
Bahram Rashidi/ Elixir Elec. Engg. 51 (2012) 10700-10703

10700

Introduction

The use of cryptography is growing rapidly with the

adoption of computer technology. The design of cryptographic

ciphers is still not well understood; we cannot prove the security

of an algorithm. Currently, the only way to be sure of the

security of an algorithm is to study it for a long period of time

and use the absence of attacks as evidence confirming its

security. All ciphers are vulnerable to an exhaustive key search

attack. An attacker can try every single possible key to check its

correctness. This is time consuming, but feasible for several

widely deployed ciphers. An obvious way to conduct an

exhaustive key search attack is to write software that will check

each key in turn. Current microprocessors have clock rates in the

gigahertz range and can execute several instructions per clock

cycle. They are also cheap, highly available and easy to

program[1]. Implementation of RC-5 algorithm on FPGA has

been proposed by some researchers [2-5], In[2], The goal is to

combine traditional distributed computing concepts with

reconfigurable hardware, where free resource area can be used to

achieve computation speed-ups. Their approach is demonstrated

on the base of a RC5 brute force key search analog to the

distributed net project. In[3], proposes a new hardware dedicated

to RC5, a typical cryptograph. In the proposed RC5 dedicated

hardware, by introducing an architecture suitable for each

operation used for the encryption, high-speed processing and

area reduction can be realized. In[4], they discuss the options for

brute-force cracking of the RC5 block cipher, that is, for

revealing the unknown secret key, given a sample ciphertext and

a portion of the corresponding plaintext. First, they summarize

the methods employed by the current cracking efforts. Then,

present two hardware architectures for finding the secret key

using the “brute force” method. They implement the hardware in

FPGA and ASIC. In[5], propose an efficient and reconfigurable

hardware architecture for the RC5 block cipher implementation.

The design can be reconfigured according to the different

application requirements with variable parameters. In this paper

use a FPGA device to implementation of a high speed RC5

encryption. FPGAs provide the functionality of a custom chip

without the high upfront cost and lead time. They have much

lower clock rates than general-purpose CPUs, but can be

designed to perform one task exceptionally well. Parallelism can

also be exploited to increase the overall encryption rate.

Description of RC5 Algorithm

The RC5 encryption algorithm was designed by Ronald

Rivest of Massachusetts Institute of Technology (MIT) and it

first appeared in December 1994. RSA Data Security, Inc.

estimates that RC5 and its successor, RC6, are strong candidates

for potential successors to DES. RC5 analysis (RSA

Laboratories) is still in progress and is periodically updated to

reflect any additional findings. RC5 is a symmetric block cipher

designed to be suitable for both software and hardware

implementation. It is a parameterised algorithm, with a variable

block size, a variable number of rounds and a variable-length

key. This provides the opportunity for great flexibility in both

performance characteristics and the level of security. A

particular RC5 algorithm is designated as RC5-w/r/b. The

number of bits in a word, w, is a parameter of RC5. different

choices of this parameter result in different RC5 algorithms.

RC5 is iterative in structure, with a variable number of rounds.

The number of rounds, r, is a second parameter of RC5. RC5

uses a variable-length secret key. The key length b (in bytes) is a

third parameter of RC5. These parameters are summarized as

follows [6]:

w: The word size, in bits. The standard value is 32bits;

allowable values are 16, 32 and 64. RC5 encrypts two-word

blocks so that the plaintext and ciphertext blocks are each 2w

bits long.

r: The number of rounds. Allowable values of r are 0, 1, . . . ,

255. Also, the expanded key table S contains t = 2 (r + 1) words.

b: The number of bytes in the secret key K. Allowable values

of b are 0, 1, . . . , 255.

K: The b-byte secret key; K[0], K[1], . . . , K[b − 1]

RC5 consists of three components: a key expansion

algorithm, an encryption algorithm and a decryption algorithm.

These algorithms use the following three primitive operations:

Tele:

E-mail addresses: bahram88@ms.tabrizu.ac.ir

 © 2012 Elixir All rights reserved

FPGA implementation of optimized the 64-bit RC5 encryption algorithm
Bahram Rashidi

University of Tabriz, Iran.

ABSTRACT

This paper presents, a FPGA based the 64-bit RC5 encryption algorithm. One of complex

operation in RC5 encryption is rotate thus we implementation this operation on FPGA using

barrel shifter. We implement total of mathematic equations based optimized logic circuits

until dynamic power consumption reduced, also for increase in speed and maximum

operation frequency we using pipelining technique in proposed method. The results from the

place and route report indicate that logic utilization by this architecture is 17% with a

maximum clock frequency of 175.69 MHz.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 2 August 2012;

Received in revised form:

20 September 2012;

Accepted: 27 September 2012;

Keywords

RC-5;

Encryption;

FPGA;

Barrel shifter.

