
Bahram Rashidi/ Elixir Elec. Engg. 51 (2012) 10700-10703 
 

10700 

Introduction  

The use of cryptography is growing rapidly with the 

adoption of computer technology. The design of cryptographic 

ciphers is still not well understood; we cannot prove the security 

of an algorithm. Currently, the only way to be sure of the 

security of an algorithm is to study it for a long period of time 

and use the absence of attacks as evidence confirming its 

security. All ciphers are vulnerable to an exhaustive key search 

attack. An attacker can try every single possible key to check its 

correctness. This is time consuming, but feasible for several 

widely deployed ciphers. An obvious way to conduct an 

exhaustive key search attack is to write software that will check 

each key in turn. Current microprocessors have clock rates in the 

gigahertz range and can execute several instructions per clock 

cycle. They are also cheap, highly available and easy to 

program[1]. Implementation of RC-5 algorithm on FPGA has 

been proposed by some researchers [2-5], In[2], The goal is to 

combine traditional distributed computing concepts with 

reconfigurable hardware, where free resource area can be used to 

achieve computation speed-ups. Their approach is demonstrated 

on the base of a RC5 brute force key search analog to the 

distributed net project. In[3], proposes a new hardware dedicated 

to RC5, a typical cryptograph. In the proposed RC5 dedicated 

hardware, by introducing an architecture suitable for each 

operation used for the encryption, high-speed processing and 

area reduction can be realized. In[4], they discuss the options for 

brute-force cracking of the RC5 block cipher, that is, for 

revealing the unknown secret key, given a sample ciphertext and 

a portion of the corresponding plaintext. First, they summarize 

the methods employed by the current cracking efforts. Then, 

present two hardware architectures for finding the secret key 

using the “brute force” method. They implement the hardware in 

FPGA and ASIC. In[5], propose an efficient and reconfigurable 

hardware architecture for the RC5 block cipher implementation. 

The design can be reconfigured according to the different 

application requirements with variable parameters. In this paper 

use a FPGA device to implementation of a high speed RC5 

encryption. FPGAs provide the functionality of a custom chip 

without the high upfront cost and lead time. They have much 

lower clock rates than general-purpose CPUs, but can be 

designed to perform one task exceptionally well. Parallelism can 

also be exploited to increase the overall encryption rate.  

Description of RC5 Algorithm 

The RC5 encryption algorithm was designed by Ronald 

Rivest of Massachusetts Institute of Technology (MIT) and it 

first appeared in December 1994. RSA Data Security, Inc. 

estimates that RC5 and its successor, RC6, are strong candidates 

for potential successors to DES. RC5 analysis (RSA 

Laboratories) is still in progress and is periodically updated to 

reflect any additional findings. RC5 is a symmetric block cipher 

designed to be suitable for both software and hardware 

implementation. It is a parameterised algorithm, with a variable 

block size, a variable number of rounds and a variable-length 

key. This provides the opportunity for great flexibility in both 

performance characteristics and the level of security. A 

particular RC5 algorithm is designated as RC5-w/r/b. The 

number of bits in a word, w, is a parameter of RC5. different 

choices of this parameter result in different RC5 algorithms. 

RC5 is iterative in structure, with a variable number of rounds. 

The number of rounds, r, is a second parameter of RC5. RC5 

uses a variable-length secret key. The key length b (in bytes) is a 

third parameter of RC5. These parameters are summarized as 

follows [6]: 

w:   The word size, in bits. The standard value is 32bits; 

allowable values are 16, 32 and 64. RC5 encrypts two-word 

blocks so that the plaintext and ciphertext blocks are each 2w 

bits long. 

r:    The number of rounds. Allowable values of r are  0, 1, . . . , 

255. Also, the expanded key table S contains t = 2 (r + 1) words. 

b:    The number of bytes in the secret key K. Allowable values 

of b are 0, 1, . . . , 255. 

K:    The b-byte secret key; K[0], K[1], . . . , K[b − 1] 

RC5 consists of three components: a key expansion 

algorithm, an encryption algorithm and a decryption algorithm. 

These algorithms use the following three primitive operations:
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1. +     Addition of words modulo 2
w
 

2. ⊕   Bit-wise exclusive-OR of words 

3. <<<   Rotation symbol: the rotation of x to the left by y bits is 

denoted by x <<< y. 

