D.Sreeja et al./ Elixir Appl. Math. 52 (2012) 11672-11679

Available or

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 52 (2012) 11672-11679

On π gb-Separation Axioms in Bitopological Spaces

D.Sreeja^{1*} and C.Janaki²

¹Department of Mathematics, CMS College of Science and Commerce, Coimbatore-6, India. ²Department of Mathematics, L.R.G Govt.Arts College for Women, Tirupur-4, India.

ABSTRACT

ARTICLE INFO

Article history: Received: 13 September 2012; Received in revised form: 19 November 2012; Accepted: 28 November 2012;

Keywords

$(1,2)^*-\pi gb-T_i$,						
$(1,2)^*-\pi gb-D_i$ w	here	i=	0,	1,	2	and
$(1,2)^*-\pi gb-R_i$, i=	0,1.					

1.Introduction

Levine [8,9] introduced the concept of generalized closed sets and semi open sets in topological space and a class of topological spaces called T $_{1/2}$ spaces. The investigation of generalized closed sets leads to several new separation axioms. Andrijevic [2] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. This type of sets was discussed by Ekici and Caldas [6] under the name of γ -open sets. Ashish Kar and Bhattacharya [1], in 1990, continued their work on pre-open sets and offered another set of separation axioms analogous to the semi separation axioms defined by Maheshwari and Prasad [10]. Caldas [11] defined a new class of sets called semi-Difference (briefly sD) sets by using the semi-open sets [7], and introduced the semi-D_i spaces for i= 0, 1, 2.S. Athisaya ponmani and M. Lellis Thivagar [3] discussed pre T_k spaces and pD sets in bitopological spaces.

In this paper, we have introduced a new generalized axiom called πgb -separation axioms in bitopological spaces. We have incorporated $(1,2)^*$ - πgb - T_i , $(1,2)^*$ - πgb - D_i , where i = 0,1,2, and $(1,2)^*$ - πgb - R_i , i=0,1.

2. Preliminaries

Let us recall the following definitions which we shall require later.

Definition 2.1: A subset A of a space (X)is called

(1) a regular open set if A= int (cl(A)) and a regular closed set if A= cl(int (A));

(2) b-open [2] or sp-open [4], γ –open [6] if A \subset cl(int(A)) \cup int (cl(A)).

The complement of a b-open set is said to be b-closed [2]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by bCl(A). The union of all b-open sets of X contained in A is called b-interior of A and is denoted by bInt(A). The family of all b-open (resp. α -open, semi-open, preopen, β -open, b-closed, preclosed) subsets of a space X is denoted by bO(X)(resp. α O(X), SO(X), PO(X), β O(X), bC(X), PC(X)) and the collection of all b-open subsets of X containing a fixed point x is denoted by bO (X, x). The sets

In this paper, we introduce and study some new separation axioms using the $(1, 2)^*$ - π gb-open sets in bitopological spaces.

© 2012 Elixir All rights reserved.

SO(X, x), α O(X, x), PO(X, x), β O(X, x) are defined analogously.

Definition 2.2: A subset A of a space (X, τ) is called πg -closed [5] if $cl(A) \subset U$ whenever $A \subset U$ and U is π -open.

Definition 2.3: A subset A of a space X is called π gb-closed [13] if bcl(A) \subset U whenever A \subset U and U is π -open in (X, τ).

By π GBC(τ) we mean the family of all π gb- closed subsets of the space(X, τ).

Definition 2.4[14]: A subset A of a bitopological space (X, τ_1 , τ_2) is called (1, 2)^{*}- π generalized b-closed (briefly (1, 2)^{*}- π gb-

closed) if $\tau_1\tau_2\text{-bcl}(A){\subset}U$ whenever $A{\subset}U$ and U is $\tau_1\tau_2$ - $\pi\text{-open}$ in X.

Definition 2.5[14]: A subset A of a bitopological space (X, τ_1 ,

 $\tau_2) \text{ is called } (1, 2)^*\text{-b-open } [14] \text{ if } A \subset \tau_1\tau_2\text{-} \text{cl}(\tau_1\tau_2\text{-}\text{int}(A)) \cup \tau_1\tau_2\text{-} \text{ int}(\tau_1\tau_2\text{-}\text{cl}(A)).$

Definition 2.6[14]: A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called 1) (1,2)*- π gb- continuous [13] if every f⁻¹(V) is (1,2)*- π gb- closed in X for every closed set V of Y.

2) $(1,2)^*$ - π gb- irresolute [13] if f¹(V) is $(1,2)^*$ - π gb- closed in X for every π gb-closed set V in Y.

Definition 2.7[14]: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be(1, 2)*- π gb-open if for every (1, 2)*-open set F of X, f(F) is (1, 2)*- π gb-open in Y.

Definition 2.8[15] : A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be M-(1, 2)*- π gb-open if for every π gb-open set F of X, f(F) is π gb-open in Y.

Definition 2.8[12]. A bitopological space X is said to be

(i) Ultra α -R₀ (resp. ultra semi-R₀) if (1, 2) α cl ({x}) \subseteq U(resp.

(1, 2)scl $(x) \subseteq U$ whenever $x \in U \in (1, 2)\alpha O(X)$ (resp. $x \in U \in (1, 2)SO(X)$).

(ii) Ultra α -R₁ (resp. ultra semi-R₁) if for x, y \in X such that x $\notin (1, 2)\alpha cl (\{y\})$

(resp. (1, 2)scl ($\{y\}$)), there exist disjoint (1, 2) α -open (resp. (1, 2) semiopen)sets U, V in X such that $x \in U$ and $y \in V$.

Tele: E-mail addresses: sreejadamu@gmail.com **Definition 2.9:** A bitopological space X is $(1,2)^*$ -T₀ if for each pair of distinct points x, y of X, there exists a $(1,2)^*$ -open set containing one of the points but not the other.

Complement of $(1, 2)^*$ -b-open is called $(1, 2)^*$ -b-closed.

Throughout the following sections by X and Y we mean bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) respectively. (1,2)*- π gb-T_i-Spaces

Definition 3.1: A bitopological space X is $(1,2)^*$ - π gb-T₀ if for each pair of distinct points x, y of X, there exists a $(1,2)^*$ - π gb-open set containing one of the points but not the other.

Lemma 3.2: If for some $x \in X$, $\{x\}$ is $(1,2)^*$ - π gb-open, then $x \notin (1,2)^*$ - π gbel($\{y\}$) for all $y \neq x$.

Proof: If $\{x\}$ is $(1,2)^*$ - π gb-open for some $x \in X$, then X- $\{x\}$ is

 $(1,2)^*-\pi$ gb-closed and $x \notin X-\{x\}$. If $x \in (1,2)^*-\pi$ gbcl $\{y\}$ for some $y \neq x$, then x,y both are in all the $(1,2)^*-\pi$ gb-closed sets

containing y.This implies $x \in X \{x\}$ which is not true. Hence $x \notin (1,2)^* - \operatorname{gbcl}(\{y\})$.

Theorem 33: In a space X, distinct points have distinct $(1,2)^*$ - π gb-closures.

Proof: Let $x, y \in X, x \neq y$. Take $A = \{x\}^c$.

Case(i): If $\tau_1 \tau_2$ -cl(A)=A .Then A is $\tau_{1,2}$ -closed.This implies A is $(1,2)^*$ - π gb-closed. Then X-A={x} is $(1,2)^*$ - π gb-open not containing y. Then by previous lemma 3.2, $x \notin (1,2)^*$ - π gb-cl({y}) and $y \in (1,2)^*$ - π gb-cl({y}).Thus $(1,2)^*$ - π gb-cl({x}) and $(1,2)^*$ - π gbcl({y}) are distinct.

Case(ii): If $\tau_1 \tau_2$ -cl(A)=X. Then A is $(1,2)^*$ - π gb-open and {x} is $(1,2)^*$ - π gb-closed. This implies $(1,2)^*$ - π gb-cl({x})={x} which is not equal to $(1,2)^*$ - π gb-cl({y}).

Theorem3.4:A bitopological space X is $(1,2)^*$ - π gb -T₀ iff for each pair of distinct points x, y of X, $(1,2)^*$ - π gb-cl(x) $\neq (1,2)^*$ - π gb-cl(y).

Proof: Necessity: Let Xbe a $(1,2)^*$ - π gb-T_o space. Let x, $y \in X$ such that $x \neq \Box y$. Then there exists a $(1,2)^*$ - π gb-open set V containing one of the points but not the other, say $x \in V$ and $y \notin V$. Then V^c is a $(1,2)^*$ - π gb-closed set containing y but not x. But $(1,2)^*$ - π gb-cl(y) is the smallest $(1,2)^*$ - π gb-closed set containing y. Therefore $(1,2)^*$ - π gb-cl(y) \subset V^c and hence $x \notin (1,2)^*$ - π gb-cl(y).Thus $(1,2)^*$ - π gb-cl(x) $\neq \Box (1,2)^*$ - π gb-cl(y).

