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Introduction  

 One of the most important methods for designing the 

tunnels and underground structures is the analytical method. In 

this method the stress and stress concentration around the tunnel 

and underground structures are obtained.  In most cases the 

analysis is based on the two-dimensional analysis for plane 

stress and plane strain conditions. The rock mass for these cases 

are considered homogenous and isotropic media.  The stress 

condition around the underground structure is independent of of 

the elastic parameters of rock mass and is the same for both 

plane stress and plane strain situations.       

Stress Analysis Method 

The detailed explanation the theory of stress and strain 

around a tunnel is out of discussion of this paper and reader can 

follow the governing material in Landau and Lifshitz [1], 

Timoshenko and Goodier [2], Brady and Brown [3], Barber [4], 

Antman [5] and sad [6] .  In the above books a detailed review 

about stress and strain analysis for elastic material and different 

structures is brought.  The objective of this paper is to determine 

the stress concentration around circular tunnels in a domain 

under shear stress situations.  That is the most situation that can 

be possible under the ground surface.  The following conditions 

should be satisfied for each analysis of stress and deformation 

around underground structure. 1- problem boundary conditions. 

2- differential system of equation of equilibrium. 3- constitutive 

equations, and 4- compatibility equations.  For each problem in 

this situation the boundary conditions are the stress and 

deformation situations at the internal surface of tunnels also the 

far field stress conditions where the stress concentration is zero. 

The stress equilibrium equations in two-dimensional, for body 

forces equal zero, are explained by Airy [7] and Timoshenko 

and Goodier [2] as follows, 
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For the plane strain condition, isotropic and elastic medium, 

the normal and shear strains are obtained from Eq. (2). 
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Where E is modulus of elasticity, ν is Poisson’s ratio and G 

is modulus of rigidity.  The compatibility equations for two-

dimensional analysis is, 
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If Eq. (2) is substituted in Eq. (3) then after some 

simplifications the following equation is obtained. 
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Eq. (4) shows two-dimensional stress distribution for 

isotropic and elastic material.  The stress distribution is 

independent of elastic properties of medium.  Eq. (4) is 

Laplacian of the summation of normal stresses for two-

dimensional plane stress and plane strain conditions.  The 

equilibrium equations (1) with respect to the boundary 

conditions should be solved.  Airy [7] considered the function 

),( yx
 for simplifying the stress analysis where it satisfies the 

equilibrium equations as follows 
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Applying the Airy partial differential equations (5) into Eq. 

(4) it results the biharmonic differential equation as, 
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ABSTRACT  

One of the important models in tunnel design and underground structures are determining 

the stresses and stress concentrations around them.  The method of analysis is usually based 

the theory of elasticity.  Therefore; it has the advantages of accuracy and uniqueness respect 

to the numerical models.  The stress conditions in subsurface or underground domains are 

usually in the form of both normal and shear stresses.  Those are because of the geological 

features such as bedding, jointing, folding and nonuniformity of petrology.  Therefore; the 

directions of principal stresses are not parallel to the original Cartesian coordinates and they 

make specific angles to the x and y-axis.  The analysis is two-dimensional for circular tunnel 

and it is applied for plane stress and plane strain conditions.  The analysis can be applied for 

the case of supporting pressure pi.  The radial and tangential deformations could also be 

determined at the roof and walls of tunnel. 

                                                                                                            © 2012 Elixir All rights reserved. 
 

ARTICLE INFO    

Article  history:  

Received: 29 September 2012; 

Received in revised form: 

19 November 2012; 

Accepted: 29 November 2012;

 
Keywords  

Stress, 

Shear, 

Tunnel, 

Elasticity. 

 

 

 

 

 

Elixir Statistics 52A (2012) 11696-11700 

Statistics  

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Mehdi Zamani/ Elixir Statistics 52A (2012) 11696-11700 
 

11697 

The biharmonic Eq. (6) which is in cartesian coordinates 

can be transferred to cylindrical coordinates as Eq. (7). 
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Solving Eq. (7) by the method of separation variables and 

using several integration Eq. (8) results, 
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The stress concentration around tunnel with supporting 

pressure ip
 

The problem of a hole in an infinite plate is of special 

interest in the rock mechanics field because it corresponds to the 

problem of a long horizontal tunnel at depth in a uniform and 

homogenous rock formation.  This methods is only applicable to 

the special geometric cross-sectional shapes for openings; 

however for nongeometric cross-sectional shapes the methods of 

photoelastic can be applied.  Fig. (1) shows the far-field stress 

conditions around a circular tunnel with diameter a2  and 

support system pressure of ip
.  The boundary conditions for 

this case is, 
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Figure 1 Far-field stress around circular tunnel. 

