On $\pi \mathrm{gb}$-Separation Axioms in Bitopological Spaces

D.Sreeja ${ }^{1 *}$ and C.Janaki ${ }^{2}$
${ }^{1}$ Department of Mathematics, CMS College of Science and Commerce, Coimbatore-6, India.
${ }^{2}$ Department of Mathematics, L.R.G Govt.Arts College for Women, Tirupur-4, India.

ARTICLE INFO

Article history:

Received: 13 September 2012;
Received in revised form:
19 November 2012;
Accepted: 28 November 2012;

Keywords

$(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{\mathrm{i}}$,
$(1,2)^{*}-\pi g b-D_{i}$ where $i=0,1,2$ and
$(1,2) *-\pi g b-R_{i}, i=0,1$.

Abstract

In this paper, we introduce and study some new separation axioms using the $(1,2)^{*}-\pi g b-$ open sets in bitopological spaces.

© 2012 Elixir All rights reserved.

1.Introduction

Levine $[8,9]$ introduced the concept of generalized closed sets and semi open sets in topological space and a class of topological spaces called $\mathrm{T}_{1 / 2}$ spaces. The investigation of generalized closed sets leads to several new separation axioms. Andrijevic [2] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. This type of sets was discussed by Ekici and Caldas [6] under the name of γ-open sets. Ashish Kar and Bhattacharya [1], in 1990, continued their work on pre-open sets and offered another set of separation axioms analogous to the semi separation axioms defined by Maheshwari and Prasad [10]. Caldas [11] defined a new class of sets called semi-Difference (briefly sD) sets by using the semiopen sets [7], and introduced the semi $-D_{i}$ spaces for $i=0,1,2 . S$. Athisaya ponmani and M. Lellis Thivagar [3] discussed pre T_{k} spaces and pD sets in bitopological spaces.

In this paper, we have introduced a new generalized axiom called $\pi \mathrm{gb}$-separation axioms in bitopological spaces. We have incorporated $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{\mathrm{i}},(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{\mathrm{i}}$, where $\mathrm{i}=0,1,2$, and $(1,2) *-\pi \mathrm{gb}-\mathrm{R}_{\mathrm{i}}, \mathrm{i}=0,1$.

2. Preliminaries

Let us recall the following definitions which we shall require later.
Definition 2.1: A subset A of a space (X)is called
(1) a regular open set if $\mathrm{A}=\mathrm{int}(\mathrm{cl}(\mathrm{A}))$ and a regular closed set if A= cl(int (A));
(2) b-open [2] or sp-open [4], $\gamma-$ open [6] if $\mathrm{A} \subset \operatorname{cl}(\operatorname{int}(\mathrm{A})) \cup$ int ($\mathrm{cl}(\mathrm{A})$).