One design feature of RC5 is its simplicity, which makes 

RC5 easy to implement. Another feature of RC5 is its heavy use 

of data-dependent rotations in encryption; this feature is very 

useful in preventing both differential or linear cryptanalysis. 

Given RC5-32/16/10. This particular RC5 algorithm has 32-bit 

words, 16 rounds, a 10-byte (80-bit) secret key variable and an 

expanded key table S of t = 2(r + 1) = 2(16 + 1) = 34 words. 

Rivest proposed RC5-32/12/16 as a block cipher providing a 

normal choice of parameters, i.e. 32-bit words, 12 rounds, 16-

byte (128-bit) secret key variable and an expanded key table of 

26 words. 

Key Expansion 

As explained in [6], the key-expansion algorithm expands 

the user’s key K to fill the expanded key table S, so that S 

resembles an array of t = 2(r + 1) random binary words 

determined by K. It uses two word-size magic constants Pw and 

Qw defined for arbitrary w as shown below: 

Pw  = Odd ((e − 2)2
w
) 

Qw  = Odd ((φ − 1)2
w
) 

where 

e = 2.71828 . . . (base of natural logarithms) 

φ = (1 +√5)/2 = 1.61803 . . . (golden ratio) 

Odd(x) is the odd integer nearest to x. 

First algorithmic step of key expansion: This step is to copy 

the secret key K[0, 1, . . . ,b − 1] into an array L[0, 1, . . . , c − 1] 

of c = b/u words, where u = w/8 is the number of bytes/word. 

This first step will be achieved by the following pseudocode 

operation: for i = b – 1 down to  0 do  L[i/u] = (L[i/u] <<< 8) + 

K[i];  where all  bytes  are unsigned  and the array L is initially 

zeroes. Second algorithmic step of key expansion: This step is to 

initialise array S to a particular fixed pseudo-random bit pattern, 

using an arithmetic progression modulo 2
w
  determined by two 

constants Pw  and Qw. 

S[0] = Pw: 

For  i = 1 to t − 1 do S[i] = S[i − 1] + Qw. 

Third algorithmic step of key expansion: This step is to mix 

in the user’s secret key in three passes over the arrays S and L. 

More precisely, due to the potentially different sizes of S and L, 

the larger array is processed three times, and the other array will 

be handled more after. 

 i = j = 0; 

A = B = 0; 

do 3∗  max (t, c) times: 

A = S[i] = (S[i] + A + B) <<< 3 

B = L[j] = (L[j] + A + B) <<< (A + B); 

i = (i + 1) (mod t); 

      j = (j + 1) (mod c). 

Note that with the key-expansion function it is not so easy to 

determine K from S, due to the one-wayness. 

Consider RC5-32/12/16. Since w = 32, r = 12 and b = 16, we 

have 

u = w/8 = 32/8 = 4 bytes/word 

c = b/u = 16/4 = 4 words 

t = 2(r + 1) = 2(12 + 1) = 26 words 

The plaintext and the user’s secret key are given as follows: 

Plaintext = eedba521 6d8f4b15 

Key = 915f4619be41b2516355a50110a9ce91 

1. Key expansion Two magic constants 

P32  = 3084996963 = 0xb7e15163 

Q32  = 2654435769 = 0x9e3779b9 

Step 1 

For i = b − 1 down to 0 do L[i/u] = (L[i/u] <<< 8) + K[i] where 

b = 16, u = 4 and 

L is initially 0. 

L[i/4] = L[3] for i = 15, 14, 13 and 12. 

L[3] = (L[3] <<< 8) + K[15] = 00 + 91 = 91 

L[3] = (L[3] <<< 8) + K[14] = 9100 + ce = 91ce 

L[3] = (L[3] <<< 8) + K[13] = 91ce00 + a9 = 91cea9 
*
L[3] = (L[3] <<< 8) + K[12] = 91cea900 + 10 = 91cea910 

L[i/4] = L[2] for i = 11, 10, 9 and 8. 