Elixir Elec. Engg. 51 (2012) 10700-10703

Electrical Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Bahram Rashidi/ Elixir Elec. Engg. 51 (2012) 10700-10703

10701

1. + Addition of words modulo 2
w

2. ⊕ Bit-wise exclusive-OR of words

3. <<< Rotation symbol: the rotation of x to the left by y bits is

denoted by x <<< y.

One design feature of RC5 is its simplicity, which makes

RC5 easy to implement. Another feature of RC5 is its heavy use

of data-dependent rotations in encryption; this feature is very

useful in preventing both differential or linear cryptanalysis.

Given RC5-32/16/10. This particular RC5 algorithm has 32-bit

words, 16 rounds, a 10-byte (80-bit) secret key variable and an

expanded key table S of t = 2(r + 1) = 2(16 + 1) = 34 words.

Rivest proposed RC5-32/12/16 as a block cipher providing a

normal choice of parameters, i.e. 32-bit words, 12 rounds, 16-

byte (128-bit) secret key variable and an expanded key table of

26 words.

Key Expansion

As explained in [6], the key-expansion algorithm expands

the user’s key K to fill the expanded key table S, so that S

resembles an array of t = 2(r + 1) random binary words

determined by K. It uses two word-size magic constants Pw and

Qw defined for arbitrary w as shown below:

Pw = Odd ((e − 2)2
w
)

Qw = Odd ((φ − 1)2
w
)

where

e = 2.71828 . . . (base of natural logarithms)

φ = (1 +√5)/2 = 1.61803 . . . (golden ratio)

Odd(x) is the odd integer nearest to x.

First algorithmic step of key expansion: This step is to copy

the secret key K[0, 1, . . . ,b − 1] into an array L[0, 1, . . . , c − 1]

of c = b/u words, where u = w/8 is the number of bytes/word.

This first step will be achieved by the following pseudocode

operation: for i = b – 1 down to 0 do L[i/u] = (L[i/u] <<< 8) +

K[i]; where all bytes are unsigned and the array L is initially

zeroes. Second algorithmic step of key expansion: This step is to

initialise array S to a particular fixed pseudo-random bit pattern,

using an arithmetic progression modulo 2
w
 determined by two

constants Pw and Qw.

S[0] = Pw:

For i = 1 to t − 1 do S[i] = S[i − 1] + Qw.

Third algorithmic step of key expansion: This step is to mix

in the user’s secret key in three passes over the arrays S and L.

More precisely, due to the potentially different sizes of S and L,

the larger array is processed three times, and the other array will

be handled more after.

 i = j = 0;

A = B = 0;

do 3∗ max (t, c) times:

A = S[i] = (S[i] + A + B) <<< 3

B = L[j] = (L[j] + A + B) <<< (A + B);

i = (i + 1) (mod t);

 j = (j + 1) (mod c).

Note that with the key-expansion function it is not so easy to

determine K from S, due to the one-wayness.

Consider RC5-32/12/16. Since w = 32, r = 12 and b = 16, we

have

u = w/8 = 32/8 = 4 bytes/word

c = b/u = 16/4 = 4 words

t = 2(r + 1) = 2(12 + 1) = 26 words

The plaintext and the user’s secret key are given as follows:

Plaintext = eedba521 6d8f4b15

Key = 915f4619be41b2516355a50110a9ce91

1. Key expansion Two magic constants

P32 = 3084996963 = 0xb7e15163

Q32 = 2654435769 = 0x9e3779b9

Step 1

For i = b − 1 down to 0 do L[i/u] = (L[i/u] <<< 8) + K[i] where

b = 16, u = 4 and

L is initially 0.

L[i/4] = L[3] for i = 15, 14, 13 and 12.

L[3] = (L[3] <<< 8) + K[15] = 00 + 91 = 91

L[3] = (L[3] <<< 8) + K[14] = 9100 + ce = 91ce

L[3] = (L[3] <<< 8) + K[13] = 91ce00 + a9 = 91cea9
*
L[3] = (L[3] <<< 8) + K[12] = 91cea900 + 10 = 91cea910

L[i/4] = L[2] for i = 11, 10, 9 and 8.

