2 M, _g trivial solution to obtain the non-trivial solution, the determinant
2 oz of the coefficient matrix is equal to zero. Thus we get
o 5 (]j;b) (CnV; + 91) =0t —0af, '
[(:44V12 +Cy3 azz"'pa’zjwn _(013 +C44)§V12¢n +[elsvlz +€;5; azzj E, gthvg (Vg +gs) (éwg —tf) (ﬁmvi—tf)
2 S o2 .2 ) — 2 <¢”'W”'E"'H”) 0
+[q15V12+Q33 ;Zan 0 A% (615V2—'[L) (gs—euvz) (97—muV2)
z — — p—
(14c) gAtLV§ (%Vg_tf) (g7—mnV§) (gs_:uuvg) (19)
, & , o , Fd where
e15V1+e33E W, (631+815) V¢n 511V1+5338? E, - mnv1+masg H, = ) ) _ (= -
(14d) 0, =Q" 1/ g, =1+Cis g3—(e31+e15)
2 2 - - 2 g2
[qlsvlerqas%]Wn*(qm*qls)gvlngn*[maneraajz ] [/‘MVZJW”& - ]H =0 g4 = (q3l +q15) gS = (Q _033tL>
(14¢) -, = ’
We consider the free vibration of polygonal cross-sectional 9s = gsStL, O, =Maly Gy = 'u33
plate, so we assume the Evaluating the determinant given in Eq. (19), we obtain the
¢ (r 0,2 t) ¢ ( )COS(mﬂZ)COS no partial differential equation of the form
(AV;+BV;+CV;+DV; +E)g, =0
W, (r,0,z,t)=W, (r)sin(mzz)cosnd (20)
where
Cyy ) - (- =21 -=2 — = ==
E.(r.0,z,t)= ( E,(r)sin(mzz)cosnd A=cCu {En[ﬂlﬁqm}ﬂuels—mn[mn+2€1sqls]}
O
Hn(r,9,z,t):(ci‘}Hn(r)sin(mﬂz)cosne
33 (15)
and
w,(r.0,2,t)=y,(r)cos(mzz)sinng )
a
z1=—
where L

Introducing the dimensionless quantities such as
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B = Cur{~ G ey~ o + 20, s + 0 oy s | -5 9 + 26 (1 =) |
0| 00T + 282 (s — ) |+ 20,80, 3+ g{[,, e L +zéwaﬁ]}
+gztf{g2[z11;u s |-t + T ] [—gsﬁwrga;n]}
~ Qat7 {02 [ a5 + MisGyg |+ Gty + 0T + s [ 95 — G5 |}
{0 - + 2 |+ M 0,50+ 8] 0,8 0,65
C = Cua{0s Gy — 07 + 0s [ ~Gs s — Go 211 + 20, M |+ 267 [ 15 (~ 05 + 0, )+ Qs (=07 + G5 ) |
[ty =2+ 20 [+ 0,49 — 0y + 20, M-+ 05 oy — o |
s+ 27 () [ 0, 20 (s 50 ) |+ 20, B3
+ OotE40 [0 Ay — Gp &1 +20, M | —€15[ 030 — 0., ]+ U5 [ 929, — 0,95
[0y + QoM + 0Tt — G, 2 b~ 08740, | G5 — 0, T+ (1t~ ) |- 0,0,
t7[ aOis — 915 [}
+ Q492 0815 ~ 04 +17 (Mix 21 ) |- 0.0 + 0,05 — 95 [~Ga M +.9,2 |
2 9405 — 905
D = i1 {05 ] 0606 — 07 | +t; [0 + 20, — 05 ]| + 0.t740,t2 [0, + O
= 05[0597 — 006 ]t/ [~0s + 0 [+ 0.4069s — 07 + s [ ~Ts 12y — Gy + 29, |
+2t7 [—615 (=05 + 07 )+ Uy (-9, + gs)}rt[‘ [/711 —2my +§11]}
+ 0,87 {02 0695 — 07 |+12[0505 ~ 407 — 007 + 0,6 ]|
—0t7 {0, [~0s + 0, ]~ 05 [ 0305 — 9,9, ] -t [-0s + 0. ]}
E =0,{0[ 050s — 07 |+t [~ + 20, — 9]}

Solving the Eg. (20), the solution for the symmetric mode
obtained as

+0,9; —0s [793;11 + 94511] +615t5 [’gs + 94]’

+615tf [—(_Z]3 +gA]—

¢;=2(An~ln(air +B,Y, (a;r))cosnd

Wn*=liey(Aan (e¢)+B,Y, (ar))cosnd
=ib.(An (@r)+ByY, (ar))cosne
ZA:C(An 2 (air)+B,Y, (e;r))cosne

