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Introduction  

The boundary layer flow on a continuous stretching sheet 

has attracted considerable attention during the last few decades 

due to its numerous applications in industrial manufacturing 

processes such as hot rolling, wire drawing, glass-fiber and 

paper production, drawing of plastic films, metal and polymer 

extrusion and metal spinning. Both the kinematics of stretching 

and the simultaneous heating or cooling during such processes 

has a decisive influence on the quality of the final products 

(Magyari & Keller [1]).  

Crane [2] was the first to consider the boundary layer flow 

caused by a stretching sheet which moves with a velocity 

varying linearly with the distance from a fixed point. The heat 

transfer aspect of this problem was investigated by Carragher 

and Crane [3], under the conditions when the temperature 

difference between the surface and the ambient fluid is 

proportional to a power of the distance from a fixed point. 

Magyari and Keller [1] investigated the steady boundary layers 

on an exponentially stretching continuous surface with an 

exponential temperature distribution.  

In practical situations, the flow over a continuous material 

moving through a quiescent fluid is induced by the movement of 

the solid material and by thermal buoyancy. Therefore, these 

two mechanisms, surface motion and buoyancy force, will 

determine the momentum and thermal transport processes. The 

thermal buoyancy force arising due to the heating or cooling of a 

continuously moving surface, under some circumstances, may 

alter significantly the flow and thermal fields and thereby the 

heat transfer behavior in the manufacturing process. By 

considering the effect of buoyancy, Ali and Al-Yousef [4] 

analyzed mixed convection heat transfer from an uniformly 

stretching vertical surface with general power function form for 

stretching velocity of the wall and with surface suction/injection. 

Partha et al. [5] presented a similarity solution for mixed 

convection flow and heat transfer from an exponentially 

stretching surface by considering viscous dissipation effect in 

the medium. They showed that the buoyancy and viscous 

dissipation have significant influence on the non-dimensional 

skin friction and heat transfer coefficient. Recently, Dulal Pal [6] 

reported an analysis to describe mixed convection heat transfer 

in the boundary layers on an exponentially stretching continuous 

surface with an exponential temperature distribution in the 

presence of magnetic field, viscous dissipation and internal heat 

generation/absorption.  

When heat and mass transfer occur simultaneously in a 

moving fluid, the relations between the fluxes and the driving 

potentials are of a more intricate nature. It has been observed 

that an energy flux can be generated not only by temperature 

gradients but also by concentration gradients. The energy flux 

caused by a concentration gradient is termed the diffusion-

thermo (Dufour) effect. On the other hand, mass fluxes can also 

be created by temperature gradients and this embodies the 

thermal-diffusion (Soret) effect. In most of the studies related to 

heat and mass transfer process, Soret and Dufour effects are 

neglected on the basis that they are of a smaller order of 

magnitude than the effects described by Fourier’s and Fick’s 

laws. But these effects are considered as second order 

phenomena and may become significant in areas such as 

hydrology, petrology, geosciences, etc. The Soret effect, for 

instance, has been utilized for isotope separation and in mixture 

between gases with very light molecular weight and of medium 

molecular weight. The Dufour effect was found to be of order of 

considerable magnitude so that it cannot be neglected [Eckert 

and Drake[7]]. Dursunkaya and Worek[8] studied diffusion-

thermo and thermal-diffusion effects in transient and steady 

natural convection from a vertical surface, whereas Kafoussias 

and Williams[9] presented the same effects on mixed convective 

and mass transfer steady laminar boundary layer flow over a 

vertical flat plate with temperature dependent viscosity. 
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El-Aziz [10] investigated the combined effects of thermal-

diffusion and diffusion-thermo on MHD heat and mass transfer 

over a permeable stretching surface with thermal radiation. 

Ahmed [11] discussed free convective heat and mass transfer of 

an incompressible, electrically conducting fluid over a stretching 

sheet in the presence of suction and injection with thermal-

diffusion and diffusion-thermo effects. A study has been carried 

out to analyze the combined effects of Soret and Dufour on 

unsteady MHD non-Darcy mixed convection over a stretching 

sheet embedded in a saturated porous medium in the presence of 

thermal radiation, viscous dissipation and first-order chemical 

reaction by Pal and Mondal [12].  