Sufficiency: Suppose x, $y \in X$, $x \neq \Box y$ and $(1,2)^*$ - π gb-cl(x) $\neq \Box (1,2)^*$ - π gb-cl(y).Let $z \in X$ such that $z \in (1,2)^*$ - π gb-cl({ x}) but $z \notin (1,2)^*$ - π gb-cl({y}).If $x \in (1,2)^*$ - π gb-cl({y}), then $(1,2)^*$ - π gb-cl(x) $\subset (1,2)^*$ - π gb-cl(y) and hence $z \in (1,2)^*$ - π gb-cl(y)

}). This is a contradiction. Therefore $x \notin (1,2)^* - \pi gb - cl (\{y\})$. That

implies $x \in ((1,2)^*-\pi gb-cl(\{y\}))$. Therefore $((1,2)^*-\pi gb-cl(\{y\}))^c$ is a $(1,2)^*-\pi gb$ -open set containing x but not y. Hence X is $(1,2)^*-\pi gb-T_0$.

Theorem 3.5: Every bitopological space is $(1,2)^*$ - π gb-T₀.

Proof: Follows from Previous two theorems 3.3 and 3.4.

Theorem 3.6: Let $f:X \rightarrow Y$ be a bijection, $M-(1,2)^*-\pi gb$ -open map and X is $(1,2)^*-\pi gb$ -T₀ space, then Y is also $(1,2)^*-\pi gb$ -T₀ space.

Proof: Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is a bijection, there exists $x_1, x_2 \in X$ with $x_1 \neq x_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is $(1,2)^*$ - π gb-T₀ space, there exists a $(1,2)^*$ - π gb-open set M in X such that $x_1 \in M$ and $x_2 \notin M$. Since f is M-(1,2)*- π gb-open

map, f(M) is a $(1,2)^*$ - π gb-open set in Y.Now we have $x_1 \in M \Rightarrow$ f $(x_1) \in f(M) \Rightarrow y_1 \in f(M)$. $x_2 \notin M \Rightarrow f(x_2) \notin f(M) \Rightarrow y_2 \notin f(M)$. Hence for any two distinct points y_1 , y_2 in Y, there exists $(1,2)^*$ - π gbopen set f(M) in Y such that $y_1 \in f(M)$ and $y_2 \notin f(M)$.Hence Y is a $(1,2)^*$ - π gb- T_0 space.

Theorem 3.7: Let f: $X \rightarrow Y$ be a bijection, $(1,2)^*$ - π gb-open map and X is $(1,2)^*$ - T_0 space, then Y is a $(1,2)^*$ - π gb- T_0 space.

Proof: Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is a bijection, there exists $x_1, x_2 \in X$ with $x_1 \neq x_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is $(1,2)^*-T_0$ space, there exists a $(1,2)^*$ -open set M in X such that $x_1 \in M$ and $x_2 \notin M$. Since f is $(1,2)^*$ - π gb-open map, f(M) is a $(1,2)^*-\pi$ gb-open set in Y. Now we have $x_1 \in M \Rightarrow f(x_1) \in f(M) \Rightarrow y_1 \in f(M)$. $x_2 \notin M \Rightarrow f(x_2) \notin f(M) \Rightarrow y_2 \notin f(M)$. Hence for any two distinct points y_1, y_2 in Y, there exists $(1,2)^*-\pi$ gb-open set f(M) in Y such that $y_1 \in f(M)$ and $y_2 \notin f(M)$. Hence Y is a $(1,2)^*-\pi$ gb- T_0 space.

Theorem 3.8: Let $f:X \rightarrow Y$ be a bijection, $(1,2)^*$ - π gb-irresolute map and Y is $(1,2)^*$ - π gb- T_0 space, then X is also $(1,2)^*$ - π gb- T_0 space.

Proof: Let $x_1, x_2 \in X$ with $x_1 \neq x_2$.Since f is a bijection, there exists $y_1, y_2 \in X$ with $y_1 \neq y_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2 \Rightarrow x_{1=} f^{-1}(y_1)$ and $x_{2=} f^{-1}(y_2)$.Since Y is a $(1,2)^*$ - π gb-T₀ space, there exists a $(1,2)^*$ - π gb-open set M in Y such that $y_1 \in M$ and $y_2 \notin M$.Since f is $(1,2)^*$ - π gb-irresolute, $f^{-1}(M)$ is $(1,2)^*$ - π gb-open set in X.Now we have $y_1 \in M \Rightarrow f^{-1}(y_1) \in f^{-1}(M) \Rightarrow x_1 \in f^{-1}(M)$. $y_2 \notin M \Rightarrow f^{-1}(y_2) \notin f^{-1}(M) \Rightarrow x_2 \notin f^{-1}(M)$. Hence for any two distinct points x_1, x_2 in X,there exists $(1,2)^*$ - π gb-open set $f^{-1}(M)$ in X such that $x_1 \in f^{-1}(M)$ and $x_2 \notin f^{-1}(M)$.Hence X is a $(1,2)^*$ - π gb-T₀ space.

Theorem 3.9: Let f: $X \rightarrow Y$ be a bijection, $(1,2)^*-\pi gb$ continuous and Y is $(1,2)^*-T_0$ space, then X is a $(1,2)^*-\pi gb-T_0$ space.

Proof: Let f: X→Y be a bijection, $(1,2)^*$ - π gb-continuous map and Y is a $(1,2)^*$ - T_0 space.Let $x_1, x_2 \in X$ with $x_1 \neq x_2$.Since f is a bijection, there exists $y_1, y_2 \in Y$ with $y_1 \neq y_2$ such that $f(x_1) = y_1$ and $f(x_2) = y_2 \Rightarrow x_{1=} f^{-1}(y_1)$ and $x_{2=} f^{-1}(y_2)$.Since Y is $(1,2)^*$ - T_0 space, there exists a $(1,2)^*$ -open set M in X such that $y_1 \in M$ and $y_2 \notin M$.Since f is $(1,2)^*$ - π gb-continuous map, $f^{-1}(M)$ is a $(1,2)^*$ - π gb-open set in Y.Now we have $y_1 \in M \Rightarrow f^{-1}(y_1) \in f^{-1}(M) \Rightarrow x_1 \in f^{-1}(M)$ and $x_2 \notin f^{-1}(M)$. Hence for any two distinct points y_1, y_2 in Y,there exists $(1,2)^*$ - π gb-open set $f^{-1}(M)$ in Y such that $x_1 \in f^{-1}(M)$ and $x_2 \notin f^{-1}(M)$.Hence Y is a $(1,2)^*$ - π gb- T_0 space.

Definition 3.10: A bitopological space X is $(1,2)^*-\pi gb$ -symmetric if for x and y in X, $x \in (1,2)^*-\pi gb-cl(\{y\}) \Rightarrow y \in (1,2)^*-\pi gb-cl(\{x\}).$

Theorem 3.11:X is $(1,2)^*$ - π gb-symmetric iff {x} is $(1,2)^*$ - π gb-closed for x \in X.

Proof: Assume that $x \in (1,2)^*$ - π gb-cl({y}) but $y \notin (1,2)^*$ - π gb-cl({x}). This implies ($(1,2)^*$ - π gb-cl({x})^c contains y. Hence the set {y} is a subset of ($(1,2)^*$ - π gb-cl({x})^c . This implies ($(1,2)^*$ - π gb-cl({y}) is a subset of ($(1,2)^*$ - π gb-cl({x})^c. Now ($(1,2)^*$ - π gb-cl({x})^c contains x which is a contradiction.

Conversely, Suppose that $\{x\} \subset E \in (1,2)^*-\pi gbO(X)$ but $(1,2)^*-\pi gb-cl(\{y\})$ which is a subset of E^c and $x \notin E$. But this is a contradiction.

Definition 3.12: A space X is $(1,2)^*$ - π gb- T_1 if for any pair of distinct points x, y of X, there is a $(1,2)^*$ - π gb -open set U in X

such that $x{\in}U$ and $y{\notin}U$ and there is a $(1{,}2)^*{\text{-}\pi}gb$ -open set V in

X such that $y \in U$ and $x \notin V$.

Remark 3.13 : Every $(1,2)^*-\pi gb-T_1$ space is $(1,2)^*-\pi gb-T_0$ space.

Theorem3.14 : In a space X, the following are equivalent (1) X is $(1,2)^*-\pi gb-T_1$

(2) For every $x \in X$, $\{x\}$ is $(1,2)^*$ - π gb-closed in X.

(3) Each subset A of X is the intersection of all $(1,2)^*$ - π gb -open sets containing x.

(4) The intersection of all $(1,2)^*$ - π gb-open sets containing the point x in X is {x}.

Proof: (1) \Rightarrow (2) Suppose X is (1,2)*- π gb-T₁. Let $x \in X$ and $y \in \{\Box x\}^c$. Then $x \neq y$ and so there exists a (1,2)*- π gb-open set U_y such that $y \in U_y$ but $x \notin U_y$. Therefore $y \in U_y \subset \{\Box x\}^c$. That is, $\{x\}^c = \cup \{U_y / y \in \{x\}^c\}$ is (1,2)*- π gb-open. Hence $\{x\} \Box$ is (1,2)*- π gb -closed.

(2) \Rightarrow (3) Let A \subset X and y \notin A. Then A \subset {y}^c and {y}^c is (1,2)*-

 π gb-open in X and A= $\cap \{\{y\} : y \in A^c\}$ which is the intersection of all $(1,2)^*$ - π gb-open sets containing A.