The complement of a b-open set is said to be b-closed [2]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by $\mathrm{bCl}(\mathrm{A})$. The union of all b open sets of X contained in A is called b-interior of A and is denoted by $\operatorname{bInt}(\mathrm{A})$. The family of all b-open (resp. α-open, semi-open, preopen, β-open, b -closed, preclosed) subsets of a space X is denoted by $\mathrm{bO}(\mathrm{X})($ resp. $\alpha \mathrm{O}(\mathrm{X}), \mathrm{SO}(\mathrm{X}), \mathrm{PO}(\mathrm{X})$, $\beta O(X), b C(X), P C(X))$ and the collection of all b-open subsets of X containing a fixed point x is denoted by bO (X, x). The sets
$\mathrm{SO}(\mathrm{X}, \mathrm{x}), \alpha \mathrm{O}(\mathrm{X}, \mathrm{x}), \mathrm{PO}(\mathrm{X}, \mathrm{x}), \beta \mathrm{O}(\mathrm{X}, \mathrm{x})$ are defined analogously.
Definition 2.2: A subset A of a space (X, τ) is called $\pi \mathrm{g}$-closed [5] if $\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and U is π-open.
Definition 2.3: A subset A of a space X is called $\pi g b-c l o s e d$ [13] if $\operatorname{bcl}(A) \subset U$ whenever $A \subset U$ and U is π-open in (X, τ).
By $\pi \mathrm{GBC}(\tau)$ we mean the family of all $\pi \mathrm{gb}$ - closed subsets of the space (X, τ).
Definition 2.4[14]: A subset A of a bitopological space (X, τ_{1}, τ_{2}) is called (1, 2) ${ }^{*}-\pi$ generalized b-closed (briefly $(1,2)^{*}-\pi g b-$ closed) if $\tau_{1} \tau_{2}$-bcl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\tau_{1} \tau_{2}-\pi$-open in X .
Definition 2.5[14]: A subset A of a bitopological space (X, τ_{1}, $\left.\tau_{2}\right)$ is called $(1,2)^{*}$-b-open [14] if $\mathrm{A} \subset \tau_{1} \tau_{2-} \operatorname{cl}\left(\tau_{1} \tau_{2} \operatorname{int}(\mathrm{~A})\right) \cup \tau_{1} \tau_{2-}$ int ($\tau_{1} \tau_{2}-\mathrm{cl}(\mathrm{A})$).
Definition 2.6[14]:A function f: $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1,} \sigma_{2}\right)$ is called 1) $(1,2)^{*}-\pi g b-$ continuous [13] if every $f^{-1}(V)$ is $(1,2)^{*}-\pi g b-$ closed in X for every closed set V of Y .
2) $(1,2)^{*}-\pi g b$ - irresolute [13] if $\mathrm{f}^{-1}(\mathrm{~V})$ is $(1,2)^{*}-\pi g b$ - closed in X for every $\pi \mathrm{gb}$-closed set V in Y .
Definition 2.7[14]: A map f: $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1,} \sigma_{2}\right)$ is said to be $(1,2)^{*}-\pi g b$-open if for every $(1,2)^{*}$-open set F of $X, f(F)$ is $(1,2)^{*}$ - $\pi \mathrm{gb}$-open in Y.
Definition 2.8[15] :A map f: $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1,} \sigma_{2}\right)$ is said to be $\mathrm{M}-(1,2)^{*}$ - $\pi \mathrm{gb}$-open if for every $\pi \mathrm{gb}$-open set F of $\mathrm{X}, \mathrm{f}(\mathrm{F})$ is $\pi \mathrm{gb}$-open in Y .
Definition 2.8[12]. A bitopological space X is said to be
(i) Ultra $\alpha-\mathrm{R}_{0}$ (resp. ultra semi- R_{0}) if $(1,2) \alpha \mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}($ resp. $(1,2) \operatorname{scl}(\{x\}) \subseteq \mathrm{U}$) whenever $\mathrm{x} \in \mathrm{U} \in(1,2) \alpha \mathrm{O}(\mathrm{X})$ (resp. $\mathrm{x} \in \mathrm{U}$ $\in(1,2) \mathrm{SO}(\mathrm{X}))$.
(ii) Ultra $\alpha-R_{1}$ (resp. ultra semi- R_{1}) if for $x, y \in X$ such that x $\notin(1,2) \alpha c l(\{y\})$
(resp. (1, 2)scl (\{y\})), there exist disjoint (1, 2) α-open (resp. (1, 2) semiopen) sets U, V in X such that $x \in U$ and $y \in V$.