In physics and engineering, the radiative effects have 

important applications. In space technology and high 

temperature processes, knowledge of radiation heat transfer 

becomes very important for the design of pertinent equipment 

(Seddeek [13]). Hossain and Takhar [14], Takhar et al. [15], 

Hossain et al. [16] investigated the effect of radiation on heat 

transfer problems in detail. Recently, Sajid and Hayat [17] 

extended the problem of Partha et al. [5] by investigating the 

radiation effects on the flow over an exponentially stretching 

sheet, and solved the problem analytically using the homotopy 

analysis method. The numerical solution for the same problem 

was then given by Bidin and Nazar [18]. 

However, no attempt has been made to analyze the Soret 

and Dufour effects on boundary layer flow and radiative heat 

transfer over an exponential stretching surface in the presence of 

viscous dissipation, and hence it is considered in the present 

problem. Wall temperature, wall concentration and stretching 

velocity are assumed to have specific exponential function 

forms. The Runge-Kutta technique along with shooting method 

is employed to solve the non-linear system in the problem. The 

effects of mixed convection parameters, radiation parameter, 

Soret and Dufour numbers, Prandtl number, Eckert number, 

Schmidt number and also X- location are examined and are 

displayed through graphs. Also, the effects of skin friction, heat 

and mass transfer coefficient is illustrated in tabular form for 

various parameters. The results are compared with relevant 

results in the existing literature and are found to be in good 

agreement. 

Mathematical Analysis 

 A steady, two-dimensional laminar flow of an 

incompressible viscous and radiating fluid near an impermeable 

vertical sheet stretching with velocity uw(x), temperature 

distribution Tw(x) and concentration distribution Cw(x) moving 

through a quiescent incompressible fluid of constant temperature 

T and concentration C is considered, in the presence of 

thermal diffusion (Soret) and diffusion-thermo (Dufour) effects. 

The x-axis is directed along the continuous stretching sheet and 

points in the direction of motion and y-axis is perpendicular to it. 

The schematic diagram of the problem is shown below. 

 

Now, under the usual Boussinesq’s and boundary layer 

approximations, the governing equations for the flow field under 

consideration are  
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where, x and y are the coordinates along and perpendicular to the 

stretching sheet, u and v  are the velocity components in the x 

and y directions, respectively,   is the kinematic viscosity,       

β and β
*
 are the thermal and concentration expansion 

coefficients  of the fluid respectively.   g is the acceleration due 

to gravity, T  is the temperature of the fluid, T  is the 

temperature of the fluid far away from the plate, C is the 

concentration of the fluid, C is the species concentration of the 

fluid far away from the plate,   qr 
is the radiative heat flux. α is 

the thermal diffusivity, D is the solutal diffusivity of the 

medium, Cp
 
 is the specific heat capacity, Cs is the concentration 

susceptibility, Tm is the mean fluid temperature and KT is the 

thermal diffusion ratio.  

The second, third and fourth terms on the right-hand 

side of the energy equation (3) signifies the radiation, viscous 

dissipation and Dufour or diffusion-thermo effect respectively. 

The last term on the right-hand side of diffusion equation (4) 

signifies the Soret or thermal-diffusion effect. 

The boundary conditions for the velocity, temperature and 

concentration fields are   
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where the subscripts w and  indicate the conditions at the wall 

and at the outer edge of the boundary layer respectively. 

  The stretching velocity uw(x), exponential temperature 

distribution c and exponential concentration distribution Cw(x) 

are defined as 
/
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Where u0 
is velocity parameter of the stretching surface, T0   is 

parameter of the temperature distribution where as C0 is 

parameter of the concentration distribution in the stretching 

surface. 

By employing Rosseland approximation (Sajid and Hayat[17]), 

the radiative heat flux qr is given by  

 
44 *
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r

T
q
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 (9) 

where σ* is the Stefan-Boltzmann constant and k* is the mean 

absorption coefficient. It should be noted that by using the 

Rosseland approximation, the present analysis is limited to 

optically thick fluids. If the temperature differences within the 
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flow field are sufficiently small, then equation (9) can be 

linearized by expanding T 
4
 into the Taylor series about T , 

which after neglecting higher-order terms takes the form   
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 (10) 

In view of equations (9) and (10), equation (3) becomes        
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In view of the continuity equation (1), defining the stream 

function    such that  
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In order to write the governing equations and the boundary 

conditions in dimensionless form, the following non-

dimensional quantities are introduced. 
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In view of equations (12)-(13), the governing equations (2), (4) 

and (11) reduce to the dimensionless form 
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where primes denotes the ordinary differentiation with respect to 

, L is the characteristic length of the plate, X is the X-location, 

Ri is the mixed convection parameter, N is the buoyancy ratio, 

Nr is the radiation parameter, Pr is the Prandtl number, E is the 

Eckert number, Sc

 

is the Schmidt number, Du  is the Dufour 

number and  Sr  is the Soret number. 