 $(3) \Rightarrow (4)$ is obvious

(4) \Rightarrow (1) Let x, y \in X, x \neq y.By assumption, there exists a (1,2)*- π gb-open set containing x but not y and the (1,2)*- π gb-open set V containing y but not x. Hence X is (1,2)*- π gb -T₁.

Theorem 3.15: X is $(1,2)^*$ - π gb-symmetric iff {x} is $(1,2)^*$ - π gb-closed for $x \in X$.

Proof: Assume that $x \in (1,2)^*$ - π gb-cl({y}) but $y \notin (1,2)^*$ - π gb-cl({x}). This implies $(1,2)^*$ - (π gb-cl({x})^c contains y. Hence the set {y} is a subset of $(1,2)^*$ - (π gb-cl({x})^c. This implies $(1,2)^*$ - π gb-cl({y}) is a subset of $(1,2)^*$ -(π gb-cl({x})^c. Now $(1,2)^*$ -(π gb-cl({x})^c contains x which is a contradiction.

Conversely, Suppose that $\{x\} \subset E \in (1,2)^*-\pi GBO(X)$ but $(1,2)^*-\pi gb\text{-cl}(\{y\})$ which is a subset of E^c and $x \notin E$. But this is a contradiction.

Theorem 3.16 : A bitopological space X is a $(1,2)^*$ - π gb-T₁iff the singletons are $(1,2)^*$ - π gb-closed sets.

Proof: LetXbe $(1,2)^*$ - π gb- T_1 and x be any point of X. Suppose $y \in \{X\}^c$. Then $x \neq y$ and so there exists a $(1,2)^*$ - π gb-open set U such that $y \in U$ but $x \notin U$. Consequently, $y \in U \subset (\{x\})^c$. That is

 $({x})^{c} = \cup {U | y \in ({x})^{c}}$ which is $(1,2)^{*}$ - π gb-open.

Conversely suppose $\{x\}$ is $(1,2)^*-\pi$ gb-closed for every $x \in X$.

Let x, $y \in X$ with $x \neq y$. Then $x \neq y \Rightarrow y \in (\{x\})^c$. Hence $(\{x\})^c$ is a $(1,2)^*$ - π gb-open set containing y but not x. Similarly $(\{y\})^c$ is a $(1,2)^*$ - π gb-open set containing x but not y. Hence X is $(1,2)^*$ - π gb-T₁-space.

Remark 3.17: If X is $(1,2)^*$ - π gb-T_i, then X is $(1,2)^*$ - π gb-T_{i-1}; i=1,2.

Corollary 3.18 : If X is $(1,2)^*-\pi gb-T_1$, then it is $(1,2)^*-\pi gb$ -symmetric.

Proof: In a $(1,2)^*$ - π gb- T_1 space, singleton sets are $(1,2)^*$ - π gb-closed. By theorem 3.17, and by theorem 3.16, the space is $(1,2)^*$ - π gb-symmetric.

Corollary 3.19: The following statements are equivalent (i)X is $(1,2)^*$ - π gb-symmetric and $(1,2)^*$ - π gb-T₀ (ii)X is $(1,2)^*$ - π gb-T₁

Proof: By corollary 3.18 and remark 3.17 ,it suffices to prove $(1) \Rightarrow (2)$.Let $x \neq y$ and by $(1,2)^* - \pi gb - T_0$, assume that $x \in G_1 \subset (\{y\})^c$ for some $G_1 \in (1,2)^* - \pi GBO(X)$.Then $x \notin (1,2)^* - \pi gb - cl(\{y\})$ and hence $y \notin (1,2)^* - \pi gb - cl(\{x\})$.There exists a $G_2 \in C_1$

 $(1,2)^*-\pi GBO(X)$ such that $y \in G_2 \subset (\{x\})^c$. Hence X is a $(1,2)^*-\pi gb-T_1$ space.

Definition3.20: A space X is $(1,2)^*-\pi gb-T_2$ if for each pair of distinct points x and y in X, there exists a $(1,2)^*-\pi gb$ -open set U and a $(1,2)^*-\pi gb$ -open set V in X such that $x \in U$, $y \in V$ and $U \cap V = \Phi$.

Remark 3.21: Every $(1,2)^*$ - π gb-T₂ space is $(1,2)^*$ - π gb-T₁.

Definition 3.22: Let X be a bitopological space. Let x be a point of X and G be a subset of X. Then G is called an $(1,2)^*$ - π gb-neighbourhood of x (briefly(1,2)*- π gb-nbd of x) if there exists an

 $(1,2)^*$ - π gb-open set U of X such that $x \in U \subset G$.

Theorem 3.23:For a bitopological space X the following are equivalent:

(1) X is (1,2)*-πgb-T₂

(2) If $x \in X$, then for each $y \neq x$, then there is an $(1,2)^*$ - π gb-nbd N(x) of x such that $y \notin (1,2)^*$ - π gbcl N(x)

(3) For each $x \in \{(1,2)^*-\pi gbcl(N): N \text{ is an } (1,2)^*-\pi gb -nhd \text{ of } x\}=\{x\}.$

(2) If $x \in X$, then for each $y \neq \Box x$, there is a $(1,2)^*$ - π gb-open set U containing x such that $y \notin (1,2)^*$ - π gb \Box - cl(U)

Proof: (1) \Rightarrow (2):Let $x \in X$. If $y \in X$ is such that $y \neq x$ there exists disjoint $(1,2)^*$ - π gb open sets U and V such that $x \in U$ and $y \in V$. Then $x \in U \subset X$ -V which implies X-V is $(1,2)^*$ - π gb-nbd of x. Also N(x)=X-V. Therefore $y \notin (1,2)^*$ - π gb-cl N(x).

 $(2) \Rightarrow (3)$ Obvious

Theorem 3.24: Iff : $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is injective, $(1,2)^*$ - π gb-irresolute open map and Y is $(1,2)^*$ - π gb-T₂, then X is $(1,2)^*$ - π gb-T₂.

Proof: Let x, $y \in X$ and $x \neq y$. Since f is injective, $f(x) \neq f(y)$ in Y and there exists disjoint $(1,2)^*$ - π gb-open sets U and V such that

 $f(x) \in U$ and $f(y) \in V$.Let $G=f^{-1}(U)$ and $H=f^{-1}(V)$.Then $G\cap H=f^{-1}(U)\cap f^{-1}(V)=f^{-1}(U\cap V)=\Phi$. Hence X is $(1,2)^*-\pi gb-T_2$.

4. $(1,2)^*$ - π gb-D-sets and associated separation axioms

Definition 4.1: A subset A of a bitopological space X is called

(1, 2)*-D-set if there are two U,V \in ((1,2)*-O(X)such that U \neq X and A=U-V.

Definition 4.2 : A space X is said to be

(i) $(1,2)^*-D_0$ if for any pair of distinct points x and y of X, there exist a $(1,2)^*-D$ -set in X containing x but not y (or) a $(1,2)^*-D$ -set in X containing y but not x.

(ii) $(1,2)^*-D_1$ if for any pair of distinct points x and y in X,there exists a $(1,2)^*-D$ -set of X containing x but not y and a $(1,2)^*-D$ -set in X containing y but not x.

(iii) $(1,2)^*-D_2$ if for any pair of distinct points x and y of X, there exists disjoint ((1,2)*-D-sets G and H in X containing x and y respectively.

Definition 4.3: A bitopological space X is said to be $(1,2)^*$ -D-connected if X cannot be expressed as the union of two disjoint non-empty $(1,2)^*$ -D-sets.

Definition 4.4: A bitopological space X is said to be $(1,2)^*$ - D-compact if every cover of X by $(1,2)^*$ -D-sets has a finite subcover.

Definition 4.5: A subset A of a bitopological space X is called

 $(1,2)^*$ - π gb-D-set if there are two U,V \in ($(1,2)^*$ - π GBO(X)such that U \neq X and A=U-V.

Clearly every $(1,2)^*$ - π gb-open set U different from X is a $(1,2)^*$ - π gb-D set if A=U and V= Φ .

Example 4.6 : Let X={a,b,c} and τ_1 ={ Φ ,{a},{b},{a,b},X}, τ_2 ={ Φ ,{a,b},X}..Then {c} is a (1,2)*- π gb-D-set but not (1,2)*- π gb-open. Since (1,2)*- π GBO(X)={ Φ ,{a},{b},{b,c},{a,c},{a,b},X}.Then U={b,c}≠X and V={a,b} are (1,2)*- π gb-open sets in X. For U and V, since U-V={b,c}-{a,b}={c},then we have S={c} is a (1,2)*- π gb-D-set but not (1,2)*- π gb-open.

Definition4.7: A space X is said to be

(iv) $(1,2)^*-\pi gb-D_0$ if for any pair of distinct points x and y of X ,there exist a $(1,2)^*-\pi gb-D$ -set in X containing x but not y (or) a $(1,2)^*-\pi gb-D$ -set in X containing y but not x.

(v) $(1,2)^*$ - π gb- D_1 if for any pair of distinct points x and y in X,there exists a $(1,2)^*$ - π gb-D-set of X containing x but not y and a $(1,2)^*$ - π gb-D-set in X containing y but not x.