(21)
The solutions to the anti symmetric modes of vibrations

& Wn,En, Hn, are obtained by changing cosné by sinné in
the Eq. (21) we get

9, Z(A.n ot )+ BiY, (a;r))sinng

Wo = Zai (Km\]n (eir)+BinY, (air))sin ng
i=1

J— 4 _
En=> b (And,

i=1

ﬁ: = ici (Kin\]n (
i=1 (22)

where J, is the Bessel function of first kind of order n and Y,
is the Bessel function of second kind of order n. The
constants a;,b; and c; defined in the Egs. (21) and (22) are

calculated using the following equations

_gtha'i - g3tLbi - g4tLCi - gl

(1) +BaY, (air))sin ng

air)+§mYn(air))sin no

o2
= Cuq,
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(—a +95)a - (elsa +t )b (qlsa +t ) —g,t o
—(élsaiz +tf)a1. +(g6 +;110li2)bi +(g7 +5110li2)0i

= 94'[L0"2

_(alsali2 +tf)a1 +(g7 +a“aiz)bi +(gs +;11ai2)ci " (23)

Solving the Eq. (23), we obtain
05 (9, +Muat’ )+ 9, (g +&ner’
-0, (95 +5110li2)— 0s (élsaiz +tf)
GsQatier + (Ellaiz - gl)(g7 + ﬁnaiz)
- t, [92 (96 +Z‘11(li2)+ 9, (élsaf +tf)}
(E:llaiz - gl)(élsaf +tf ) - gzg3tfa2
t, [gz (g6 +Enoci2)+ 9s (élsaf +t? )}

Solving the Eq. (13), we obtain the solution for symmetric mode

v vn =(AJ, (a5r)+ByJ, (ar))sinng o

and the solution for the anti symmetric mode is obtained by
changing €OSN& by SINNE in the Eq. (24), we obtain

gz/n:(Aan( r)+Bsd, (s ))cosn@ -

where J, is the Bessel function of first kind of order n and Y,
is the Bessel function of second kind of order n, and

ok :(tf -7 )/Ces If (ea)’ <0(i=12,3,4,5) then the Bessel

C =

functions J,, and Y, are replaced by the modified Bessel
function 1, and K, respectively.

Boundary conditions and frequency equations

In this problem, the vibration of polygonal cross-sectional
plate is considered. Since the boundary is irregular in shape, it is
difficult to satisfy the boundary conditions along inner and outer
the surface of the plate directly. Hence, the Fourier expansion
collocation method is applied to satisfy the boundary conditions.
For the plate, the normal stress o,, and shearing
stresses axy,axz, the electric field D, and the magnetic field
B'X is equal to zero for stress free inner boundary. Similarly,
normal stress o,, and shearing stresses oy, ,o,, , the electric
field D, and the magnetic field B, is equal to zero for stress

free outer boundary. Thus the following types of boundary
conditions for the inner of the plate is obtained as

(0), =(), =(2), =(B), =(B.), =0 (263)

and for the outer boundary, the boundary condition is obtained

(04), =(o) =(0.),=(Dy), (26b)

where ( )i is the value at the boundary I'; is shown in Figure 1

:(Bx)i =0

(Geometry of segments). Since the vibration displacements are
expressed in terms of the coordinates r and @, it is convenient
to treat the boundary conditions when the derivatives in the
equations of the stresses are transformed in terms of the

=0l

N
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coordinates r and & instead of the coordinates x; and y;. The

relations between the displacements are as follows for i—th
segment of straight-line boundaries are

u=ucos(f-y)-vsin(6-y,)
v=vcos(0—y;)+usin(6-y) en
Since the angle y; between the reference axis and normal of the

i —th houndary has a constant value in a segment I';, we obtain

%Hi:_(%]sin(e—%)
L —sin(0-7,)

0 _ (ljcos(e—yi )
i AT (29)

Using the Egs. (27) and (28), the normal and shearing stresses
are transformed as

o-xx:(cncosz(ﬁfﬂ’i)Jrcusin (6- ;/,))u +r7 (cusinz(a—yi)+cucosz(6’—;/i))(u+v’9)
+Cyg (r’l(v—uyé,)—vyr)sm 2(0-7)+cW, +e,E, +quH, =0

v, :066((u1r—r’l(vﬁ+u))sin2(9—yi)+(r’1(uv9—v)+vvr)c052(0—;/i)):0
Oy =Cy ((u‘Z +W, )cos(0—7)~(v, +1r"W, )sin(0- ;/,))+€15  +0H, =0
Dx =€5 (u,z +Vv,r ) _gllE,r - r‘nllH,r =0

BX =05 (U’Z +Wr) mllE Ml =0 (29)

Substituting the equations (21) - (25) in the equation (26), the
boundary conditions are transformed for stress free polygonal
cross-sectional inner surface of plate as follows:

[(s;)i +(§ix)i}e‘ma 0
1o
[(52)

or
g _ O—v
. cos(0-7,)

j|eiQTa — O

(Ex) +(E1x)}eima _
_(Hi)i +(ﬁi)._eima ~0
a:nd for the outer SL_;rfaCe (30a)
_(SXX )i 4—(§XX )i_ T, _ 0
‘(Sxy )I +(§Xy )i_ 69 _ 0
‘(sz )i +(§XZ )Je'mﬁ -0
(EX )| +(Ex)i}ei§2'ra -0
(), +(H), & =0 (30)
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1 1 2 3 4 5 6 7 8
S :0.5(8 A 1B Ay +89Byy €Ay +€By +E1 Ay +e0840)