 A close look at the equations (14) and (15) reveals that, 

in mixed convection due to viscous fluid, the velocity and 

temperature profiles are not similar because the x-coordinate 

cannot be eliminated from those equations. Although local non-

similarity solutions have been found for some boundary layer 

flows dealing with viscous fluid, the technique is hard to extend 

to in this case. Thus, for ease of analysis, it was decided to 

proceed with finding local similarity solutions for the governing 

equations (14) and (15). That is, taking X = x/L and then one can 

still study the effects of various parameters on different profiles 

at any given X- location. 
 The wall shear stress, heat and mass transfers acting on 

the surface in contact with the ambient fluid of constant density 

are respectively given by 
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where  is the dynamic viscosity. 

The skin friction at the plate can be obtained, which in non-

dimensional form is given by  
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The rate of heat transfer coefficient can be obtained, which in 

the non-dimensional form, in terms of the Nusselt number, is 

given by 
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The rate of mass transfer coefficient can be obtained, which in 

the non-dimensional form, in terms of the Sherwood number, is 

given by 
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where Rex = uw(x) x/  is the local Reynolds number. 

Solution of the Problem  

The governing boundary layer equations (14) – (16) 

subject to the boundary conditions (17) are solved numerically 

by using Runge-Kutta fourth order technique along with 

shooting method. First of all higher order non- linear differential 

equations (14) – (16) are converted into simultaneous linear 

differential equations of first order and they are further 

transformed into initial value problem by applying the shooting 

technique (Jain et al.[20]). The resultant initial value problem is 

solved by employing Runge-Kutta fourth order technique. The 

step size ∆ = 0.01 is used to obtain the numerical solution with 

five decimal place accuracy as the criterion of convergence. 

From the process of numerical computation, the skin-friction 

coefficient, the Nusselt number and the Sherwood number which 

are respectively proportional to f"(0),
 
–θ’(0) and –’(0) are also 

sorted out and their numerical values are presented in a tabular 

form.  
Results and Discussion 

 In order to get a physical insight into the problem, a 

representative set of numerical results is shown graphically in 

Figs.2-22, to illustrate the influence of physical parameters viz., 

the mixed convection parameter Ri, the buoyancy ratio N, the 

Prandtl number Pr, the radiation parameter Nr, the Eckert 

number E, the Schmidt number Sc, Dufour number (Du) and 

Soret number (Sr) on the velocity fʹ(),  temperature θ () and 

concentration  (). 

In the absence of mixed convection parameter Ri, Soret 

number Sr and Dufour number Du, Eckert number E, radiation 

parameter Nr with N = 0 and Sc = 0 for different values of the 

Prandtl number Pr, the results have been compared with the 

special case of Magyari and Keller [1] and found that they are in 

good agreement, as shown in Table 1. 

In the present study, the following default parameter values 

are adopted for the numerical computations: N = 0.5, Du = 0.03, 

Sr = 2.0, Ri = 1, Sc = 0.22, Pr = 1.0, X = 0.5,Nr = 1.0 and E = 

0.5. These values are used throughout the computations, unless 

otherwise indicated. Figs.2, 3 and 4 show the effects of the X-

location on the dimensionless velocity, temperature and 

concentration. From Fig.2, it is noticed that the velocity 

decreases with an increase in the value of X in the momentum 

boundary layer. It is clear from Fig.3 that the thermal boundary 

layer thickness increases with the increase of X but with 

significant effect near the stretching sheet. It can be seen from 

Fig.4 that the solutal boundary layer thickness of the fluid 
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increases with the increase of X and also, found that significant 

effect within the boundary layer. 

Figs.5, 6 and 7 depict the dimensionless velocity, 

temperature and concentration profiles for various values of the 

mixed convection parameter Ri. Also, we have analyzed the 

results for both cases of aiding and opposing flows. It reveals 

that as the value of Ri increases, the dimensionless velocity 

rises. Compared with the limiting case of Ri = 0.0 (i.e., pure 

forced convection), the velocity is more for aiding flow and the 

velocity is less for opposing flow. As Ri increases, the buoyancy 

effects increase and hence the fluid flow accelerates.            