(vi) $(1,2)^*$ - π gb-D₂ if for any pair of distinct points x and y of X, there exists disjoint $(1,2)^*$ - π gb-D-sets G and H in X containing x and y respectively.

 $\begin{array}{c} \textbf{Example} \quad \textbf{4.8:} \quad \text{Let} \quad X{=}\{a,b,c,d\} \quad \text{and} \\ \tau_1{=}\{\Phi,\{a\},\{a,b\},\{c,d\},\{a,c,d\},X\}, \quad \text{and} \\ \end{array}$

 $\tau_2 = \{\Phi, \{a\}, \{c,d\}, \{a,c,d\}, X\}, \text{ then X is } (1,2)^* - \pi gb - D_i, i=0,1,2.$ **Remark 4.9:**

(i) If X is $(1,2)^*$ - π gb-T_i, then Xis $(1,2)^*$ - π gb-D_i;i=0,1,2.

(ii) If Xis $(1,2)^*$ - π gb-D_i,then it is $(1,2)^*$ - π gb-D_{i-1};i=1,2.

Theorem4.10: For a bitopological space X, the following statements hold.

(i) X is $(1,2)^*$ - π gb-D₀iff it is $(1,2)^*$ - π gb-T₀

(ii) X is (1,2)*- π gb-D₁iff it is (1,2)*- π gb-D₂.

Proof: (1)The sufficiency is stated in remark 4.9 (i)

Let Xbe $(1,2)^*$ - π gb-D₀. Then for any two distinct points x, y \in X, atleast one of x,y say x belongs to $(1,2)^*$ - π gb-D-set G where $y \notin G$. Let $G=U_1-U_2$ where $U_1 \neq X$ and U_1 and $U_2 \in (1,2)^*$ - π GBO(X). Then $x \in U_1$. For $y \notin G$ we have two cases. (a) $y \notin U_1$

(b) $y \in U_1$ and $y \in U_2$.

In case (a), $x \in U_1$ but $y \notin U_1$;In case (b); $y \in U_2$ and $x \notin U_2$.Hence X is $(1,2)^*$ - π gb-T0.

(2) Sufficiency: Remark 4.9 (ii).

Necessity: Suppose X is $(1,2)^*$ - π gb-D₁.Then for each distinct pair x,y \in X ,we have $(1,2)^*$ - π gb-D-sets G₁ and G₂ such that $x\in G_1$ and $y\notin G_1$; $x\notin G_2$ and $y\in G_2$. Let $G_1 = U_1-U_2$ and $G_2 = U_3$ –U₄. By $x\notin G_2$, it follows that either $x\notin U3$ or $x\in U_3$ and $x\in U_4$

Now we have two cases(i)x $\notin U3.By \ y \notin G$, we have two subcases (a)y $\notin U_1.By \ x \in U_1$ -U2,it follows that $x \in U_1$ -(U2)

U₃) and by $y \in U_3$ -U₄, we have $y \in U_3$ -(U₁ \cup U₄). Hence (U₁-(U₃ \cup U₄)) \cap U₃-(U₁ \cup U₄)= Φ .(b) $y \in$ U1 and $y \in$ U₂ , we have $x \in U_1$ -U₂ ; $y \in$ U2. \Rightarrow (U₁-U₂) \cap U₂= Φ ..

(ii) $x \in U_3$ and $x \in U_4$. We have $y \in U_3$ - U_4 ; $x \in U_4 \Rightarrow (U_3-U_4) \cap U_4 = \Phi$. We get U_1 - U_2 and U_2 are disjoint(1,2)*- π gb-D sets containing x and y respectively Thus X is $(1,2)^*$ - π gb- D_2 .

Theorem4.11: If X is $(1,2)^*$ - π gb-D₁, then it is $(1,2)^*$ - π gb-T₀. **Proof:** Remark 4.9 and theorem 4.10.

Theorem 4.12: If $f : X \rightarrow Y$ is a $(1,2)^*$ - π gb-continuous surjective function and S is a $(1,2)^*$ -D-set of Y, then the inverse image of S is a $(1,2)^*$ - π gb-D-set of X.

Proof: Let U_1 and U_2 be two open sets of Y.Let $S=U_1-U_2$ be a

 $(1,2)^*\text{-}D\text{-set}$ and $U_1 \not= Y.We$ have $f^{\,1}(U_1) \in (1,2)^*\text{-}\pi GBO(X)$ and

 $f^{1}(U_{2}) \in (1,2)^{*}-\pi GBO(X) and f^{1}(U_{1}) \neq X.Hencef^{1}(S)=f^{1}(U_{1}-U_{2})=f^{1}(U_{1})-f^{1}(U_{2}).Hencef^{1}(S)$ is a $(1,2)^{*}-\pi gb\text{-}D\text{-set}.$

Theorem 4.13 J: If f: $X \rightarrow Y$ is a $(1,2)^*$ - π gb-irresolute surjection and E is a $(1,2)^*$ - π gb-D-set in Y,then the inverse image of E is an $(1,2)^*$ - π gb-D-set in X.

Proof: Let E be a $(1,2)^*$ - π gb-D-set in Y.Then there are $(1,2)^*$ - π gb-open sets U₁ and U₂ in Y such that E= U₁-U₂ and $\cup_1 \neq Y$.Since f is $(1,2)^*$ - π gb-irresolute, f¹(U₁) and f¹(U₂) (1,2)^*- π gb-open in X.Since U₁ $\neq Y$, we have f¹(U₁) $\neq X$. Hence f ¹(E) = f¹(U₁-U₂) = f¹(U₁)-f¹(U₂) is a $(1,2)^*$ - π gb-D-set.

Definition 4.14: A point $x \in X$ which has X as a $(1,2)^*$ - π gb-neighbourhood is called $(1,2)^*$ - π gb-neat point.

Example4.15:LetX= $\{a,b,c\}$. $\tau_1 = \{\Phi, \{a\}, \{b\}, \{a,b\}, X\}$. $\tau_2 = \{\Phi, \{a\}, \{a,b\}, X\}$.

 $(1,2)*\pi gbO(X) = \{\Phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,c\}, X\}$. The point {c} is a $(1,2)*-\pi gb$ -neat point.

Theorem 4.16: For a $(1,2)^*-\pi gb-T_0$ bitopological spaceX, the following are equivalent.

(i) X is a $(1,2)^*-\pi gb-D_1$

(ii)X has no $(1,2)^*$ - π gb-neat point.

Proof: (i) \Rightarrow (ii).Since X is a $(1,2)^*-\pi gb-D_1$,then each point x of X is contained in an $(1,2)^*-\pi gb-D$ -set O=U-V and hence in U.By definition, U \neq X.This implies x is not a $(1,2)^*-\pi gb$ -neat point.

(ii) \Rightarrow (i) If X is (1,2)*- π gb-T₀,then for each distinct points x,

 $y \in X$, at least one of them say(x) has a $(1,2)^*$ - π gb-neighbourhood U containing x and not y. Thus $U \neq X$ is a $(1,2)^*$ - π gb-D-set. If X has no $(1,2)^*$ - π gb-neat point, then y is not a $(1,2)^*$ - π gb-neat point. That is there exists $(1,2)^*$ - π gb-

neighbourhood V of y such that $V \neq X$. Thus $y \in (V-U)$ but not x and V-U is a $(1,2)^*$ - π gb-D-set. Hence X is $(1,2)^*$ - π gb-D₁.

Remark 4.17: It is clear that an $(1,2)^*-\pi gb-T_0$ bitopological space X is not a $(1,2)^*-\pi gb-D_1$ iff there is a $(1,2)^*-\pi gb$ -neat point in X. It is unique because x and y are both $(1,2)^*-\pi gb$ -neat point in X, then at least one of them say x has an $(1,2)^*-\pi gb$ -neighbourhood U containing x but not y. This is a contradiction since U \neq X.

Theorem 4.18: If Y is a $(1,2)^*$ -D₁ space and f:X \rightarrow Y is a $(1,2)^*$ - π gb-continuous bijective function, then X is a $(1,2)^*$ - π gb-D₁-space.

Proof: Suppose Y is a $(1,2)^*$ -D₁space.Let x and y be any pair of distinct points in X,Since f is injective and Y is a $(1,2)^*$ -D₁space,yhen there exists $(1,2)^*$ -D-sets S_x and S_y of Y containing f(x) and f(y) respectively that $f(x) \notin S_y$ and f(y) $\notin S_x$. By theorem 4.1 f¹(S_x) and f¹(S_y) are $(1,2)^*$ - π gb-D-sets in X containing x and y respectively such that $x \notin f^1(S_y)$ and $y \notin f^1(S_x)$.Hence X is a $(1,2)^*$ - π gb-D₁-space.

Theorem 4.19: If Y is $(1,2)^*$ - π gb-D₁ and f: X \rightarrow Y is $(1,2)^*$ - π gb-irresolute and bijective, then X is $(1,2)^*$ - π gb-D₁.