Where r
 and   are the radial and tangential stresses at far-

field from the centre of tunnels which stress concentration is 

zero.  The radial and tangential stresses on the internal surface of 

tunnel are ip
 and zero; respectively.  For the solution of this 

problem there is no need to apply all components of Eq. (8).  

They are chosen according to the following equation. 
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The 1
st
 and 2

nd
 partial derivatives of 


 respect to r and   are 

obtained as Eq. (11). 
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By substituting Eq. (11) in Equations (7) for r
 ,    and  r  

the following equations are obtained. 
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Applying the boundary conditions Eq. (9) in equations (12) the 

parameters A, B, C, E and F are calculated. 
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Also in the same way, 
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Solving the equations (14) results 
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With the substitution of parameters A, B, C, E and F in Eq. (12) 

the stress components r
 , 


 and  r  around the tunnel are obtained as, 
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Example 1 

Suppose a tunnel with the diameter 4 m, depth of 500 m in a 

limestone formation with vertical and horizontal stresses 13.5 

and 27 Mpa, is drilled.  Figs. (2) show the shear and normal 

stresses conditions around and up to a distance five times the 

radius of the tunnel and using Eq. (16). Also in Figs. (3) the 

stress conditions for this tunnel for ar /  constant from 1.0 to 6.0 

and ϴ variable are shown, where r  is the distance of the point 

which is supposed to calculate the stress conditions and a  is the 

radius of tunnel.  Points 1 to 10 on the x-axis of Figs (3) 

coincide with the points in Fig. (3-a) where point 1 is along the 

tunnel roof with ϴ=90 Degree and point 10 is along the tunnel 

wall with ϴ=0 Degree.   
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                        (a)                                            (b) 

 
                        (c)                                            (d) 

 
(e) 

Figure (2) Stress distribution around tunnel for 

Dand 9068,45,22,0
 

 
(a) 

 

 
(b) 

 
  (c)                                            (d) 

Fig. (3) Stress distribution around the tunnel respect to ϴ. 

(a) the points situations on the tunnel surface, (b) radial 

stress, (c) tangential stress and (d) shear stress 

Stress conditions around tunnel for far-field shear stress     

In the most cases the stress conditions under the ground 

surface is in form of nonprincipal stresses because of the 

heterogeneity, anisotropy, bedding and folding of rock mass 

formations.  Fig. (4) shows the far-field stress conditions around 

circular tunnel where the supporting pressure which acts on the 

surface of tunnel is ip
 . 

 
Figure (4) The far-field stress condition around tunnel. 

The boundary conditions for this problem are, 
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For the above boundary conditions the Airy function is 

considered as follows, 
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By substitution the Eqs. (19) in Eq. (7) it can be written, 

 
                                                                       (20) 

Applying the first boundary condition Eq. (17) in Eqs. (20) the 

parameters B, C1 and C2 result. 
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Also substituting the 2
nd

 and 3
rd

 boundary conditions of Eq. (17) 

in Eq. (20) results the following two systems of equations. 
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By solving the system of Eqs. (22) and the substitution for the 

parameters obtained in Eq. (21) the coefficients D1, D2, E1 and 

E2 are determined as the following equations. 
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Substituting the all above coefficients in Eqs. (20) the 

components of stresses conditions around the tunnel are 

obtained. 
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Example 2 

If the tunnel in problem 1 be under the stresses conditions 

of 
1.26x

, 
4.14y

 and 
Mpaxy 4.3

 at the depth of 

500 m.  The normal and shear stresses conditions around the 

tunnel up to a distance five times the radius of tunnel ( a5 ) for 

ϴ constant and r variable and vice versa are shown in Figs. (5) 

and (6); respectively. 

 
(a) (b) 

 
                          ( c)                                               (d) 

 
(e) 

Figures 5. The stress distribution around the tunnel for 

general state of stress conditions for 
Dand 9068,45,22,0  
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(b) (c) 

Fig. 6. Stress distribution around the tunnel respect to ϴ. (a) 

radial stress, (b) tangential stress and (c) shear stress 

Conclusions 

In this research the state of stress around the circular tunnel 

are obtained for the principal and nonprincipal stress domain by 

analytical methods.  The method is accurate and precise for two-

dimensional analysis because it satisfies the equilibrium, the 

compatibility and the boundary conditions equations.  It can be 

used for checking and testing the available numerical methods 

which exist in this subject.  For noncircular tunnel cross-

sectional forms such as the elliptical and rectangular shapes the 

model can be generated by the conformal mapping 

transformation.  The results show the effective radius of stress 

concentration which is created and developed by the influence of 

tunnel is a5 .  
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