L[2] = (L[2] <<< 8) + K[11] = 00 + 01 = 01

L[2] = (L[2] <<< 8) + K[10] = 0100 + a5 = 01a5

L[2] = (L[2] <<< 8) + K[9] = 01a500 + 55 = 01a555

∗L[2] = (L[2] <<< 8) + K[8] = 01a55500 + 63 = 01a55563

L[i/4] = L[1] for i = 7, 6, 5 and 4.

L[1] = (L[1] <<< 8) + K[7] = 00 + 51 = 51

L[1] = (L[1] <<< 8) + K[6] = 5100 + b2 = 51b2

L[1] = (L[1] <<< 8) + K[5] = 51b200 + 41 = 51b241

∗L[1] = (L[1] <<< 8) + K[4] = 51b24100 + be = 51b241be

L[i/4] = L[0] for i = 3, 2, 1 and 0.

L[0] = (L[0] <<< 8) + K[3] = 00 + 19 = 19

L[0] = (L[0] <<< 8) + K[2] = 1900 + 46 = 1946

L[0] = (L[0] <<< 8) + K[1] = 194600 + 5f = 19465f

∗L[0] = (L[0] <<< 8) + K[0] = 19465f00 + 91 = 19465f91

Thus, converting the secret key from bytes to words (*) yields:

L[0] = 19465f91

L[1] = 51b241be

L[2] = 01a55563

L[3] = 91cea910

Step 2

S[0] = P32. For i = 1 to 25, do S[i] = S[i − 1] + Q32:

S[0] = b7e15163

S[1] = S[0] + Q32 = b7e15163 + 9e3779b9 = 5618cb1c

S[2] = S[1] + Q32 = 5618cb1c + 9e3779b9 = f45044d5

S[3] = S[2] + Q32 = f45044d5 + 9e3779b9 = 9287be8e

… …

S[25] = S[24] + Q32 = 8f14babb + 9e3779b9 = 2b4c3474

When the iterative processes continue up to t−1=2(r+1)−1=25,

we can obtain the expanded key table S as shown below:

S[0] = b7e15163 S[09] = 47d498e4 S[18] = d7c7e065

S[1] = 5618cb1c S[10] = e60c129d S[19] = 75ff5a1e

S[2] = f45044d5 S[11] = 84438c56 S[20] = 1436d3d7

S[3] = 9287be8e S[12] = 227b060f S[21] = b26e4d90

S[4] = 30bf3847 S[13] = c0b27fc8 S[22] = 50a5c749

S[5] = cef6b200 S[14] = 5ee9f981 S[23] = eedd4102

S[6] = 6d2e2bb9 S[15] = fd21733a S[24] = 8d14babb

S[7] = 0b65a572 S[16] = 9b58ecf3 S[25] = 2b4c3474

S[8] = a99d1f2b S[17] = 399066ac

Step 3

i = j = 0; A = B = 0;

3 × max(t, c) = 3 × 26 = 78 times

A = S[i] = (S[i] + A + B) <<< 3

B = L[j] = (L[j] + A + B) <<< (A + B)

i = i + 1(mod 26)

j = j + 1(mod 4)

A = S[0] = (b7e15163 + 0 + 0) <<< 3

= b7e15163 <<< 3 = bf0a8b1d

B = L[0] = (19465f91 + bf0a8b1d) <<< (A + B)

= d850eaae <<< bf0a8b1d = db0a1d55

Bahram Rashidi/ Elixir Elec. Engg. 51 (2012) 10700-10703

10702

A = S[1] = (5618cb1c + bf0a8b1d + db0a1d55) <<< 3

= f02d738e <<< 3 = 816b9c77

B = L[1] = (51b241be + 816b9c77 + db0a1d55) <<< (A + B)

= ae27fb8a <<< 5c75b9cc = 7fb8aae2

A = S[2] = (f45044d5 + 816b9c77 + 7fb8aae2) <<< 3

= f5748c2e <<< 3 = aba46177

B = L[2] = (01a55563 + aba46177 + 7fb8aae2) <<< (A + B)

= 2d0261bc <<< 2b5d0c59 = 785a04c3

A = S[3] = (9287be8e + aba46177 + 785a04c3) <<< 3

= b68624c8 <<< 3 = b4312645

B = L[3] = (91cea910 + b4312645 + 785a04c3) <<< (A + B)

= be59d418 <<< 2c8b2b08 = 59d418be

. . .