Proof: Suppose Y is $(1,2)^*$ - π gb- D_1 and f is bijective, $(1,2)^*$ - π gb-irresolute. Let x,y be any pair of distinct points of X. Since f is injective and Y is $(1,2)^*$ - π gb- D_1 ,there exists $(1,2)^*$ - π gb-D-sets G_x and G_y of Y containing f(x) and f(y) respectively such that f(y) $\notin G_z$ and f(x) $\notin G_y$. By theorem 4.9, $f^{-1}(G_z)$ and $f^{-1}(G_y)$ are $(1,2)^*$ - π gb-D-sets in X containing x and y respectively. Hence X is $(1,2)^*$ - π gb- D_1 .

Theorem 4.20: A topological space X is a $(1,2)^*$ - π gb-D₁ if for

each pair of distinct points $x,y \in X$, there exists a $(1,2)^*-\pi$ gbcontinuous surjective function f: $X \to Y$ where Y is a $(1,2)^*-D_1$ space such that f(x) and f(y) are distinct.

Proof: Let x and y be any pair of distinct points in X,By hypothesis, there exists a $(1,2)^*$ - π gb-continuous surjective function f of a space X onto a $(1,2)^*$ -D₁-space Y such that $f(x) \neq f(y)$. Hence there exists disjoint $(1,2)^*$ -D-sets S_xandS_y in Y

such that $f(x) \in S_x$ and $f(y) \in S_y$. Since f is $(1,2)^*-\pi gb$ continuous and surjective, by theorem 4.8, $f^{-1}(S_x)$ and $f^{-1}(S_y)$ are disjoint $(1,2)^*-\pi gb$ -D-sets in X containing x and y respectively. HenceX is a $(1,2)^*-\pi gb$ -D₁-set.

Theorem 4.21: X is $(1,2)^*$ - π gb-D₁ iff for each pair of distinct

points x, $y \in X$, there exists a $(1,2)^*$ - π gb-irresolute surjective function f: $X \to Y$, where Y is $(1,2)^*$ - π gb-D₁ space such that f(x) and f(y) are distinct.

Proof: Necessity: For every pair of distinct points x, $y \in X$, it suffices to take the identity function on X.

Sufficiency: Let $x \neq y \in X$.By hypothesis ,there exists a $(1,2)^*$ - π gb-irresolute, surjective function from X onto a $(1,2)^*$ - π gb-D₁ space such that $f(x) \neq f(y)$.Hence there exists disjoint $(1,2)^*$ - π gb-

Dsets G_x , $G_y \subset Y$ such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is $(1,2)^*$ - π gb-irresolute and surjective, by theorem 4.2, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint $(1,2)^*$ - π gb-D-sets in X containing x and y respectively. Therefore X is $(1,2)^*$ - π gb-D₁ space.

Definition 4.22: A bitopological space X is said to be $(1,2)^*$ - π gb-D-connected if X cannot be expressed as the union of two disjoint non-empty $(1,2)^*$ - π gb-D-sets.

Theorem 4.23: If $X \rightarrow Y$ is $(1,2)^*$ - π gb-continuous surjection and X is $(1,2)^*$ - π gb-D-connected, then Y is $(1,2)^*$ -D-connected. Proof: Suppose Y is not $(1,2)^*$ -D-connected. Let $Y=A \cup B$ where A and B are two disjoint non empty $(1,2)^*$ -D sets in Y. Since f is $(1,2)^*$ - π gb-continuous and onto, $X=f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty $(1,2)^*$ - π gb-Dsets in X. This contradicts the fact that X is $(1,2)^*$ - π gb-Dconnected. Hence Y is $(1,2)^*$ -D-connected.

Theorem 4.24: If $X \to Y$ is $(1,2)^*$ - π gb-irresolute surjection and X is $(1,2)^*$ - π gb-D-connected, then Y is $(1,2)^*$ - π gb-D-connected.

Proof: Suppose Y is not $(1,2)^*$ - π gb-D-connected.Let Y=A \cup B where A and B are two disjoint non empty $(1,2)^*$ - π gb-D-sets in Y.Since f is $(1,2)^*$ - π gb-irreesolute and onto,X=f¹(A) \cup f¹(B) where f¹(A) and f¹(B) are disjoint non-empty $(1,2)^*$ - π gb-D-sets in X.This contradicts the fact that X is $(1,2)^*$ - π gb-D-connected. Hence Y is $(1,2)^*$ - π gb-D-connected.

Definition 4.25: A bitopological space X is said to be $(1,2)^*$ - π gb-D-compact if every cover of X by $(1,2)^*$ - π gb-D-sets has a finite subcover.

Theorem 4.26: If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is $(1,2)^*-\pi gb$ continuous surjection and (X,τ) is $(1,2)^*-\pi gb$ -D-compact then Y is $(1,2)^*$ -D-compact. **Proof:** Let f: $X \rightarrow Y$ is $(1,2)^*-\pi gb$ -continuous surjection.Let $\{A_i:i \in \land\}$ be a cover of Y by $(1,2)^*$ -D-set.Then $\{f^1(A_i):i \in \land\}$ is a cover of X by $(1,2)^*-\pi gb$ -D-set.Since X is $(1,2)^*-\pi gb$ -D-compact, every cover of X by $(1,2)^*-\pi gb$ -D set has a finite subcover, say $\{f^1(A_1), f^1(A_2), \dots, f^1(A_n)\}$. Since f is onto, $\{A_1, A_2, \dots, A_n\}$ is a cover of Y by $(1,2)^*$ -D-set has a finite subcover.Therefore Y is $(1,2)^*$ -D-compact.

Theorem 4.27: If a function f: $X \rightarrow Y$ is $(1,2)^*$ - π gb-irresolute surjection and Xis $(1,2)^*$ - π gb-D-compact then Yis $(1,2)^*$ - π gb-D-compact.

Proof:Let f: $X \rightarrow Y$ is $(1,2)^*$ - π gb-irresolutesurjection.Let $\{A_i:i \in \land\}$ be a cover of Y by $(1,2)^*$ - π gb-D-set.Hence $Y = \underset{i}{Y} A_i$ Then $X = f^{-1}(Y) = f^{-1}(\underset{i}{Y} A_i) = \underset{i}{Y} f^{-1}(A_i)$.Since f is $(1,2)^*$ -

πgb-irresolute, for each i∈ ∧, {f¹(A_i):i∈ ∧ } is a cover of X by (1,2)*-πgb-D-set.Since X is (1,2)*-πgb-D-compact, every cover of X by (1,2)*-πgb-D set has a finite subcover, say{ f¹(A₁), f¹(A₂)..., f¹(A_n)}.Since f is onto, {A₁,A₂...,A_n} is a cover of Y by (1,2)*-πgb-D-set has a finite subcover.Therefore Y is (1,2)*-πgb-D-compact.

 $5.(1,2)^*$ - π gb- R_0 spaces and $(1,2)^*$ - π gb- R_1 spaces

Definition 5.1: Let X be a bitopological space then the $(1,2)^*$ - π gb-closure of A denoted by $(1,2)^*$ - π gb-cl (A) is defined by

 $(1,2)^*\text{-}\pi gb\text{-}cl(A) = \cap \ \{ \ F \mid F \in (1,2)^*\text{-}\pi gbC \ (X, \tau \) \ and \ F \supset A \}.$

Definition 5.2: Let x be a point of bitopological space X.Then $(1,2)^*$ - π gb-Kernel of x is defined and denoted by Ker $(1,2)^*$ -(1

 $\pi gb\{x\}= \cap \{U: U \in (1,2)^* - \pi gbO(X) \text{ and } x \in U\}.$

Definition 5.3: Let F be a subset of a bitopological space X. Then $(1,2)^*$ - π gb-Kernel of F is defined and denoted by Ker $(1,2)^*$ - π gb $(F)=\cap \{U: U \in (1,2)^*$ - π gbO(X) and $F \subset U \}$.

Lemma 5.4: Let Xbe a bitopological space and $x \in X$. Then Ker(1,2)*- π gb(A) = { $x \in X | (1,2)^* - \pi$ gb-cl({x}) $\cap A \neq \Phi$ }.

Proof: Let $x \in \text{Ker}(1,2)^*-\pi \text{gb}(A)$ and $(1,2)^*-\pi \text{gb-cl}(\{x\}) \cap A = \Phi$. Hence $x \notin X^-(1,2)^*-\pi \text{gb-cl}(\{x\})$ which is an $(1,2)^*-\pi \text{gb-open}$

set containing A. This is impossible, since $x \in \text{Ker}(1,2)^*$ - π gb (A).

Consequently, $(1,2)^*-\pi gb$ - $cl(\{x\})\cap A \neq \Phi$ Let $(1,2)^*-\pi gb$ $cl(\{x\})\cap A \neq \Phi$ and $x \notin Ker(1,2)^*-\pi gb$ (A). Then there exists an $(1,2)^*-\pi gb$ - open set G containing A and $x \notin G$. Let $y \in (1,2)^*-gb$ -

 π gb-cl({x})∩A. Hence G is an (1,2)*- π gb- neighbourhood of y where x ∉ G. By this contradiction, x ∈ Ker (1,2)*- π gb(A).

where $x \notin \Theta$. By this contradiction, $x \in \operatorname{Ker}(1,2)^{-n}\operatorname{go}(1)$.