2 3 4 5 6 7 8 9 10
+Z(€‘ Ain +enBln +enAzn +enBZn +enA3n +enBan +enA4n +enBAn +enpﬁn i BSn)

0 (f AiO + fUZBIO + f03A20 + fOABZO + f05A30 + fOSB30 + f07A40 + fOBBAO)

[N

+Z(f A+ 1B, + 1A, + B, + f°A +1°B, + A, +1°B, +f A5n+f1°BSn)

s
=1

=

Sy, =0.5(0elAy +0oBy + Uo A + Uy By + 0o Ay + 0By + 05 Ay + 0By |
+ D) (0LA +07B, + A, 01y +00A, + 0B, +0TA, + 0B, + 0P, + 0B, )
n=1
=0. (héAw+h§B1o+h03A20+thzo+h§A30+th3o+th40+th4o)
+i(h}lAm+th1”+hn3A2n+h:BZH+hn5A3"+than+hn7A4n+hBB +heA, +h° 5n)
n=1
Hl:0-5(ec1>A10+e§Blo+egA20+engo+egAso+engo+egA40+engxo)

Z(e A, +€B, +€A, +&1B, +eoA, +e'B, +elA, +e1B, +elA, +el'By )

n=1
(31a)
SXX = Os(eéA.O + eé BlO + eSAZO + eg BZO + egASO + egB30 + e(7)A40 + ESBAO)

+i(e§Am +6/B,, +e7A, +e1B, +etA, +eiB, +e/A, +eB,, +elA, +¢'B, )
n=l
= 05( f01A10 + fOZ BlU + f03A20 + f04BZO + f05A30 + fO6 B30 + f07A40 + fO8 B4O)
+i( fIA + 7B, + f°A, + /B, +f°A +1°B, +f/A +1°B, +1°A + fntSn)
n=1
S,, =0.5(0elA, + 5By + oA + 0By + 0o Ay + 0By + 07 Ay + 0By |
+Z(g A, +07B,+ oA, + 0By, + 02A, + 0B, +07A, + 0B, + A, +0)By )
E, :0'5(h0A10 +hoBlo +h§Azo +ho By +h0A30+hoBso +th40+h§ 40)
Y (WA, +7B, +h'A, +h'B, +h°A, +hB, A, +hB, +hEA, +UB, )
n=1

H

1 2 3 4 5 6 7 8
X 0'5(80A10 +eOBlo +eOA20 +eO BZO +eOA30 +eOB30 +eO A40 +eOB4O)

+Z(e A, +€B, +eA, +e:B, +e'A, +elB, +e A, +&B, +e A +e B, )

n=1
(31b)
For the anti symmetric mode as

—1 -9—  -10—
Sx =0.5(€‘o Auw +€0 Blo)
(1=  —2=  =3—  —4—  5—  —f—  —T—  —§—  —9—  —10—
+Z(enA1n+en Bin +€n Aon + €0 Ban +€n Asn +€nBan +€n Asn +€0Ban +€0 Asn +8n Bsn)
n=1
Sy = o.5(T27\m Jg"ém)
+z(m+?:§m+?jz\2nJ:EMJ:xan+?j§3"+ﬂzmj§4n+fj&nﬁ:m)
=1 9—
Sw :os(g Ao+Q, Bm)
+3(GAn+GBu+ G Aen 0, B+, Ao+ 9B+ 0, Aur + 8, B+, Aer + 9, B
n=1
—1 —9— 10—
Ex =0.5(ho A +ho BIO)
S(pl—  m2—  =3— —4—  =5—  —f— —T—  —B—  —9—  —10—
+Z(hnA1n +hnBln +hnA2n +hn BZn +hnA3n +hn BSn +hnA4n + hnBAn + hnASn +hn B5n)
n=1
H =05 (i Ao +i0 Buo |
+ 30 (A #5040+ 0 A+ 10 Ban +1 Av +12 B+ 41 B
n=1