L[2] = (L[2] <<< 8) + K[11] = 00 + 01 = 01 

L[2] = (L[2] <<< 8) + K[10] = 0100 + a5 = 01a5 

L[2] = (L[2] <<< 8) + K[9] = 01a500 + 55 = 01a555 

∗L[2] = (L[2] <<< 8) + K[8] = 01a55500 + 63 = 01a55563 

L[i/4] = L[1] for i = 7, 6, 5 and 4. 

L[1] = (L[1] <<< 8) + K[7] = 00 + 51 = 51 

L[1] = (L[1] <<< 8) + K[6] = 5100 + b2 = 51b2 

L[1] = (L[1] <<< 8) + K[5] = 51b200 + 41 = 51b241 

∗L[1] = (L[1] <<< 8) + K[4] = 51b24100 + be = 51b241be 

L[i/4] = L[0] for i = 3, 2, 1 and 0. 

L[0] = (L[0] <<< 8) + K[3] = 00 + 19 = 19 

L[0] = (L[0] <<< 8) + K[2] = 1900 + 46 = 1946 

L[0] = (L[0] <<< 8) + K[1] = 194600 + 5f = 19465f 

∗L[0] = (L[0] <<< 8) + K[0] = 19465f00 + 91 = 19465f91 

Thus, converting the secret key from bytes to words (*) yields: 

L[0] = 19465f91 

L[1] = 51b241be 

L[2] = 01a55563 

L[3] = 91cea910 

Step 2 

S[0] = P32. For i = 1 to 25, do S[i] = S[i − 1] + Q32: 

S[0] = b7e15163 

S[1] = S[0] + Q32 = b7e15163 + 9e3779b9 = 5618cb1c 

S[2] = S[1] + Q32 = 5618cb1c + 9e3779b9 = f45044d5 

S[3] = S[2] + Q32 = f45044d5 + 9e3779b9 = 9287be8e 

…                                        … 

S[25] = S[24] + Q32  = 8f14babb + 9e3779b9 = 2b4c3474 

When the iterative processes continue up to t−1=2(r+1)−1=25, 

we can obtain the expanded key table S as shown below: 

S[0] = b7e15163    S[09] = 47d498e4    S[18] = d7c7e065 

S[1] = 5618cb1c    S[10] = e60c129d    S[19] = 75ff5a1e 

S[2] = f45044d5    S[11] = 84438c56    S[20] = 1436d3d7 

S[3] = 9287be8e    S[12] = 227b060f    S[21] = b26e4d90 

S[4] = 30bf3847    S[13] = c0b27fc8    S[22] = 50a5c749 

S[5] = cef6b200     S[14] = 5ee9f981    S[23] = eedd4102 

S[6] = 6d2e2bb9    S[15] = fd21733a    S[24] = 8d14babb 

S[7] = 0b65a572    S[16] = 9b58ecf3    S[25] = 2b4c3474 

S[8] = a99d1f2b    S[17] = 399066ac 

Step 3 

i = j = 0; A = B = 0; 

3 × max(t, c) = 3 × 26 = 78 times 

A = S[i] = (S[i] + A + B) <<< 3 

B = L[j] = (L[j] + A + B) <<< (A + B) 

i = i + 1(mod 26) 

j = j + 1(mod 4) 

A = S[0] = (b7e15163 + 0 + 0) <<< 3 

= b7e15163 <<< 3 = bf0a8b1d 

B = L[0] = (19465f91 + bf0a8b1d) <<< (A + B) 

= d850eaae <<< bf0a8b1d = db0a1d55 
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A = S[1] = (5618cb1c + bf0a8b1d + db0a1d55) <<< 3 

= f02d738e <<< 3 = 816b9c77 

B = L[1] = (51b241be + 816b9c77 + db0a1d55) <<< (A + B) 

= ae27fb8a <<< 5c75b9cc = 7fb8aae2 

A = S[2] = (f45044d5 + 816b9c77 + 7fb8aae2) <<< 3 

= f5748c2e <<< 3 = aba46177 

B = L[2] = (01a55563 + aba46177 + 7fb8aae2) <<< (A + B) 

= 2d0261bc <<< 2b5d0c59 = 785a04c3 

A = S[3] = (9287be8e + aba46177 + 785a04c3) <<< 3 

= b68624c8 <<< 3 = b4312645 

B = L[3] = (91cea910 + b4312645 + 785a04c3) <<< (A + B) 

= be59d418 <<< 2c8b2b08 = 59d418be 

. . . 