Lemma 5.5: Let X be a bitopological space and $x \in X$. Then y

 $\in \operatorname{Ker}(1,2)^* \operatorname{-\pi gb}(\{x\}) \text{ if and only if } x \in (1,2)^* \operatorname{-\pi gb-Cl}(\{y\}).$

Proof: Suppose that $y \notin \text{Ker}(1,2)^* - \pi gb(\{x\})$. Then there exists an $(1,2)^* - \pi gb$ -open set V containing x such that $y \notin V$. Therefore we have $x \notin (1,2)^* - \pi gb$ -cl($\{y\}$). Converse part is similar.

Lemma 5.6: The following statements are equivalent for any two points x and y in abitopological space X

(1) Ker $(1,2)^*$ - π gb $(\{x\}) \neq$ Ker $(1,2)^*$ - π gb $(\{y\})$;

(2) $(1,2)^*$ - π gb- cl({x}) \neq (1,2)*- π gb-cl({y}).

Proof: (1) \Rightarrow (2): Suppose that Ker (1,2)*- π gb({x}) \neq Ker (1,2)*- π gb({y}) then there exists a point z in X such that $z \in X$ such that $z \in Ker (1,2)$ *- π gb({x}) and $z \notin Ker (1,2)$ *- π gb({y}). It follows from $z \in Ker (1,2)$ *- π gb({x}) that {x} $\cap (1,2)$ *- π gb-cl({z}) $\neq \Phi$. This implies that $x \in (1,2)$ *- π gb-cl({z}). By $z \notin Ker$

 $(1,2)^*-\pi gb(\{y\})$, we have $\{y\}\cap(1,2)^*-\pi gb-cl(\{z\}) = \Phi$. Since $x \in (1,2)^*-\pi gb-cl(\{z\})$, $(1,2)^*-\pi gb-cl(\{x\}) \subset (1,2)^*-\pi gb-cl(\{z\})$ and $\{y\}\cap(1,2)^*-\pi gb-cl(\{z\}) = \Phi$. Therefore, $(1,2)^*-\pi gb-cl(\{x\}) \neq (1,2)^*-\pi gb-cl(\{y\})$. Now Ker $(1,2)^*-\pi gb(\{x\}) \neq Ker (1,2)^*-\pi gb(\{y\})$ implies that $(1,2)^*-\pi gb-cl(\{x\}) \neq (1,2)^*-\pi gb-cl(\{y\})$.

(2) \Rightarrow (1): Suppose that (1,2)*- π gb-cl({x}) \neq (1,2)*- π gb-cl({y}).

Then there exists a point $z \in X$ such that $z \in (1,2)^*$ - π gb-cl({x}) and $z \notin (1,2)^*$ - π gb-cl({y}). Then, there exists an $(1,2)^*$ - π gb-open set containing z and hence containing x but not y, i.e., $y \notin$ Ker({x}). Hence Ker({x}) \neq Ker({y}).

Definition 5.7: A bitopological space X is said to be $(1,2)^*$ - π gb-R₀iff $(1,2)^*$ - π gb-cl{x} \subseteq G whenever $x \in G \in (1,2)^*$ - π GBO(X).

Definition 5.8: A bitopological space X is said to be $(1,2)^*$ - π gb-R₁ if for any x,y in X with $(1,2)^*$ - π gb-cl({x}) \neq (1,2)*- π gb-cl({y}),there exists disjoint (1,2)*- π gb-open sets U and V such that $(1,2)^*$ - π gb-cl({x}) \subseteq U and $(1,2)^*$ - π gb-cl({y}) \subseteq V.

Definition 5.9: A bitopological space X is said to be $(1,2)^*$ -weakly π gb-R₀ if $\cap X \in X(1,2)^*$ - π gb-cl({x})= Φ .

Example5.10:LetX={a,b,c,d}. τ_1 ={ Φ ,{b},{a,b},{b,c},{a,b,c},X} , τ_2 ={ Φ ,{a,b},X}.(1,2)*- π gbO(X, τ)=P(X),Then X is (1,2)*- π gb-R₀, weakly (1,2)*- π gb-R₀.

Remark 5.11: Every $(1,2)^*$ - π gb- R_1 space is $(1,2)^*$ - π gb- R_0 space.

Let U be a $(1,2)^*$ - π gb-open set such that $x \in U$. If $y \notin U$,then since $x \notin (1,2)^*$ - π gb-cl($\{y\}$), $(1,2)^*$ - π gb-cl($\{x\}$) $\neq (1,2)^*$ - π gbcl($\{y\}$). Hence there exists an $(1,2)^*$ - π gb-open set V such that $y \in V$ such that $(1,2)^*$ - π gb-cl($\{y\}$) $\subset V$ and $x \notin V \Rightarrow y \notin (1,2)^*$ - π gb-cl($\{x\}$).Hence $(1,2)^*$ - π gb-cl($\{x\}$) $\subseteq U$. Hence X is $(1,2)^*$ - π gb-R₀.

Theorem 5.12 : X is $(1,2)^*$ - π gb- R_0 iff given $x \neq y$; $(1,2)^*$ - π gb- $cl\{x\} \neq (1,2)^*$ - π gb- $cl\{y\}$.

Proof: Let X be $(1,2)^*-\pi gb-R_0$ and let $x\neq y\in X$. Suppose U is a $(1,2)^*-\pi gb$ -open set containing x but not y, then $y\in (1,2)^*-\pi gb$ cl{y} $\subset X$ -U and hence $x\notin (1,2)^*-\pi gb$ -cl{y}.Hence $(1,2)^*-\pi gb$ cl{x} $\neq (1,2)^*-\pi gb$ -cl{y}.

Conversely, let $x \neq y \in X$ such that $(1,2)^* \cdot \pi \text{gb-cl}\{x\} \neq (1,2)^* \cdot \pi \text{gb-cl}\{y\}$, This implies $(1,2)^* \cdot \pi \text{gb-cl}\{x\} \subset X$. $(1,2)^* \cdot \pi \text{gb-cl}\{y\} = U(\text{say})$, a $(1,2)^* \cdot \pi \text{gb-open set in } X$. This is true for every

 $(1,2)^*$ - π gb-cl{x}. Thus \cap $(1,2)^*$ - π gb-cl{x} \subseteq U where $x \in$

 $(1,2)^*-\pi gb-cl\{x\} \subset U \in (1,2)^*-\pi GBO(X)$. This implies $\cap (1,2)^*-\pi gb-cl\{x\} \subseteq U$ where $x \in U \in (1,2)^*-\pi GBO(X)$. Hence X is $(1,2)^*-\pi gb-R_0$.

Theorem 5.13 : The following statements are equivalent (i)X is $(1,2)^*-\pi gb-R_0$ -space

(ii)For each $x \in X$, $(1,2)^*$ - πgb - $cl\{x\} \subset Ker (1,2)^*$ - $\pi gb\{x\}$

(iii)For any $(1,2)^*$ - π gb-closed set F and a point $x \notin F$, there exists $U \in (1,2)^*$ - π gbO(X) such that $x \notin U$ and $F \subset U$,

(iv) Each $(1,2)^*$ - π gb-closed F can be expressed as $F=\cap \{G:G \text{ is } (1,2)^*$ - π gb-open and $F \subset G \}$

(v)) Each (1,2)*- π gb-open G can be expressed as G= \cup {A:A is (1,2)*- π gb-closed and A \subset G}

(vi) For each $(1,2)^*-\pi gb$ -closed set, $x \notin F$ implies $(1,2)^*-\pi gb$ -cl $\{x\} \cap F=\Phi$.

Proof: (i) \Rightarrow (ii): For any $x \in X$, we have Ker $(1,2)^*$ - $\pi gb\{x\}$ = $\cap \{U: U \in (1,2)^*$ - $\pi GBO(X)$. Since X is $(1,2)^*$ - πgb - R_0 , there exists (1,2)*- π gb-open set containing x contains (1,2)*- π gb-cl{x}. Hence (1,2)*- π gb-cl{x} \subset Ker (1,2)*- π gb{x}.

(ii) \Rightarrow (iii): Let $x \notin F \in (1,2)^* - \pi GBC(X)$. Then for any $y \in F$, (1,2)*- π gb-cl{y} \subset F and so $x \notin (1,2)^* - \pi$ gb- cl{y} $\Rightarrow y \notin (1,2)^* - \pi$ gb- cl{x}. That is there exists $U_y \in (1,2)^* - \pi$ gbO(X) such that $y \in U_y$ and $x \notin U_y$ for all $y \in F$. Let $U = \bigcup \{U_y \in (1,2)^* - \pi GBO(X)$ such that $y \in U_y$ and $x \notin U_y$. Then U is $(1,2)^* - \pi GBO(X)$ that $x \notin U$ and $F \subset U$. (iii) \Rightarrow (iv): Let F be any $(1,2)^* - \pi$ gb-closed set and $N = \cap \{G:G \in U\}$.

is $(1,2)^*$ - π gb-open and $F \subset G$ }. Then $F \subset N$ ---(1).Let $x \notin F$, then by (iii) there exists $G \in (1,2)^*$ - π GBO(X) such that $x \notin G$ and $F \subset G$, hence $x \notin N$ which implies $x \in N \Rightarrow x \in F$. Hence $N \subset F$.---(2).From (1) and (2), each $(1,2)^*$ - π gb-closed $F = \cap \{G:G \text{ is} (1,2)^*$ - π gb-open and $F \subset G$ }. (iv) \Rightarrow (v) Obvious.