(32a)
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S _oce(a7 L a0R > 1 2 3 4 5 6 7 8
S = 0.5(60A10 +Eo Blo) Z&'m[E'moAm + EmOB10 + E‘mOA20 + E’mOBZO + EmOASO + E’m()B30 + E’mOAm + EmOB40
5 (60 Ao+ €1Bun+ €0 A+ 1B+ 61 Ao+ 0B+ 81 -+ 80 B + €0 A +n B | o S ' ; . : .
n Aln nDin n A2n nD2n n A3n nD3n n Adn nDian n Asn n Ds5n
n-1 . = EmnAm + E’mnBln + EmnAzn + E’mnBzH + E’mnAgn +B., B3n + EmnA4n + ErnnB4n ]Cos Mo =0
< AT 9 10 -
Sxy:O.S(foAmfoBm) "1 +B A, + BBy,
s S e e e Y = E -~ = Sl 2 1 2 3 4 5 6 7 8
+Z(f;A1n+fiBm+sz2n+f:an+ff,Asn+fiBan+f;A4n+fiB4n+f:A5n+f:}Bsn) Y &, [FroAy + BBy, + FroAy + RioByy + FaoAy + FroBy, + FroAy + FinaB,,
n=1 m=0
§.=05(g; A0+ gy B L R A sE R A LR LA L
“ ’ 0 0 +‘t p'mnAm+pmnBln+pmnA2n+pmnBZH-Fp'mnpgn+F"mnBan+F'mnA4n+PmnBM ]sin mo=0
S g —p— —3—  —4—  —5—  —p—  —7—  —g—  —9—  —10— 9 10 -
+) glﬂAm+g:Bm+giAzn+ngzn+giA3n+giBan+g:A4n+g:B4n+g:Asn+glnoBsn) =L +Fm A, + PmB,,
n=1
_ —g—  —10— i 1 2 3 4 5 6 7 8
Ex= 0.5(hg Aw + héo Blo) ZSM[GWUAIO +Gm0B10 +Gm0AZO +G’mOBZO +G’mOA30 +G’mOB3O +@mOA40 +G’m0B4D
m=0
3 (B B+ B+ B+ B+ B 3 [G%Am +80B, +Bh0A, + B, + BinA, + 658, + B A, +60.B,, sosmd0
n=1 =
9 10
. =05(iv/ +10 B "\ +8mA,, + B,
ki 1 2 3 4 5 6 7 8
D4 g 3— g— s— f— 71— g— g— 10— E[HlmoAi +HLmOBl +Hlm0A2 +HnoB +Hlm0A3 +HhoB +HLmDA4 +HoB
+Z(iiAm+iiBm+iiA2n+i‘$32n+iiA3n+i253n+i§A4n+iiBAn+i?A5n+ii°BSn) D ltoh Moy « ot P Wi Mo s ol « o
n=L 1 2 3 4 5 § 7 8
| ] (32b) . © HmngAm+Hlmnlfln+”mnA?n+HlmnBZH+Hlmm%n+HlmnB3n+HlmnA4n+HLmnB4” ]cosm9:0
The coefficients e, : in are given in the Appendix A. w1 +Hin A, + HinBy,
ng[ﬁ”UAm*' moByg + Fno Ay, + 'T“’Bzo*'iBf"OAzo+ m0830+$7m0A40+$9m0840
m=0
L 2 7
+Z ﬁmAiﬁ rnn:m+$rznnA2n+$:mBZn+ﬁnn&n+ﬁn83n+$mnA4n+ﬁmBm Jcosma=0
n=l +$:1m%n+$mn85n
(33)
where
j 2, % i
Hon = > | el (H,H)cosm@d@
T i=1 64
i 2¢, | % 4 J— .
o = fI{R,0)sinmodo
n
- T i=lg,
y &, <[22 )3 [ g1 (R,.0)cosmado
Fig. 1. Geometry of a straight line segment mn = T Zl _[ 95 ( b )Cosm !
=la,
The boundary conditions along the whole range of boundary ; 2 IR
g . - ) &, j
cannot be satisfied directly. To satisfy the boundary conditions, M5 = z I h!(Ri,0|cosmade,
the Fourier expansion is performed on the equations of the 7T Jidg,
boundary conditions along the boundary line. For the present ) 25\ a
- - - - - ] .
case, one straight |Ine_IS_ congldered to be one segment, _whlle ﬁmn — n J' |r: (H,Q)COS medeo
curved line must be divided into many segments according to T )T,
the convergence of the solution. The Fourier coefficients are o (34)
therefore obtained by the addition of these coefficients is and for the outer surface
therefore obtained by the addition of these for the separately i £, [EL Ay +E2Byy + EX Ay +E4 By + E5 Ay + ES By + E/ oAy + X By,
considered boundaries. When the plate is symmetric about an 0
axis, the analysis can be separated into symmetric and anti = (EL A, +E2B, +EX A, +E!B, +E3 A +E°B, +E/ A, +EB, cosmg=0
symmetric cases. Hence, when the co-ordinate 0 is taken from T\ +EX AL +ENB,
the axis of symmetry, the boundary conditions along the inner
boundary are expanded into the following Fourier series. <IN ) . . s 6 ; ]
ng[FmoAio + FmOBlo + FmOAZO + FmDBZO + Fm0A30 + FmOB3O + FmOAAO + FmOB40
m=0
+i[Fl'in'Aiﬂ + FI‘V?HBIH + FninAZn + FI'ﬂAHBZn + annA3n + Frr?nBSrw + FW?HA‘W + FVT?HBLM ]s|nm€:0
n=1 +Fn?nA5n +Frr1\ngn
> 5 [Gh A + By + GloAs + GioBao + Gloy +GiBay + GloAy + GloBys
@(Génf,g OB+ Gl + G+ Gty + OB+ G B ]]Cos oo
01\ +6m Asn + Gmn Bsny
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ZSM[H:\DAﬂ.O + Hlf\DBlﬂ + H:\OAZO + H B + Hm0A30 + Hr?!OBSO + HrZ\DAAO + HS\DBAO
m=0

i(HiAﬁHinBlﬁHfmAzﬁH 0Bay + Hon Ay, + HE By +H A+ HEB,
+

s o ”J]cosm&:O
+Ho A, + Hin By

n=1

S 1 6 7 8
zgm[ImOAiO+| B, +Im0A20+I B, +Im0A30+ImOBSO+Im0A40+ImoBdﬂ
m=0

+i['j|n9ﬁg:llfB+lmAzﬂ+| B, 15 A, +15B, +11A, 12, 4"]]cosm0:0
(35)
where
j 2‘9n 1 6 j
Enn = > [ el(R.6)cosmode
7 i=l g,
2¢ L4 _
Fon =| — j fJ(R,0)sinmode
T i=1 G4
j 25n 16 j
Gmn = g, (Ri,H)CosmGdH,
T i=1 64
j 26.n 1 6 j
Hon = h! (R;,0)cosmade,
T i=1 6.4
) 14
Lo = (28 jz j i) (R, 0)cosmade
" O (36)