A = S[25] = (4e0d4c36 + f66a1aaf + 6d7f672f) <<< 3

= b1f6ce14, <<< 3 = 8fb670a5,

B = L[1] = (cdfc2657 + 8fb670a5 + 6d7f672f) <<< (A + B)

= cb31fe2b <<< fd35d7d4 = e2bcb31f

Encryption

The input block to RC5 consists of two w-bit words given

in two registers, A and B. The output is also placed in the

registers A and B. As explained in [6], RC5 uses an expanded

key table, S[0, 1, . . . , t − 1], consisting of t = 2(r + 1) words.

The key-expansion algorithm initializes S from the user’s given

secret key parameter K. However, the S table in RC5 encryption

is not like an S-box used by DES. The encryption algorithm is

given in the pseudo code as shown below:

A = A + S[0];

B = B + S[1];

for i = 1 to r do

A = ((A ⊕ B) <<< B) + S[2i];

B = ((B ⊕ A) <<< A) + S[2i + 1];

The output is in the registers A and B.

The decryption routine is easily derived from the encryption

routine. The RC5 encryption algorithm is illustrated as shown in

Figures 1, respectively.

Figure 1: The RC5 encryption algorithm.

Proposed Method For Implementation Rc5 on FPGA

One of complex operation in RC5 encryption is rotate thus

must be designed and implementation with a optimized circuit

now we for implementation of this opreation use a barrel shifter

based on 32-bit architecture this circuit is very simple and its

logic utilaization is low. Proposed code for this operation is

shown in below:

case rot is

when 0 => x1<=x1;

when 1 => x1(0)<=x1(31); x1(31 downto 1)<=x1(30 downto 0);

when 2 => x1(1 downto 0)<=x1(31 downto 30); x1(31

downto 2)<=x1(29 downto 0);

when 3 => x1(2 downto 0)<=x1(31 downto 29); x1(31 downto

3)<=x1(28 downto 0);

when 4 => x1(3 downto 0)<=x1(31 downto 28); x1(31 downto

4)<=x1(27 downto 0);

when 5 => x1(4 downto 0)<=x1(31 downto 27); x1(31 downto

5)<=x1(26 downto 0);

when 6 => x1(5 downto 0)<=x1(31 downto 26); x1(31 downto

6)<=x1(25 downto 0);

when 7 => x1(6 downto 0)<=x1(31 downto 25); x1(31 downto

7)<=x1(24 downto 0);

when 8 => x1(7 downto 0)<=x1(31 downto 24); x1(31 downto

8)<=x1(23 downto 0);

when 9 => x1(8 downto 0)<=x1(31 downto 23); x1(31 downto

9)<=x1(22 downto 0);

when 10 => x1(9 downto 0)<=x1(31 downto 22); x1(31 downto

10)<=x1(21 downto 0);

when 11 => x1(10 downto 0)<=x1(31 downto 21); x1(31

downto 11)<=x1(20 downto 0);

when 12 => x1(11 downto 0)<=x1(31 downto 20); x1(31

downto 12)<=x1(19 downto 0);

when 13 => x1(12 downto 0)<=x1(31 downto 19); x1(31

downto 13)<=x1(18 downto 0);

when 14 => x1(13 downto 0)<=x1(31 downto 18); x1(31

downto 14)<=x1(17 downto 0);

when 15 => x1(14 downto 0)<=x1(31 downto 17); x1(31

downto 15)<=x1(16 downto 0);

when 16 => x1(15 downto 0)<=x1(31 downto 16); x1(31

downto 16)<=x1(15 downto 0);

when 17 => x1(16 downto 0)<=x1(31 downto 15); x1(31

downto 17)<=x1(14 downto 0);

when 18 => x1(17 downto 0)<=x1(31 downto 14); x1(31

downto 18)<=x1(13 downto 0);

when 19 => x1(18 downto 0)<=x1(31 downto 13); x1(31

downto 19)<=x1(12 downto 0);

when 20 => x1(19 downto 0)<=x1(31 downto 12); x1(31

downto 20)<=x1(11 downto 0);

when 21 => x1(20 downto 0)<=x1(31 downto 11); x1(31

downto 21)<=x1(10 downto 0);

when 22 => x1(21 downto 0)<=x1(31 downto 10); x1(31

downto 22)<=x1(9 downto 0);

when 23 => x1(22 downto 0)<=x1(31 downto 9); x1(31 downto

23)<=x1(8 downto 0);

when 24 => x1(23 downto 0)<=x1(31 downto 8); x1(31 downto

24)<=x1(7 downto 0);

when 25 => x1(24 downto 0)<=x1(31 downto 7); x1(31 downto

25)<=x1(6 downto 0);

when 26 => x1(25 downto 0)<=x1(31 downto 6); x1(31 downto

26)<=x1(5 downto 0);

when 27 => x1(26 downto 0)<=x1(31 downto 5); x1(31 downto

27)<=x1(4 downto 0);

when 28 => x1(27 downto 0)<=x1(31 downto 4); x1(31 downto

28)<=x1(3 downto 0);

when 29 => x1(28 downto 0)<=x1(31 downto 3); x1(31 downto

29)<=x1(2 downto 0);

when 30 => x1(29 downto 0)<=x1(31 downto 2); x1(31 downto

30)<=x1(1 downto 0);