[^0]Definition 2.9: A bitopological space X is $(1,2)^{*}-T_{0}$ if for each pair of distinct points x, y of X , there exists a $(1,2)^{*}$-open set containing one of the points but not the other.
Complement of $(1,2)^{*}$-b-open is called (1,2$)^{*}$-b-closed.
Throughout the following sections by X and Y we mean bitopological spaces $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ and $\left(\mathrm{Y}, \sigma_{1,} \sigma_{2}\right)$ respectively.
(1,2)*- $\boldsymbol{\pi g b}-\mathrm{T}_{\mathrm{i}}$-Spaces
Definition 3.1: A bitopological space X is $(1,2)^{*}-\pi g b-\mathrm{T}_{0}$ if for each pair of distinct points x, y of X, there exists a $(1,2)^{*}-\pi g b-$ open set containing one of the points but not the other.
Lemma 3.2: If for some $x \in X,\{x\}$ is $(1,2)^{*}$ - $\pi g b$-open, then $x \notin(1,2)^{*}-\pi g b c l(\{y\})$ for all $y \neq x$.
Proof: If $\{x\}$ is $(1,2)^{*}$ - $\pi g b$-open for some $x \in X$, then $X-\{x\}$ is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{closed}$ and $\mathrm{x} \notin \mathrm{X}-\{\mathrm{x}\}$.If $\mathrm{x} \in(1,2)^{*}-\pi \mathrm{gbcl}\{\mathrm{y}\}$ for some $\mathrm{y} \neq \mathrm{x}$, then x, y both are in all the $(1,2)^{*}-\pi \mathrm{gb}$-closed sets containing y.This implies $x \in X-\{x\}$ which is not true. Hence $x \notin(1,2)^{*}-\pi \operatorname{gbcl}(\{y\})$.
Theorem 33: In a space X, distinct points have distinct $(1,2)^{*}$ $\pi \mathrm{gb}$-closures.
Proof: Letx, $y \in X, x \neq y$.Take $A=\{x\}^{c}$.
Case(i): $\operatorname{If} \tau_{1} \tau_{2}$-cl(A) $=\mathrm{A}$. Then A is $\tau_{1,2}$-closed.This implies A is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{closed}$. Then $\mathrm{X}-\mathrm{A}=\{\mathrm{x}\}$ is $(1,2)^{*}-\pi \mathrm{gb}$-open not containing y . Then by previous lemma 3.2, $\mathrm{x} \notin(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{y\})$ and $y \in(1,2)^{*}-\pi g b-\operatorname{cl}(\{y\}) . T h u s(1,2)^{*}-\pi g b-c l(\{x\})$ and $(1,2)^{*}-\pi \mathrm{gbcl}(\{y\})$ are distinct.
Case(ii): If $\tau_{1} \tau_{2}$-cl(A) $=X$. Then A is $(1,2)^{*}-\pi g b$-open and $\{x\}$ is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{closed}$. This implies $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})=\{\mathrm{x}\}$ which is not equal to $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$.
Theorem3.4:A bitopological space X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$ iff for each pair of distinct points x, y of $X,(1,2)^{*}-\pi g b-c l(x) \neq(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{cl}(\mathrm{y})$.
Proof: Necessity: Let Xbe a (1,2)*- $\pi \mathrm{gb}-\mathrm{T}_{\mathrm{o}}$ space. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \square \mathrm{y}$. Then there exists a (1,2)*- $\pi \mathrm{gb}$-open set V containing one of the points but not the other, say $x \in V$ and $y \notin V$. Then V^{c} is a $(1,2)^{*}-\pi g b$-closed set containing y but not x. But $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{y})$ is the smallest $(1,2)^{*}-\pi \mathrm{gb}$-closed set containing y. Therefore $(1,2)^{*}-\pi g b-c l(y) \subset V^{c}$ and hence $x \notin$ $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{y})$.Thus $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{x}) \neq \square(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{y})$.