Similarly, for the anti symmetric mode, the boundary conditions
for the inner surface are
i [E:mxso +Efo§50

D)

n=1

Jsinm@ =0

—7 —8 —10 _

+ B Asn + B Ban + Emn Asn + B Bsn

[E’mn Kln + E’mn Bln + Emn A2n + E’mn BZn + Emn A3n + E’mn §3H

—10

Z [Fl’mO Aso + Paro Bso

F"mn A1n + F"mn Bln + Flmn A2n + F"mn BZn + F"mn ASn + F"mn BSn

+Z —7 —8 —10

=t +F"mn Adn + F"mn Ban + Flmn ASn + F"mn BSn

Jcosmé =0

0 —9 _ —10 _
z [Bmo Aso + Eno Bso
m=1
—1 __ —2 __ —3 _ —4 __ —5 _ —6 _
+i G’mn An + @mn Bin +G’mn Azn + @mn Baon + G’mn Asn + G’mn Bsn
—10

n=t +@mn A4n +G’mn B4n + @ngSn + & BSn

]sinm@ =0

_ =1
Z [HLmO Aso + Mo Bso

m=1

Ei ﬁlzi ﬁ.?i ﬁl‘li ﬂl‘57 ﬁl‘sf
= in At + M%n Ban + M Azn + MG Ban + MY Asn + H%n Ban .
+Z ' ’ 7102 ? " llsinmo =0
+"'|I'mn AAn + Htmn B4n + HLmn Asn + M4 Bsn

P =10 _
z m0A50+ mo Bso

= ﬁnn Auwn + $mn B + $mn Azn + $mn BZn + ismn Asn + ian Ban N
Z Jsinm@=0
- +$mn Asn + ian Ban + $mn Asn + Pmn BSn

@37)
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. 2 V& 4 = .
G :( n _[ g, (R.,@)sm mado,
T i=1 6.4
| 2e V& 4 - .
M, =[ njz h) .,9)sm medao,
4 i=l g,
&l 2e Y\ b (= .
P :( nj IL{(R;,H)smmedH
T i=1 6 (38)

and for the outer surface are
Emn Aln + Emn Bln + Emn AZn + Emn BZn + Emn A3n

z [EmoA30+EmoBso+z o
+Emn BSn + Emn AAn + Emn BAn + EmnASn + EmBsn

m=1 n=1

Jsinmg=0

anAln‘H:man-l-anAn-l-anB n+anA3n
Z [Fmo/-\30+FmoBso+Z ! ‘ i o

m=1 n=1 +anBSn+anA4n+anBAn+anA5n+anBSn

Gmn Aln +Gmn Bln +Gmn AZn +Gmn BZn +Gmn A3n

—10 —

+Gmn BSn +Gmn A4n +Gmn B4n +Gmn kn +Gm Bsn

Z [GmOA’;0+GmoBSO+Z

m=1 n=1

mnAln+HmnBln+HmnA2n+HmnBZn+HmnA3n
+HmnB3n+HmnA4n+HmnBAn+HmnA5n+HmnBSn

Z [HmoA30+HmoBso+z

n=1

Jsinmd=0

(39)

N

ll
3-
Il
I/
N
M
N
)
52
—~~
Py
)
N
o
o
7]
3
D
o
N

(40)
where j=1,2,3,4,5,6,7,89 and 10, &,=1/2for m=0 and

n=1 form>0, lis the number of segments, Ris the
coordinate I at the inner boundary, and R, is the coordinate I

at the outer boundary.

The frequency equations are obtained from the inner and
outer boundary conditions of the Egs. (33) and (35), for the
symmetric mode, and for the anti symmetric mode, the
frequency equations are obtained from the Eqgs. (37) and (39) by
truncating the series to N+1 terms, and equating the determinant

Jcosmd=0

Jsinmé =0
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of the coefficients of the amplitudes A,,Ain,B;, and Bin
(i=1,2,3,4,5) to zero. Thus the frequency equation for the
symmetric mode is obtained in the form of matrix as follows;

B Bo L L B Ey L Ew Ex L By L L Ex L En| A
M M MM M M M M MLL M M || Buo

M
E’Lo Efqo L L E’ilu E}\u L E'iNN E’fu L E’im L L E’luoi L E’?N A
M M MMM ML L L L L LL ML M B”
M M MM M ML L L L L LL ML M ;