A = S[25] = (4e0d4c36 + f66a1aaf + 6d7f672f) <<< 3 

= b1f6ce14, <<< 3 = 8fb670a5, 

B = L[1] = (cdfc2657 + 8fb670a5 + 6d7f672f) <<< (A + B) 

= cb31fe2b <<< fd35d7d4 = e2bcb31f 

Encryption 

The input block to RC5 consists of two w-bit words given 

in two registers, A and B. The output is also placed in the 

registers A and B. As explained in [6], RC5 uses an expanded 

key table, S[0, 1, . . . , t − 1], consisting of t = 2(r + 1) words. 

The key-expansion algorithm initializes S from the user’s given 

secret key parameter K. However, the S table in RC5 encryption 

is not like an S-box used by DES. The encryption algorithm is 

given in the pseudo code as shown below: 

A = A + S[0]; 

B = B + S[1]; 

for i = 1 to r do 

A = ((A ⊕ B) <<< B) + S[2i]; 

B = ((B ⊕ A) <<< A) + S[2i + 1]; 

The output is in the registers A and B. 

The decryption routine is easily derived from the encryption 

routine. The RC5 encryption algorithm is illustrated as shown in 

Figures 1, respectively. 

 
Figure 1: The RC5 encryption algorithm. 

Proposed Method For Implementation Rc5 on FPGA 

One of complex operation in RC5 encryption is rotate thus 

must be designed and implementation with a optimized circuit 

now we for implementation of this opreation use a barrel shifter 

based on 32-bit architecture this circuit is very simple and its 

logic utilaization is low. Proposed code for this operation is 

shown in below: 

case rot is 

when 0 => x1<=x1; 

when 1 => x1(0)<=x1(31); x1(31 downto 1)<=x1(30 downto 0); 

when 2 => x1(1 downto 0)<=x1(31 downto 30); x1(31      

downto 2)<=x1(29 downto 0); 

when 3 => x1(2 downto 0)<=x1(31 downto 29); x1(31 downto 

3)<=x1(28 downto 0); 

when 4 => x1(3 downto 0)<=x1(31 downto 28); x1(31 downto 

4)<=x1(27 downto 0); 

when 5 => x1(4 downto 0)<=x1(31 downto 27); x1(31 downto 

5)<=x1(26 downto 0); 

when 6 => x1(5 downto 0)<=x1(31 downto 26); x1(31 downto 

6)<=x1(25 downto 0); 

when 7 => x1(6 downto 0)<=x1(31 downto 25); x1(31 downto 

7)<=x1(24 downto 0); 

when 8 => x1(7 downto 0)<=x1(31 downto 24); x1(31 downto 

8)<=x1(23 downto 0); 

when 9 => x1(8 downto 0)<=x1(31 downto 23); x1(31 downto 

9)<=x1(22 downto 0); 

when 10 => x1(9 downto 0)<=x1(31 downto 22); x1(31 downto 

10)<=x1(21 downto 0); 

when 11 => x1(10 downto 0)<=x1(31 downto 21); x1(31 

downto 11)<=x1(20 downto 0); 

when 12 => x1(11 downto 0)<=x1(31 downto 20); x1(31 

downto 12)<=x1(19 downto 0); 

when 13 => x1(12 downto 0)<=x1(31 downto 19); x1(31 

downto 13)<=x1(18 downto 0); 

when 14 => x1(13 downto 0)<=x1(31 downto 18); x1(31 

downto 14)<=x1(17 downto 0); 

when 15 => x1(14 downto 0)<=x1(31 downto 17); x1(31 

downto 15)<=x1(16 downto 0); 

when 16 => x1(15 downto 0)<=x1(31 downto 16); x1(31 

downto 16)<=x1(15 downto 0); 

when 17 => x1(16 downto 0)<=x1(31 downto 15); x1(31 

downto 17)<=x1(14 downto 0); 

when 18 => x1(17 downto 0)<=x1(31 downto 14); x1(31 

downto 18)<=x1(13 downto 0); 