Fig.6 illustrates the dimensionless temperature for different 

values of Ri. The results indicate that the dimensionless 

temperature reduces with the increase of Ri. The temperature in 

case of mixed convection is less for aiding flow and more for 

opposing flow compared to that of pure forced convection. As Ri 

(i.e. buoyancy effects) increases, the convection cooling effect 

increases and hence the temperature reduces. The effect of 

mixed convection parameter Ri on the dimensionless 

concentration is depicted in Fig.7. It is clear that the 

concentration of the fluid decreases with the increase of mixed 

convection parameter Ri. Fig. 8 shows the velocity profiles for 

different values of buoyancy ratio parameter N. It is seen that the 

velocity increases with an increase in buoyancy ratio parameter. 

The effects of the Pr on the dimensionless velocity, 

temperature and concentration are depicted in the Figs.9-11.    

Pr encapsulates the ratio of momentum diffusivity to thermal 

diffusivity. Larger Pr values imply a thinner thermal boundary 

layer thickness and more uniform temperature distributions 

across the boundary layer. Hence the thermal boundary layer 

will be much less in thickness than the hydrodynamic boundary 

layer. Pr = 1 implies that the thermal and velocity boundary 

layers are approximately equal. Smaller Pr fluids have higher 

thermal conductivities so that heat can diffuse away from the 

vertical plate faster than for higher Pr fluids (thicker boundary 

layers). As Pr enhances, it can be seen from Fig.9 that the 

velocity reduces since the fluid is increasingly viscous as          

Pr rises. Hence the viscous fluid is decelerated with a rise in    

Pr. Fig.10 indicates that a rise in Pr substantially reduces the 

temperature in the viscous fluid. From Fig.11 it is found that the 

solutal boundary layer thickness of the fluid enhances with the 

enhance of Pr. 

 The influence of thermal radiation parameter Nr on the 

velocity, temperature and concentration are shown in      

Figs.12-14. The radiation parameter Nr defines the relative 

contribution of conduction heat transfer to thermal radiation 

transfer. It is obvious that an increase in the radiation parameter 

results in increasing both the velocity and temperature while the 

concentration of the fluid decreases within the boundary layer. 

 Figs.15, 16 and 17 represent the dimensionless velocity, 

temperature and concentration profiles for various values of the 

viscous dissipation parameter i.e., the Eckert number E. The 

Eckert number E expresses the relationship between the kinetic 

energy in the flow and the enthalpy. It embodies the 

conservation of kinetic energy into internal energy by work done 

against the viscous fluid stress. The positive Eckert number 

implies cooling of the sheet i.e., loss of heat from the sheet to 

the fluid. It is found that as E increases, both the velocity as well 

as the temperature increases while the concentration decreases. 

 For different values of the Schmidt number Sc, the velocity 

and concentration profiles are plotted in Figs. 18 and 19. The 

Schmidt number Sc embodies the ratio of momentum diffusivity 

to the mass (species) diffusivity. It physically relates the relative 

thickness of the hydrodynamic boundary layer and mass transfer 

(concentration) boundary layer. As the Schmidt number 

increases the concentration decreases. This causes the 

concentration buoyancy effects to decrease, yielding a reduction 

in the fluid velocity. The reduction in the velocity and 

concentration profiles is accompanied by simultaneous 

reductions in the velocity and concentration boundary layers, 

which is evident from Figs. 18 and 19. 

 The effects of Soret (Sr) and Dufour (Du) numbers on the 

velocity, temperature and concentration profiles are depicted in 

Figs.20-22. The velocity as well as temperature increases but the 

concentration decreases with a decrease in the Soret number Sr 

(or simultaneous increase in the Dufour number Du) more 

effectively near the surface of the stretching sheet. Thus it is 

concluded from Figs.20-22 that the velocity, temperature and 

concentration distributions are severely affected by the Soret and 

Dufour effects, especially the thermal boundary layer thickness 

which increases while concentration boundary layer thickness 

which decreases with increase in the Dufour number                

(or simultaneously decrease in the Soret number). It should be 

mentioned that the profiles of concentration are found to be 

more sensible to the changes with Soret number Sr and Dufour 

number Du, respectively. Thus it is evident that the effects are 

obviously playing an important role under mixed convection 

flow for molecular diffusion in the presence of Soret and Dufour 

effects. Therefore, we can understand that the influence of 

thermal-diffusion as well as the diffusion- thermal effects is 

greatly effective in the study of mixed convection problems. 