(v) \Rightarrow (vi) Let $x \notin F \in (1,2)^* - \pi gbC(X)$. Then X-F=G is a $(1,2)^* - \pi gb$ -open set containing x. Then by (v), G can be expressed as the union of $(1,2)^* - \pi gb$ -closed sets A \subseteq G and so

there is an $M \in (1,2)^*-\pi gbC(X)$ such that $x \in M \subset G$ and hence $(1,2)^*-\pi gb-cl\{x\} \subset G$ implies $(1,2)^*-\pi gb-cl\{x\} \cap F=\Phi$.

(vi) \Rightarrow (i) Let $x \in G \in (1,2)^* - \pi gbO(X)$. Then $x \notin (X-G)$ which is $(1,2)^* - \pi gb$ -closed set. By (vi) $(1,2)^* - \pi gb$ - cl{x}. $\cap (X-G) = \Phi$. $\Rightarrow (1,2)^* - \pi gb$ -cl{x} $\subset G$. Thus X is $(1,2)^* - \pi gb$ -R₀-space.

Theorem 5.14 :A bitopological space X is an $(1,2)^*-\pi gb-R_0$ space if and only if for any x and y in X, $(1,2)^*-\pi gb-cl(\{x\})\neq$ $(1,2)^*-\pi gb-cl(\{y\})$ implies $(1,2)^*-\pi gb-cl(\{x\}) \cap (1,2)^*-\pi gb-cl(\{y\}) = \Phi$.

Proof: Necessity. Suppose that X is $(1,2)^*-\pi gb-R_0$ and x, $y \in X$ such that $(1,2)^*-\pi gb-cl(\{x\}) \neq (1,2)^*-\pi gb-cl(\{y\})$. Then, there exist $z \in (1,2)^*-\pi gb-cl(\{x\})$ such that $z \notin (1,2)^*-\pi gb-cl(\{y\})$ (or $z \in cl(\{y\})$) such that $z \notin (1,2)^*-\pi gb-cl(\{x\})$. There exists $V \in Cl(\{y\})$ for $z \in cl(\{y\})$ such that $z \notin (1,2)^*-\pi gb-cl(\{x\})$.

 $(1,2)^*\text{-}\pi GBO(X)$ such that $y\notin V$ and $z\in V$.Hence $x\in V$.

Therefore, we have $x \notin (1,2)^*-\pi gb-cl(\{y\})$. Thus $x \in ((1,2)^*-\pi gb-cl(\{y\}))^c \in (1,2)^*-\pi GBO(X)$, which implies $(1,2)^*-\pi gb-cl(\{x\}) \subset ((1,2)^*-\pi gb-cl(\{y\}))^c$ and $(1,2)^*-\pi gb-cl(\{x\}) \cap (1,2)^*-\pi gb-cl(\{y\}) = \Phi$.

Sufficiency. Let $V \in (1,2)^* - \pi GBO(X)$ and let $x \in V$. To show that $(1,2)^* - \pi gb-cl_{({x})} \subset V$. Let $y \notin V$, i.e., $y \in V^c$. Then $x \neq y$ and $x \notin (1,2)^* - \pi gb-cl({y})$. This showsthat $(1,2)^* - \pi gb-cl({x}) \neq$ $\neq (1,2)^* - \pi gb-cl({y})$. By assumption, $(1,2)^* - \pi gb-cl({x}) \cap$ $(1,2)^* - \pi gb-cl({y}) = \Phi$. Hencey $\notin (1,2)^* - \pi gb-cl({x})$ and therefore $(1,2)^* - \pi gb-cl({x}) \subset V$. **Theorem 5.15 :** A bitopological space X is an $(1,2)^* - \pi gb-R_0$ space if and only if for anypoints x and y in X , Ker $(1,2)^* - \pi gb({x}) \neq Ker (1,2)^* - \pi gb({y})$ implies Ker $(1,2)^* - \pi gb({x}) \cap Ker (1,2)^* - \pi gb({y}) = \Phi$. **Proof.** Suppose that X is an $(1,2)^* - \pi gb-R_0$ space. Thus by Lemma 5.6, for any points x and y in X if Ker $(1,2)^* - \pi gb({x}) \neq Ker (1,2)^* - \pi gb({y})$ then $(1,2)^* - \pi gb-cl({x}) \neq (1,2)^* - \pi gb({x}) \cap Ker (1,2)^* - \pi gb({y}) = \Phi$. Assume that $z \in Ker (1,2)^* - \pi gb({x}) \cap Ker$

 $(1,2)^*-\pi gb(\{y\})$. By $z \in Ker(1,2)^*-\pi gb(\{x\})$ and Lemma 5.5, it follows that $x \in (1,2)^*-\pi gb-cl(\{z\})$. Since $x \in (1,2)^*-\pi gb-cl(\{z\})$; $(1,2)^*-\pi gb-cl(\{x\})=(1,2)^*-\pi gb-cl(\{z\})$. Similarly, we have $(1,2)^*-\pi gb-cl(\{y\})=(1,2)^*-\pi gb-cl(\{z\})=(1,2)^*-\pi gb-cl(\{z\})=(1,2)^*-\pi$

cl({x}). This is a contradiction. Therefore, we have Ker $(1,2)^*-\pi gb({x}) \cap Ker (1,2)^*-\pi gb({y})=\Phi$

Conversely, let X be a topological space such that for any points x and y inX such that $(1,2)^*-\pi gb-cl\{x\} \neq (1,2)^*-\pi gb-cl\{y\}$. Ker $(1,2)^*-\pi gb(\{x\}) \neq Ker (1,2)^*-\pi gb(\{y\})$ implies Ker $(1,2)^* \pi gb(\{x\}) \cap Ker \quad (1,2)^* - \pi gb(\{y\}) = \Phi.$ Since $z \in (1,2)^* - \pi gb$ $cl{x} \Rightarrow x \in Ker (1,2)^* - \pi gb({z})$ and therefore Ker $(1,2)^*$ - $\pi gb(\{x\}) \cap Ker(1,2)^* - \pi gb(\{y\}) \neq \Phi.By$ hypothesis, we have Ker $(1,2)^*-\pi gb(\{x\})=Ker (1,2)^*-\pi gb(\{z\})$. Then $z \in (1,2)^*-\pi gb$ $cl(\{x\}) \cap (1,2)^* - \pi gb - cl(\{y\})$ implies that Ker $(1,2)^* - \pi gb(\{x\}) =$ $(1,2)^*-\pi gb(\{z\})=Ker$ $(1,2)^*-\pi gb(\{y\}).$ This is a Ker contradiction. Hence $(1,2)^*-\pi gb-cl(\{x\})\cap$ $(1,2)^*-\pi gb$ $cl({v})=\Phi$;Bv theorem 5.14, X is an $(1,2)^*-\pi gb-R_0$ space.

Theorem 5.16: For abitopological space X, the following properties are equivalent.

(1) X is an $(1,2)^*-\pi gb-R_0$ space

(2) $x \in (1,2)^*-\pi gb-cl(\{y\})$ if and only if $y \in (1,2)^*-\pi gb-cl(\{x\})$, for any points x and y in X.

Proof: (1) \Rightarrow (2): Assume that X is (1,2)*- π gb- R₀. Let $x \in (1,2)^*$ - π gb-cl({y}) and G be any (1,2)*- π gb- open setsuch that $y \in G$. Now by hypothesis, $x \in G$. Therefore, every (1,2)*- π gb-openset containing y contains x. Hence $y \in (1,2)^*$ - π gb- Cl({x}).

Theorem 5.17: For a bitopological space X, the following properties are equivalent:

(1) X is an $(1,2)^*-\pi gb-R_0$ space;

(2) $(1,2)^*-\pi gb-cl({x}) = Ker(1,2)^*-\pi gb({x})$ for all $x \in X$.

Proof: (1) \Rightarrow (2) : Suppose that X is an (1,2)*- π gb-R₀ space. By theorem 5.13, (1,2)*- π gb-cl({x}) \subset Ker (1,2)*- π gb({x}) for each x \in X. Let y \in Ker (1,2)*- π gb({x}), then x \in (1,2)*- π gb-cl({y})and so (1,2)*- π gb-cl({x}) = (1,2)*- π gb-cl({y}). Therefore, y \in (1,2)*- π gb-cl({x}) and hence Ker (1,2)*- π gb({x}) \subset (1,2)*- π gb-cl({x}). This shows that (1,2)*- π gb-cl({x}) = Ker (1,2)*- π gb({x}).

(ii) \Rightarrow (i) Obvious from theorem 5.15.

Theorem 5.18: For a bitopological space X ,the following are equivalent.

(i) X is a $(1,2)^*-\pi gb-R_0$ space.

(ii) If F is $(1,2)^*$ - π gb-closed, then F=Ker $(1,2)^*$ - π gb(F).

(iii) If F is $(1,2)^*$ - π gb-closed, and $x \in F$, then Ker($\{x\}$) \subset F.

(iv) If $x \in X$, then Ker $(1,2)^* - \pi gb(\{x\}) \subset (1,2)^* - \pi gb - cl(\{x\})$.