1
P oL oL B Bl R Bl Bl Bl B

M M MM M M M M M MM M MAm

ﬁ\m ﬁ«o L L ﬁ;\m ﬁu L $1NN ﬁu L ﬁm L L t& L t\?N Bn =0
EéD EOZD L L ESO Eél L Eé N Enzl L EgN L L Eozl L EgN M
M M MM M M M M M M || By
Ew EG L L E, Ew L Ey Eu L ER L L E, L Ey|M
M M MM M M M M M M M M M
M M MMM MMM M ML L L L M || By
lo I L L g o Loy g L oIg L L oI L | M
M M MM M M M M M M M M
,Iim Irio L L Izo |b1 L |§N Iril L IéN L L Iiﬁ L Ihora,,BlON,
(41)

The frequency equation for the anti symmetric mode is obtained
in the form of matrix as follows;

—  —10 —1 -1 —2 —2 —10 —10 [ Aso
B Bow L L L BEu L B Bu L B L L Ba L Bol
M M MMM M M M M L L M M Bso
—s  —10 —1 -1 —2 —2 —10 —10 M
Ewo Byvo L L L Bu L Bw Bu L Bw L L Bu L Bw| g
M M MMM ML L L L L L L M L M M
M M MMM ML L L L L L L M L M A
1
o =2 e P <2 =2 0 )
Bo Bo L L L Pu L P Pu L B L L By L Bl M
M M MMM M M M M MM M M || Aw
= =2 P = <2 <2 10 w0 || 5
Po Po L L MPu L Pu Fu L B L L PuL PulBulg
-1 —2 —1 —1 —2 —2 —2 —2 M
Ew Ew L L ™M Eaxn L Ew Em L Ew L L Eo L Eon| _
M M MMM M M M M M || B
-1 =2 —1 -1 =2 —2 —2 —2 M
Envo Envo L L L Ewm L Ew Ewm L Ew L L Ewm L Ewm M
M M MMM M M M M M M M M
M M MMM M M M M M L L L L M B
_ _ . _ _ _ . _ 51
o To L L L Tw L Tow T L Tow L L T L Tou|
M M MMM M M M M M M M
7|7}\IO Tho L L L Ta L Tw T L T L L Tw L T || B

(42)

Numerical results and Discussions

The numerical analysis of the frequency equation is carried
out for electro-magneto-elastic plate of polygonal (square,
triangle, pentagon and hexagon) cross-sections, and the
dimensions of each plate used in the numerical calculation are
shown in Figure 2. The axis of symmetry is denoted by the lines
in the Figure 2. The electro-magnetic material constants based
on graphical results of Aboudi (2001) used for the numerical
calculations. The material constants are given in the Table 1.

In the numerical calculation, the angle @is taken as an
independent variable and the coordinate R; at the i—thsegment

of the boundary is expressed in terms of . Substituting R; and
the angle y;, between the reference axis and the normal to the
i —th boundary line, the integrations of the Fourier coefficients
el fl.g' hl il and é:]?'nanﬁ'ni'n can be expressed in terms
of the angle 6. Using these coefficients in to the equations (34)

and (36), the frequencies are obtained for electro-magneto-
elastic polygonal plate.
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Polygonal cross-sectional plate

The geometry of the ring shaped polygonal (triangle, square,
pentagon and hexagon) cross-sectional plates are shown in the
Figure 2. The numerical analysis of the frequency equation is
carried out for magneto-electro-elastic polygonal (square,
triangle, pentagon and hexagon) cross-sectional plates, and the
dimensions of each plate used in the numerical calculation are
shown in Figure 2. The geometrical relations for the polygonal
cross-sectional ring shaped plates are given by Nagaya (1981a)
as follows.

R/a=[cos(0-7)]"
R /b= [cos(@— H)T
n=Hh (43)

where a=(b+h)and b is the apothems as shown in the Figure

2, and h is the thickness of the plate and 0<z < L is the length
of the plate along the z-axis. Here the apothem b is taken as the
reference length which is used to obtain the dimensionless
expressions, and y; is the angle between the reference axis and

the normal to the segment as shown in the Figure 1. In the
present problem, there are three kinds of basic independent
modes of wave propagation have been considered, namely, the
longitudinal and two flexural (symmetric and anti symmetric)
modes of vibrations.

=0 v,=0
0, =36° Y, =72°
0: =108 v, =144°

0;=180° I =3

0,=0° Y, = 30°

9. = 60° ‘;/2 = 90°
2 =120° Y,=150°

0;=180° 1 =3

Fig.2 (a) Triangle (b) Square (c)Pentagon (d)
Hexagonal cross sections

Longitudinal mode

In longitudinal mode of square and hexagonal cross-section,
the cross-section vibrates along the axis of the plate, so that the
vibration displacements in the cross-sections are symmetrical
about both the major and the minor axes. Hence the frequency
equations are obtained by choosing both the terms of m and n
as 0,2,4,6.... in the Eq. (41) for the numerical calculations. In
the case of triangle and pentagonal cross-sectional plate, the
vibration and displacements are symmetrical about the major
axis alone, hence the frequency equations are obtained from the
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Eg. (41) by choosing mand n as0,1,23,..... Since the
boundary of the cross-sections namely, triangle, square,

pentagon and hexagon are irregular in shape, it is difficult to -
satisfy the boundary conditions along the curved surface, and
hence Fourier expansion collocation method is applied. That is
the curved surface, in the range =0 and 6 = is divided into
20 segments, such that the distance between any two segments is
negligible and the integrations is performed for each segment
numerically by using the Gauss five point formula .The non-
dimensional frequencies are computed for 0 <Q <1.0, using the
secant method (applicable for the complex roots, (Anita, 2002 ).