Bahram Rashidi/ Elixir Elec. Engg. 51 (2012) 10700-10703

10703

when 31 => x1(30 down to 0)<=x1(31 down to 1);

x1(31)<=x1(0); when others => x1<=x"00000000";

end case;

Proposed method for implementation RC-5 algorithm is

based on one ASM chart. Proposed ASM chart is according to

RC-5 algorithm. Proposed ASM chart for RC-5 algorithm is

shown in Figure 2. We applied pipelining technique in proposed

ASM chart.

Aa<=n1;

Bb<=n2;

Aa<=Aa+s[0]

Bb<=Bb+s[1]

i:=0;

X1<=Aa xor Bb;

Ibb<=integer(Bb);

i==Round

Ibb<32

C<=ibb/32;

K<=32*c;

Rot<=ibb-k;

Barrel_shifter(x1)

Aa<=x1+s[2i]

Rot<=ibb;

Iaa<=integer(Aa);

X2<=Aa xor Bb;

Cc<=iaa/32;

Kk<=32*cc;

Rott<=iaa-kk;

Barrel_shifter(x2)

Bb<=x2+s[2i+1];

i:=i+1;

Rott<=iaa;

Iaa<32

Figure 2: Proposed ASM chart for implementation RC-5

algorithm

The proposed ASM chart is based on below pseudo code:

A = A + S[0];

B = B + S[1];

for i = 1 to r do

A = ((A ⊕ B) <<< B) + S[2i];

B = ((B ⊕ A) <<< A) + S[2i + 1];

Comparison

We design a FPGA implementation of the 64-bit RC5

encryption algorithm. In this paper proposed method has been

writed by VHDL hardware description language. In order to get

actual numbers for the hardware usage thus this work was

synthesized and implemented using Quartus II 9.1 software,

Stratix II FPGA to target device EP2S15F484C3. Table I shows

logic utilization of proposed method and Table II shows logic

utilization of other works.

Conclusion

We have designed and implementation hardware realization

of the RC5 encryption on FPGA. Proposed method is based on a

new behavioral level design. Approaches used for increase

performance are include pipelining technique, rotate operation is

implemented with barrel shifter, also we implement total of

algorithm in one ASM chart. Proposed method have more speed

than other work.

References

[1] Ian Howson, “A Cost/Performance Study of Modern

FPGAs in Cryptanalysis”, thesis Bachelor of software

Engineering, Electrical and Information Engineering University

of Sydney, October 2003.

[2] Dirk Koch, Matthias K¨orber, and J¨urgen Teich,

“Searching RC5-Keys with Distributed Reconfigurable

Computing”, This work was partly supported by DFG (Deutsche

Forschungsge-meinschaft) under grant Te163/10-2

[3] Masaya Yoshikawa, Koichi Sakaue, “Dedicated hardware

for RC5 cryptography and its implementation”, This research

was supported by Japan Science and Technology Agency

(JST), Core Research for Evolutional Science and Technology

(CREST).

[4] J. Buček, J. Hlaváč, M. Matušková, R. Lórencz, “Cost-

Effective Architectures for RC5 Brute Force Cracking”, Czech

Technical University in Prague, Acta Polytechnica Vol. 45 No.

2/2005.

[5] Hua Li; Jianzhou Li; Jing Yang, “An efficient and

reconfigurable architecture for RC5”, Conference of Electrical

and Computer Engineering, 2005. Canadian, IEEE, pp. 1648-

1651, 2005.

[6] Man Young Rhee, “Internet Security Cryptographic

Principles, Algorithms and Protocols”, published in Wiley,

2003.

Table I: logic utilization of proposed method
Implementation device Combinational ALUTs registers Logic utilization FMax(MHz)

Proposed method EP2S15F484C3 1787 440 17% 175.69

Table II: logic utilization of [2] and [3]

Method device slices LUTs FFs FMax(MHz)

[2] XC4VLX25 9388(87%) --- --- ---

[3] XC5VLX30/50 2488(51%) 8893(46%) 2281 100.8

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10384
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10384