Sufficiency: Suppose $x, y \in X, x \neq \square y$ and $(1,2)^{*}-\pi g b-c l(x)$ $\neq \square(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{y})$.Let $\mathrm{z} \in \mathrm{X}$ such that $\mathrm{z} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ but $z \notin(1,2)^{*}-\pi g b-c l(\{y\})$.If $x \in(1,2)^{*}-\pi g b-c l(\{y\})$, then $(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{cl}(\mathrm{x}) \subset(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{y})$ and hence $\mathrm{z} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}$ $\})$.This is a contradiction. Therefore $\mathrm{x} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$.That implies $x \in\left((1,2)^{*}-\pi g b-c l(\{y\})\right.$.Therefore $\left((1,2)^{*}-\pi g b-c l(\{y\})^{c}\right.$ is a $(1,2)^{*}-\pi \mathrm{gb}$-open set containing x but not y .Hence X is $(1,2) *-\pi g b-\mathrm{T}_{0}$.
Theorem 3.5: Every bitopological space is $(1,2) *-\pi \mathrm{gb}-\mathrm{T}_{0}$.
Proof: Follows from Previous two theorems 3.3 and 3.4.
Theorem 3.6: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijection, $\mathrm{M}-(1,2)^{*}-\pi \mathrm{gb}$-open map and X is $(1,2)^{*}-\pi g b-\mathrm{T}_{0}$ space, then Y is also $(1,2)^{*}-\pi g b-$ T_{0} space.
Proof: Let $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$. Since f is a bijection, there exists $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$ space, there exists a $(1,2)^{*}-\pi g b$-open set M in X such that $x_{1} \in M$ and $x_{2} \notin M$. Since f is $M-(1,2)^{*}-\pi g b$-open
map, $\mathrm{f}(\mathrm{M})$ is a $(1,2)^{*}-\pi \mathrm{gb}$-open set in Y.Now we have $\mathrm{x}_{1} \in \mathrm{M} \Rightarrow$ $f\left(x_{1}\right) \in f(M) \Rightarrow y_{1} \in f(M) . x_{2} \notin M \Rightarrow f\left(x_{2}\right) \notin f(M) \Rightarrow y_{2} \notin f(M)$. Hence for any two distinct points y_{1}, y_{2} in Y, there exists $(1,2)^{*}-\pi g b-$ open set $f(M)$ in Y such that $y_{1} \in f(M)$ and $y_{2} \notin f(M)$.Hence Y is a $(1,2) *-\pi g b-T_{0}$ space.
Theorem 3.7: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijection, $(1,2)^{*}$ - $\pi \mathrm{gb}$-open map and X is $(1,2)^{*}-\mathrm{T}_{0}$ space, then Y is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$ space.
Proof: Let $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$. Since f is a bijection, there exists $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Since X is $(1,2)^{*}-\mathrm{T}_{0}$ space, there exists a $(1,2)^{*}$-open set M in X such that $\mathrm{x}_{1} \in \mathrm{M}$ and $\mathrm{x}_{2} \notin \mathrm{M}$. Since f is $(1,2)^{*}-\pi g b$-open map, $\mathrm{f}(\mathrm{M})$ is a $(1,2)^{*}-\pi g b$-open set in Y. Now we have $x_{1} \in M \Rightarrow f\left(x_{1}\right) \in f(M) \Rightarrow$ $y_{1} \in f(M) . x_{2} \notin M \Rightarrow f\left(x_{2}\right) \notin f(M) \Rightarrow y_{2} \notin f(M)$. Hence for any two distinct points y_{1}, y_{2} in Y,there exists $(1,2)^{*}$ - $\pi g b$-open set $f(M)$ in Y such that $y_{1} \in f(M)$ and $y_{2} \notin f(M)$.Hence Y is a $(1,2)^{*}-\pi g b-$ T_{0} space.
Theorem 3.8: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijection,(1,2)*- $\pi \mathrm{gb}$-irresolute map and Y is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$ space, then X is also $(1,2)^{*}-\pi \mathrm{gb}-$ T_{0} space.