when 19 => x1(18 downto 0)<=x1(31 downto 13); x1(31 

downto 19)<=x1(12 downto 0); 

when 20 => x1(19 downto 0)<=x1(31 downto 12); x1(31 

downto 20)<=x1(11 downto 0); 

when 21 => x1(20 downto 0)<=x1(31 downto 11); x1(31 

downto 21)<=x1(10 downto 0); 

when 22 => x1(21 downto 0)<=x1(31 downto 10); x1(31 

downto 22)<=x1(9 downto 0); 

when 23 => x1(22 downto 0)<=x1(31 downto 9); x1(31 downto 

23)<=x1(8 downto 0); 

when 24 => x1(23 downto 0)<=x1(31 downto 8); x1(31 downto 

24)<=x1(7 downto 0); 

when 25 => x1(24 downto 0)<=x1(31 downto 7); x1(31 downto 

25)<=x1(6 downto 0); 

when 26 => x1(25 downto 0)<=x1(31 downto 6); x1(31 downto 

26)<=x1(5 downto 0); 

when 27 => x1(26 downto 0)<=x1(31 downto 5); x1(31 downto 

27)<=x1(4 downto 0); 

when 28 => x1(27 downto 0)<=x1(31 downto 4); x1(31 downto 

28)<=x1(3 downto 0); 

when 29 => x1(28 downto 0)<=x1(31 downto 3); x1(31 downto 

29)<=x1(2 downto 0); 

when 30 => x1(29 downto 0)<=x1(31 downto 2); x1(31 downto 

30)<=x1(1 downto 0);
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when 31 => x1(30 down to 0)<=x1(31 down to 1); 

x1(31)<=x1(0); when others => x1<=x"00000000"; 

end case; 

Proposed method for implementation RC-5 algorithm is 

based on one ASM chart. Proposed ASM chart is according to 

RC-5 algorithm. Proposed ASM chart for RC-5 algorithm is 

shown in Figure 2. We applied pipelining technique in proposed 

ASM chart. 

Aa<=n1;

Bb<=n2;

Aa<=Aa+s[0]

Bb<=Bb+s[1]

i:=0;

X1<=Aa xor Bb;

Ibb<=integer(Bb);

i==Round

Ibb<32

C<=ibb/32;

K<=32*c;

Rot<=ibb-k;

Barrel_shifter(x1)

Aa<=x1+s[2i]

Rot<=ibb;

Iaa<=integer(Aa);

X2<=Aa xor Bb;

Cc<=iaa/32;

Kk<=32*cc;

Rott<=iaa-kk;

Barrel_shifter(x2)

Bb<=x2+s[2i+1];

i:=i+1;

Rott<=iaa;

Iaa<32

 
Figure 2: Proposed ASM chart for implementation RC-5 

algorithm 

The proposed ASM chart is based on below pseudo code: 

A = A + S[0]; 

B = B + S[1]; 

for i = 1 to r do 

A = ((A ⊕ B) <<< B) + S[2i]; 

B = ((B ⊕ A) <<< A) + S[2i + 1]; 

Comparison  

We design a FPGA implementation of the 64-bit RC5 

encryption algorithm. In this paper proposed method has been  

writed by VHDL hardware description language. In order to get 

actual numbers for the hardware usage thus this work was 

synthesized and implemented using Quartus II 9.1 software, 

Stratix II FPGA to target device EP2S15F484C3. Table I shows 

logic utilization of proposed method and Table II shows logic 

utilization of other works. 

Conclusion 

We have designed and implementation hardware realization 

of the RC5 encryption on FPGA. Proposed method is based on a 

new behavioral level design. Approaches used for increase 

performance are include pipelining technique, rotate operation is 

implemented with barrel shifter, also we implement total of 

algorithm in one ASM chart. Proposed method have more speed 

than other work. 
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Table I: logic utilization of proposed method 
Implementation  device Combinational ALUTs registers Logic utilization FMax(MHz) 

Proposed method EP2S15F484C3 1787 440 17% 175.69 

 
Table II: logic utilization of [2] and [3] 

Method device slices LUTs FFs FMax(MHz) 

[2] XC4VLX25 9388(87%) --- --- --- 

[3] XC5VLX30/50 2488(51%) 8893(46%) 2281 100.8 
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