Gieometric ratio L/h=1 5

Fig. 5 Geometric ratio L/b versus non-dimensional
frequency |Q| of longitudinal modes of vibrations for the
pentagonal cross-sectional plate

Non-dimensional frequency | Q|

:

o 0.2 0.4 0.6 0.8 1

Geometne ratio T/b=1 5

Fig. 3 Geometric ratio L/b versus non-dimensional -

0.40

frequency |Q] of longitudinal modes of vibrations for the
triangular cross-sectional plate

0.20

0.00

o 0.2 04 0.6 0.8 1
Geometic ratio T.h=2 5

N Fig. 6 Geometric ratio L/b versus non-dimensional
el &« m frequency |Q| for the longitudinal modes of square cross-
T a0 —= 2 Bt i
ST~ amm e sectional plate
=N m7
Hioo _a f:fl,-r"
£ 0s0 Pt s
] o m &
Foso - e
Zoa b —a e

e
0.20 J"_-

o 0.2 0.4 0.6 0.8 1

Creometiie raho Tbh=1 5

\
Not-dunensional frequency

Fig. 4 Geometric ratio L/b versus non-dimensional
frequency |Q] of flexural anti symmetric modes of vibrations 2 csmanic rotlo s
for the triangular cross-sectional plate
Flexural Mode

In the case of flexural mode of square and hexagonal cross- Fig. 7 Geometric ratio L/b versus non-dimensional
section, the vibration and displacements are anti symmetrical frequency |Q| for the flexural anti symmetric modes of
about the major axis and symmetrical about the minor axis. square cross-sectional plate

Hence the frequency equation may be obtained from Eq. (42)
by choosing n,m=2135,7,... In the case of triangle and
pentagonal cross-sections, the vibration and displacements are
anti symmetrical about the minor axis, hence the frequency
equations may be obtained from Eg. (42) by choosing
nm=123..

Creometric ratio T./b=3 0

Fig. 8 Geometric ratio L/b versus non-dimensional
frequency |Q| of longitudinal modes of vibrations for the
hexagonal cross-sectional plate

The geometric relation for the polygonal cross-section is
given in Eq. (43), which is used for the numerical calculation.
The non-dimensional frequencies of longitudinal and flexural
anti symmetric modes are plotted in the form of dispersion
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curves as shown in the Figures 3 — 7. The notations
namely, S;,S, , Sgand A, A,, A;used in the graphs respectively
represents the symmetric and anti symmetric modes vibration,
and the subscripts 1, 2, 3 etc.. represents the first, second, third
modes vibrations.

A graph is drawn between the geometric ratio L/a =1.5

versus non-dimensional frequency |Q| for longitudinal modes of

triangular cross-sectional ring shaped plate is shown in Fig.3.
From the Fig.3, it is observed that the non-dimensional
frequency is linearly increases with respect to its mode of
vibrations S1, S2 and S3.The similar behavior is observed for
flexural antisymmetric modes of triangular cross-sectional plate.
A dispersion curve is drawn between the Geometric ratio

L/a=1.5 versus non-dimensional frequency |Q| for longitudinal

modes of pentagonal cross-sectional plate is shown in the Fig. 5.
From the Fig. 5, it is observed that, the similar behavior as
discussed in the Fig. 3. This the proper physical behavior of a
electro-magneto-elastic plates.

The Figs. 6 and 7 respectively represents the dispersion
curve drawn for Geometric ratio L/a versus non-dimensional
frequency c for longitudinal and flexural anti symmetric modes
of square cross-sectional plate. From the Fig. 6 and 7, it is
observed that the non-dimensional frequency is increase by
increasing the modes of vibrations. A graph is drawn between
the geometric ratio L/a=3.0 versus dimensionless frequency for
the longitudinal modes of hexagonal cross-sectional electro-
magneto-elastic plates is shown in the Fig. 8. From the Fig.8, it
is observed the non- dimensional frequency is increases with
respect to is modes of vibrations.