Proof: Let $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$. Since f is a bijection, there exists $y_{1}, y_{2} \in X$ with $y_{1} \neq y_{2}$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2} \Rightarrow x_{1=} f-$ ${ }^{1}\left(y_{1}\right)$ and $x_{2}=f^{-1}\left(y_{2}\right)$. Since Y is a $(1,2)^{*}-\pi g b-T_{0}$ space, there exists a $(1,2)^{*}$ - $\pi \mathrm{gb}$-open set M in Y such that $\mathrm{y}_{1} \in \mathrm{M}$ and $\mathrm{y}_{2} \notin \mathrm{M}$. Since f is $(1,2)^{*}-\pi \mathrm{gb}$-irresolute, $\mathrm{f}^{-1}(\mathrm{M})$ is $(1,2)^{*}-\pi \mathrm{gb}$-open set in X.Now we have $y_{1} \in M \Rightarrow f^{-1}\left(y_{1}\right) \in f^{-1}(M) \Rightarrow x_{1} \in f^{-1}(M)$. $y_{2} \notin M \Rightarrow f^{-1}\left(y_{2}\right) \notin f^{-1}(M) \Rightarrow x_{2} \notin f^{-1}(M)$. Hence for any two distinct points x_{1}, x_{2} in X,there exists $(1,2)^{*}-\pi g b$-open set $f^{-1}(M)$ in X such that $x_{1} \in f^{1}(M)$ and $x_{2} \notin f^{-1}(M)$.Hence X is a $(1,2)^{*}-\pi g b-$ T_{0} space.
Theorem 3.9: Let $f: X \rightarrow Y$ be a bijection, (1,2)*- $\pi g b-$ continuous and Y is $(1,2)^{*}-\mathrm{T}_{0}$ space, then X is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$ space.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijection, $(1,2)^{*}-\pi \mathrm{gb}-$ continuous map and Y is a $(1,2)^{*}-T_{0}$ space. Letx $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$. Since f is a bijection, there exists $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2} \Rightarrow x_{1=} f^{-1}\left(y_{1}\right)$ and $x_{2}=f^{-1}\left(y_{2}\right)$. Since Y is $(1,2)^{*}-T_{0}$ space, there exists a $(1,2)^{*}$-open set M in X such that $y_{1} \in M$ and $y_{2} \notin \mathrm{M}$. Since f is $(1,2)^{*}-\pi \mathrm{gb}$-continuous map, $\mathrm{f}^{1}(\mathrm{M})$ is a $(1,2)^{*}$ $\pi g b$-open set in Y.Now we have $y_{1} \in M \Rightarrow f^{-1}\left(y_{1}\right) \in f^{-1}(M) \Rightarrow x_{1} \in f$ ${ }^{1}(M) \operatorname{andx}_{2} \notin f^{1}(M)$. Hence for any two distinct points y_{1}, y_{2} in Y ,there exists $(1,2)^{*}-\pi \mathrm{gb}$-open set $\mathrm{f}^{-1}(\mathrm{M})$ in Y such that $\mathrm{x}_{1} \in \mathrm{f}$ ${ }^{1}(M)$ and $\quad x_{2} \notin f^{-1}(M)$.Hence Y is a $(1,2)^{*}-\pi g b-T_{0}$ space.
Definition 3.10: A bitopological space Xis (1,2)*- $\pi \mathrm{gb}-$ symmetric if for x and y in $X, x \in(1,2)^{*}-\pi g b-c l(\{y\}) \Rightarrow y \in$ $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$.
Theorem 3.11: X is $(1,2)^{*}$ - $\pi \mathrm{gb}$-symmetric iff $\{\mathrm{x}\}$ is $(1,2)^{*}$ - $\pi \mathrm{gb}-$ closed for $\mathrm{x} \in \mathrm{X}$.
Proof: Assume that $\mathrm{x} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$ but $\mathrm{y} \notin(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\})$.This implies $\left((1,2) *-\pi g b-c l(\{x\})^{c}\right.$ contains y. Hence the set $\{y\}$ is a subset of $\left((1,2)^{*}-\pi g b-c l(\{x\})^{c}\right.$. This implies $(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{cl}(\{y\})$ is a subset of $\left((1,2)^{*}-\pi g b-\mathrm{cl}(\{x\})^{\mathrm{c}}\right.$. Now $\left((1,2)^{*}-\right.$ $\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})^{\mathrm{c}}$ contains x which is a contradiction.