The variations of f"(0), –θ’(0) and –’(0) which are proportional 

to the local skin-friction coefficient, rate of heat and mass 

transfers are shown in Table.2 for different values of the mixed 

convection parameter Ri, in both cases of opposing and aiding 

flows. It is seen that the local skin friction factor increases as    

Ri increases. The reason is that an increase in the buoyancy 

effect in mixed convection flow leads to an acceleration of the 

fluid flow, which increases the local skin friction factor. It is 

also seen that, the heat transfer rate increases but the mass 

transfer rate decreases in both cases of opposing and aiding 

flows with the increasing values of Ri. It is also found from 

Table.2 that the skin friction, heat transfer coefficient are 

reducing and the mass transfer coefficient is increasing with the 

increasing values of X-location. The effect of increasing the 

value of Pr is to decrease the skin friction and mass transfer 

coefficients but increases heat transfer coefficient. The effect of 

increasing the value of Nr is to increase the skin friction and 

mass transfer coefficients but decreases heat transfer coefficient. 

The effect of increasing the value of E is to increase the skin 

friction and mass transfer coefficients but decreases heat transfer 

coefficient. Finally, the effects of Dufour and Soret number on 

the local skin-friction coefficient and the rate of heat and mass 

transfers are shown in this table. The behavior of these 

parameters is self-evident from the Table.2 and hence is not 

discussed for brevity.      
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Fig.2. Velocity profiles for different values of X  

 
Fig.3. Temperature profiles for different values of X 

 
Fig.4. Concentration profiles for different values of X 

 
Fig.5. Velocity profiles for different values of Ri 

 
Fig.6. Temperature profiles for different values of Ri 

 
Fig.7. Concentration profiles for different values of Ri 

 
Fig.8. Velocity profiles for different values of N 

 
Fig.9. Velocity profiles for different values of Pr 
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Fig.10. Temperature profiles for different values of Pr 

 
Fig.11. Concentration profiles for different values of Pr 

 
Fig.12. Velocity profiles for different values of Nr 

 
Fig.13. Temperature profiles for different values of Nr       

 
Fig.14. Concentration profiles for different values of Nr 

 
Fig.15. Velocity profiles for different values of E 

 
Fig.16. Temperature profiles for different values of E 

 
Fig.17. Concentration profiles for different values of E 

 
Fig.18. Velocity profiles for different values of Sc 

 
Fig.19. Concentration profiles for different values of Sc 
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Fig.20. Velocity profiles for different values of Sr and Du 

 
Fig.21. Temperature profiles for different values of Sr and 

Du 

 
Fig.22. Concentration profiles for different values of Sr and 

Du 

Conclusions 

The present study gives numerical solutions for the Soret 

and Dufour effects on   mixed convection heat and mass transfer 

in a viscous fluid over an exponentially stretching vertical 

surface in the presence of thermal radiation and viscous 

dissipation. Using the similarity variables, the governing 

equations are transformed into a set of ordinary differential 

equations where numerical solution has been presented for 

different values of parameters. The present results are found to 

be in excellent agreement with previously published work on 

various special cases of the problem.  

1. An increase in the mixed convection parameter Ri, enhances 

the velocity, skin friction and heat transfer coefficient but 

reduces the temperature, concentration distributions and mass 

transfer coefficient, in the boundary layer. 

2. The velocity, skin friction as well as the rate of heat transfer 

decrease whereas the wall temperature, wall concentration and 

rate of mass transfer increase with an increase in X, in the 

boundary layer. 

3. Increasing the Prandtl number substantially decreases the 

velocity, temperature, skin friction and mass transfer rate where 

as increases the concentration and rate of heat transfer. 

4. The velocity, temperature and local mass transfer rate 

increases whereas the concentration, skin-friction and local heat 

transfer rate decrease with an increase in the Dufour number (or 

simultaneous decrease in the Soret number).  