Proof:(i) \Rightarrow (ii) Let F be a (1,2)*- π gb-closed and x \notin F. Then X-F is (1,2)*- π gb-open and contains x. Since (X, τ) is a (1,2)*- π gb-R₀, (1,2)*- π gb-cl({x}) \subseteq X-F.

Thus $(1,2)^*-\pi gb-cl({x})\cap F=\Phi$. And by lemma 5.4, $x \notin (1,2)^*-\pi gb-Ker(F)$. Therefore $(1,2)^*-\pi gb-Ker(F)=F$.

(ii) \Rightarrow (iii) If $A \subseteq B$, then Ker $(1,2)^* - \pi gb(A) \subseteq Ker (1,2)^* - \pi gb(B)$.

From (ii), it follows that Ker $(1,2)^*-\pi gb(\{x\}) \subseteq Ker$ $(1,2)^*-\pi gb(F)$.

(iii) \Rightarrow (iv) Since $x \in (1,2)^* - \pi gb - cl(\{x\})$ and $(1,2)^* - \pi gb - cl(\{x\})$ is $(1,2)^* - \pi gb - closed$. By(iii), Ker $(1,2)^* - \pi gb(\{x\}) \subset (1,2)^* - \pi gb - cl(\{x\})$.

 $(iv) \Rightarrow$ (i)We prove the result using theorem 5.13.Let $x \in (1,2)^*-\pi gb\text{-cl}(\{y\})$ and by theorem 5.14, $y \in Ker(1,2)^*-\pi gb(\{x\})$.Since $x \in (1,2)^*-\pi gb\text{-cl}(\{x\})$ and $(1,2)^*-\pi gb\text{-cl}(\{x\})$ is $(1,2)^*-\pi gb\text{-cl}(gb)$ (iv) we get $y \in Ker(1,2)^*-\pi gb(\{x\}) \subseteq (1,2)^*-\pi gb\text{-cl}(\{x\})$.Therefore $x \in (1,2)^*-\pi gb\text{-cl}(\{x\})$.

Conversely, let $y \in (1,2)^*$ - π gb-cl({x}).By lemma 5.5, $x \in Ker (1,2)^*$ - π gb({y}).Since $y \in (1,2)^*$ - π gb-cl({y}) and $(1,2)^*$ - π gb-cl({y}) is $(1,2)^*$ - π gb-closed,then by (iv) we get $x \in Ker (1,2)^*$ - π gb({y}) $\subseteq (1,2)^*$ - π gb-cl({y}). Thus $y \in (1,2)^*$ - π gb-cl({x}) $\Rightarrow x \in (1,2)^*$ - π gb-cl({y}).By theorem 5.14, we prove that X is $(1,2)^*$ - π gb-R₀ space.

Theorem 5.19: A bitopological space X is $(1,2)^*$ - π gb-R₁ iff for $x,y \in X$, Ker $(1,2)^*$ - π gb($\{x\}$) \neq $(1,2)^*$ - π gb-cl($\{y\}$),there exists disjoint $(1,2)^*$ - π gb-open sets U and V such that $(1,2)^*$ - π gb-cl($\{x\}$) \subset U and $(1,2)^*$ - π gb-cl($\{y\}$) \subset V.

Proof: It follows from lemma 5.5.

Theorem 5.20: Abitopological space X is $(1,2)^*$ - π gb-T₂ if and only if it is $(1,2)^*$ - π gb-T₁ and $(1,2)^*$ - π gb-R₁.

Proof: If X is $(1,2)^*$ - π gb- T_2 ,then it is $(1,2)^*$ - π gb- T_1 .If $x,y \in X$ such that $(1,2)^*$ - π gb-cl($\{x\}$) \neq (1,2)*- π gb-cl($\{y\}$),then $x \neq y$. Hence there exists disjoint $(1,2)^*$ - π gb open sets U and V such that $x \in U$ and $y \notin U$; $y \in V$ and $x \notin V$. This implies $(1,2)^*$ - π gb-cl($\{x\}$) \subseteq U and $(1,2)^*$ - π gb-cl($\{y\}$) \subseteq V. Hence X is $(1,2)^*$ - π gb-R₁.

Converse: If X is $(1,2)^*$ - π gb- T_1 and $(1,2)^*$ - π gb- R_1 and $x,y \in X$ such that $(1,2)^*$ - π gb-cl($\{x\}$) \neq (1,2)*- π gb-cl($\{y\}$),there exist disjoint $(1,2)^*$ - π gb open sets U and V such that $(1,2)^*$ - π gb-cl($\{x\}$) \subseteq U and 1,2)*- π gb-cl($\{y\}$) \subseteq V. Since X is $(1,2)^*$ - π gb- T_1 , $(1,2)^*$ - π gb-cl($\{x\}$)= $\{x\}$ and $(1,2)^*$ - π gb-cl($\{y\}$)= $\{y\}$. This implies $x \notin U$ and $y \notin U$, $y \in V$ and $x \notin V$, $U \cap V = \Phi$. This implies X is $(1,2)^*$ - π gb- T_0 .

Theorem 5.21: A bitopological space X is said to be weakly

 $(1,2)^*-\pi \text{gb-R}_0$ if $(1,2)^*-\text{Ker}_{\pi \text{gb}}(\{x\})\neq X$ for every $x \in X$. **Proof:** Suppose that the space X is weakly $(1,2)^*-\pi \text{gb-R}_0$. Assume that there is a point y in X such that $(1,2)^*-\text{Ker}_{\pi \text{gb}}(\{y\})=X$. Then $y \notin O$ where O is some proper $(1,2)^*-\pi \text{gb-}$

open subset of X. This implies $y \in \bigcap_x \in_X (1,2)^* - \pi gb-cl(\{x\})$ which is a contradiction.

Conversely, Assume $(1,2)^*$ -Ker_{$\pi gb}(<math>\{x\}$) $\neq X$ for every $x \in X$. If</sub>

there is a point $y \in X$ such that $y \in \bigcap_x \in_X (1,2)^*$ - π gb-cl({x}),then every $(1,2)^*$ - π gb-open set containing y must contain every point of X. This implies the unique $(1,2)^*$ - π gb-open set containing yis X. Hence $(1,2)^*$ -Ker_{π gb}({y})=X, which is a contradiction. Thus X is weakly $(1,2)^*$ - π gb-R₀.

Example5.22:LetX={a,b,c,d}. τ_1 ={ Φ ,{a},{b},{c},{a,b},{a,c},{b},{a,c},{b},{a,c},{b},{a,c},{b,c},X} and τ_2 ={ Φ ,{a},X}.(1,2)* π gbO(X, τ)={ Φ ,{a},{b},{c},{a,b},{a,c},{b,c},{a,d},{b,d},{c,d},{a,b,c},{b,c,d},{a,c,d},{a,b,d},{c},{b,c},{a,c},{b,c},{a,d},{a,c,d},{a,b,c},{b,c,d},{a,c,d},{a,b,d},X, Then X is (1,2)*- π gb-R₀ but not ultra- α -R₀. **Conclusion:**

A study on new separation axioms called π gb-separation axioms using the $(1,2)^*$ - π gb-open sets in bitopological spaces have been done. Also some results of $(1,2)^*$ - π gb-T_i, $(1,2)^*$ - π gb-D_i, where i = 0,1,2, and $(1,2)^*$ - π gb-R_i,i=0,1 are studied in this paper.

References

[1] AshishKar and Paritosh Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82 (1990), 415–422.

[2] D. Andrijevic, On b-open sets, Mat. Vesnik 48 (1996), 59-64.

[3] S. Athisayaponmani and m. Lellisthivagar, Another form of separation axioms, Methods of functional analysis and topology, vol. 13 (2007), no. 4, pp. 380–385.

[4] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71(1996),109-120.

[5] J.Dontchev and T.Noiri, Quasi Normal Spaces and π g-closed sets ,Acta Math. Hungar,89 (3)(2000), 211-219.

[6] E. Ekici and M. Caldas, Slightly -continuous functions, Bol. Soc. Parana. Mat. (3) 22 (2004), 63-74.

[7] M. Ganster and M. Steiner, On $b\tau$ -closed sets, Appl. Gen. Topol. 8 (2007), 243-247.

[8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36–41.

[9] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89-96.

[10] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89 (1975), 395–402.

[11] Miguel Caldas, A separation axiom between semi- T_0 and semi- T_1 , Mem. Fac. Sci. Kochi. Univ.(Math.) 18 (1997), 37-42.

[12] Saeid Jafari, M. Lellis Thivagar and S. Athisaya Ponmani, $(1, 2) \alpha$ -open sets based on bitopological separation axioms, Soochow Journal of Mathematics ,volume 33, no. 3, pp. 375-381, july 2007.

[13] D. Sreeja and C. Janaki ,On π gb-Closed Sets in Topological Spaces, International Journal of Mathematical Archive-2(8), 2011, 1314-1320

[14] D.Sreeja and C.Janaki, On $(1,2)^*$ - π gb-closed sets, International Journal of Computer Applications (0975 – 8887) Volume 42- No.5, March 2012.

[15] D.Sreeja and C.Janaki , A New Type of Homeomorphism in Bitopological Spaces International Journal of Scientific and Research Publications, Volume 2, Issue 7, July 2012.