Conclusions

In this paper, the wave propagation in a electro-magneto-
elastic ring shaped plate of polygonal (triangle, square,
pentagon and hexagon) cross section are analyzed by satisfying
the boundary conditions on the irregular boundary using the
Fourier expansion collocation method and the frequency
equations for the longitudinal and flexural (symmetric and anti
symmetric) modes of vibrations are obtained. Numerically the
frequency equations are analyzed for the plate of different cross-
sections such as triangular, square, pentagon and hexagon. The
computed dimensionless frequencies are plotted in graphs for
longitudinal and flexural (symmetric and anti symmetric) modes
of vibrations. The problem can be analyzed for any other cross-
section by using the proper geometric relation.
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Appendix
&) =[-2c6 c0s2(0- ) {n(n-1)J, (erax) +(,ax)J,., ()}
+x[(eq)’ (cucos” (0-,)+Casin’ (6-77)
+t, (Elaa, +eab, +0,¢ ) 3, (eax)]cos(mg ) cosnd
= 2nCes {n(n-1)J, (e;ax) - (@,ax)J, . (eax)}sin2(6 -5, )cos(ma )sinng i =1,2,3,4
(A1)
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& =[2¢sc0s2(6-7)n{(n
+cs[2{n(n

-1)J, (a,ax) - (a;ax)J,., (a;ax)} cos(mzz ) cosng

~1)3, (agax)+(aax)J,., (aax)} - (aax)’ 3, (e lcos(mag )sinndsin2 (67, )
(A2)
) =[-2c5 C0s2(6 - ;) {n(n-1)Y, (e ax) + (ctax)Y,, (ez )}
+X[(ega)’ (cacos’ (6-7,)+Casin’ (-1,
+1(Caq +eab, +06 )Y, (ax)lcos (mas ) cosng
- 2nCss {n(n-D)Y, (e;ax) - (e )Y, ,, (@ax)}sin2(6 - 7, )cos(mag )sinnd,i =6,7,8,9
(A3)
6" =[20s c052( 8-, )n{(1-1)Y, (33K) (3,8, ,(3aK)} cos(mas ) cosng
+E%[2{n(n—1)Yn(amax)+(amax)YM(amax)}—(amax)ZY"(amax)]cos(mzrg)sin nsin2(6-7,) (Ad)
fl :{—Z{n(n—l)Jn(aiax)+(aiax)Jn+1(a‘ax)}+(aiax)z Jn(a,ax)}cos(m;rg)cosnesinZ(H—y,)
+2n{(n-1)3, (eax)~(@ax)J,., (eax)|cos(ma )sinndcos2(6 -7, )i =1.2,34.
(A5)
fy =2n{(n-1)J, (aax)-(a;ax)J, , (a;ax)}cos(mas ) cosndsin2(6 ;)
Jr[—z{n(n—l)\]n(aﬁax)+(a,sax)Jm(a.sax)}+(a§ax)z J, (asax)}cos(mzzg)sin ndcos2(6-7,)
(A6)

(e ax)]cos(m;rg)cos nosin2(6-y,)

i, =[-2{n(n-1)¥, (e

+2n{(n-1)Y, (cax

)+ (@x)¥oi (@

)= (@)Y, (@

(n-1)Y, (8a¥)~(@,2)

+[—2{n(n—1)Yﬂ(amax)+(amax) M(amax)}Jr(amax) "(amax)}cos(mﬁg)sinanosZ(H—yi)
(A8)

g :[(IL +2,)c0s(0 ;) +esb, +amci]{an (@ax) - (aax)J,., (@ ax)}sin(mzs)cosng

ax)} +(aax)'Y,
:ax)} cos(mzg)sinn@cos2(6 -7, ),i=6,7,8,9. (A?)

f2=2n ¥,.1 (a8} cos(mag ) cosndsin2(0- ;)

+(t_+a)nJ, (eax)sin(mzg )sinngsin(6 -7, ),i=1,2,3,4.
(A9)
gy =-nt_J, (a,ax)sin(mzs)cosndcos(6 -y, )
—{nJ, (aax)—(ayax)J, , (a,ax)}t, sin(mzs)sinndsin(6-y)
(A10)
g :[(tL +8,)c0s(0-7,)+esh +ﬁlsci}{nYn (X)), (asax)}sin mag ) cosng
+(t,+a )nY, (exax)sin(mag )sinndsin(6-7,),i=6,7,8,9.
(A11)
gy’ =—nt,Y, (a,ax)sin(mzg)cosngcos(0 -y, )
—{nY, (apax)—(a,ax)Y,,; (apax)}t, sin(mzs)sinn@sin(6—-,)

(A12)
) =[es(t 1) () -{ ), s <1234
] (A13)
h? = —ewsnt, J, (asax) (A14)
= [gls(tL +8)-eul -ﬁuci}{nYn (crax) - (eax)¥,,, (e;ax)sin(maz ) cosnd) i =6,7,8,9
) (A15)
h = —essnt, Y, (a,ax) (A16)
=[G (1, +a)-mub, - 16, {0, (er@x) ~(@x)d,., ()} i =1,2,3.4
(A17)
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i = —c_115ntLJn (asax)

(A18)
=[O (t+a)-mub — e, | (Y, (@)~ (@@, (o)} 1 =6,7,89
) (A19)
iio = _Q15m|_Yn (aioax) (AZO)
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Table 1: The material properties of the electro-magnetic material based on graphical results of Aboudi (2001)

composites
Ciy Cp Cis Ca3 Cua Ces
218 120 120 215 50 49
€15 €3 €33 Gis s, Qa3
0 -2.5 7.5 200 265 345
én €33 Hiy Haz m, My
0.4 5.8 -200 95 0.0074 2.82

G (10°N/m?), 5 (10°C/Vm) e, (C/m?)
e d; (N/Am), z; (10°Ns*/C* ), m; (10°Ns/VC)