5. The velocity, temperature as well as skin friction and mass 

transfer rate increases whereas the concentration and local heat 

transfer rate decreases with an increase in the radiation 

parameter or Eckert number. 
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Table 1 Comparison between wall-temperature gradient θ′(0) calculated by the present method and that of  

Srinivasacharya and RamReddy[19]  and Magyari and Keller[1] for 

Ri= Sr=Nr=E = Du=N = 0 and Sc = 0. 
Pr Present Results Srinivasacharya and  RamReddy[19] Magyari and Keller[1] 

0.5 

1.0 

3.0 
5.0 

8.0 

10 

-0.595283 

-0.954787 

-1.86907 
-2.50013 

-3.24212 

-3.66035 

-0.59438 

-0.95478 

-1.86908 
-2.50015 

-3.24218 

-3.66043 

-0.59434 

-0.95478 

-1.86908 
-2.50014 

-3.24213 

-3.66038 

Table 2 Effects of the skin friction, heat and mass transfer coefficients for different values of 

Ri, Sr, Du, X, Pr, Nr and E. 
Ri Sr Du X Pr Nr E f"(0) –θ′(0) –ʹ(0) 

-0.5 
-0.1 

0.5 

3.0 
5.0 

2.0 
2.0 

2.0 

2.0 
2.0 

0.03 
0.03 

0.03 

0.03 
0.03 

3.0 
3.0 

3.0 

3.0 
3.0 

1.0 
1.0 

1.0 

1.0 
1.0 

1.0 
1.0 

1.0 

1.0 
1.0 

0.5 
0.5 

0.5 

0.5 
0.5 

-1.334486 
-1.32173 

-1.30236 

-1.22532 
-1.16726 

-9.3641 
-9.11273 

-8.76008 

-7.52601 
-6.72932 

4.60201 
4.41678 

4.18648 

3.51594 
3.13997 

1.0 

1.0 
1.0 

1.0 

1.0 

2.0 

1.6 
1.0 

0.5 

0.1 

0.03 

0.04 
0.06 

0.12 

0.6 

0.5 

0.5 
0.5 

0.5 

0.5 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

0.5 

0.5 
0.5 

0.5 

0.5 

-0.723998 

-0.724804 
-0.725949 

-0.726564 

-0.728640 

0.611368 

0.609762 
0.606792 

0.601234 

0.565303 

0.322673 

0.354640 
0.402041 

0.441319 

0.474524 

1.0 
1.0 

1.0 

1.0 
1.0 

2.0 
2.0 

2.0 

2.0 
2.0 

0.03 
0.03 

0.03 

0.03 
0.03 

0.1 
0.5 

1.0 

2.0 
3.0 

1.0 
1.0 

1.0 

1.0 
1.0 

1.0 
1.0 

1.0 

1.0 
1.0 

0.5 
0.5 

0.5 

0.5 
0.5 

-0.282449 
-0.723998 

-1.02178 

-1.23730 
-1.28649 

0.718307 
0.611368 

0.363386 

-1.25096 
-8.48566 

0.313646 
0.322673 

0.384924 

1.015330 
4.023110 

1.0 

1.0 
1.0 

1.0 

1.0 

2.0 

2.0 
2.0 

2.0 

2.0 

0.03 

0.03 
0.03 

0.03 

0.03 

0.5 

0.5 
0.5 

0.5 

0.5 

0.5 

1.0 
2.0 

3.0 

5.0 

1.0 

1.0 
1.0 

1.0 

1.0 

0.5 

0.5 
0.5 

0.5 

0.5 

-0.716085 

-0.723998 
-0.737395 

-0.748265 

-0.764720 

0.485088 

0.611368 
0.814163 

0.974549 

1.223770 

0.397694 

0.322673 
0.216231 

0.138298 

0.020739 

1.0 

1.0 

1.0 

1.0 
1.0 

2.0 

2.0 

2.0 

2.0 
2.0 

0.03 

0.03 

0.03 

0.03 
0.03 

0.5 

0.5 

0.5 

0.5 
0.5 

1.0 

1.0 

1.0 

1.0 
1.0 

0.5 

1.0 

2.0 

3.0 
5.0 

0.5 

0.5 

0.5 

0.5 
0.5 

-0.729710 

-0.723998 

-0.718336 

-0.715524 
-0.712725 

0.699084 

0.611368 

0.521679 

0.475867 
0.429278 

0.275062 

0.322673 

0.374976 

0.403570 
0.434316 

1.0 

1.0 
1.0 

1.0 

1.0 

2.0 

2.0 
2.0 

2.0 

2.0 

0.03 

0.03 
0.03 

0.03 

0.03 

0.5 

0.5 
0.5 

0.5 

0.5 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

0.1 

0.5 
1.0 

2.0 

3.0 

-0.734893 

-0.723998 
-0.710615 

-0.684577 

-0.659421 

0.689806 

0.611368 
0.518347 

0.347722 

0.195592 

0.295862 

0.322673 
0.354283 

0.411741 

0.462406 

 