Conversely, Suppose that $\{x\} \subset E \in(1,2)^{*}-\pi g b O(X)$ but $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{cl}(\{y\})$ which is a subset of E^{c} and $\mathrm{x} \notin \mathrm{E}$. But this is a contradiction.
Definition 3.12: A space X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{1}$ if for any pair of distinct points x , y of X , there is a $(1,2)^{*}-\pi \mathrm{gb}$-open set U in X such that $x \in U$ and $y \notin U$ and there is a $(1,2)^{*}-\pi g b$-open set V in X such that $y \in U$ and $x \notin V$.
Remark 3.13 : Every $(1,2)^{*}-\pi g b-\mathrm{T}_{1}$ space is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$ space.
Theorem3.14 : In a space X, the following are equivalent
(1) X is $(1,2)^{*}-\pi g b-\mathrm{T}_{1}$
(2) For every $x \in X,\{x\}$ is $(1,2) *-\pi g b-$ closed in X.
(3) Each subset A of X is the intersection of all $(1,2)^{*}-\pi \mathrm{gb}$-open sets containing x .
(4) The intersection of all $(1,2)^{*}$ - $\pi \mathrm{gb}$-open sets containing the point x in X is $\{\mathrm{x}\}$.
Proof: (1) \Rightarrow (2) Suppose X is $(1,2)^{*}-\pi g b-T_{1}$. Let $x \in X$ and $\mathrm{y} \in\{\square \mathrm{x}\}^{\mathrm{c}}$.Then $\mathrm{x} \neq \mathrm{y}$ and so there exists a $(1,2)^{*}-\pi \mathrm{gb}$-open set U_{y} such that $y \in U_{y}$ but $x \notin U_{y}$. Therefore $y \in U_{y} \subset\{\square x\}^{c}$. That is, $\{x\}^{c}=\cup\left\{U_{y} / y \in\{x\}^{c}\right\}$ is $(1,2)^{*}-\pi g b$-open. Hence $\{x\} \square$ is $(1,2)^{*}-$ $\pi \mathrm{gb}$-closed.
(2) \Rightarrow (3) Let $A \subset X$ and $y \notin A$. Then $A \subset\{y\}^{c}$ and $\{y\}^{c}$ is $(1,2)^{*-}$ $\pi g b$-open in X and $A=\cap\left\{\{y\}^{c}: y \in A^{c}\right\}$ which is the intersection of all $(1,2)^{*}-\pi \mathrm{gb}$-open sets containing A .
$(3) \Rightarrow(4)$ is obvious
(4) \Rightarrow (1) Let $x, y \in X, x \neq y$.By assumption, there exists a $(1,2)^{*}$ $\pi g b$-open set containing x but not y and the $(1,2)^{*}$ - $\pi g b$-open set V containing y but not x. Hence X is $(1,2)^{*}-\pi g b-T_{1}$.
Theorem 3.15: X is $(1,2)^{*}$ - $\pi \mathrm{gb}$-symmetric iff $\{\mathrm{x}\}$ is $(1,2)^{*}-\pi \mathrm{gb}-$ closed for $\mathrm{x} \in \mathrm{X}$.
Proof: Assume that $\mathrm{x} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$ but $\mathrm{y} \notin(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\})$.This implies $(1,2)^{*}-\left(\pi g b-c l(\{x\})^{\mathrm{c}}\right.$ contains y.Hence the set $\{y\}$ is a subset of $(1,2)^{*}-\left(\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})^{\mathrm{c}}\right.$. This implies $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$ is a subset of $(1,2)^{*}-\left(\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})^{\mathrm{c}}\right.$. Now $(1,2)^{*}$ $\left(\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})^{\mathrm{c}}\right.$ contains x which is a contradiction.
Conversely, Suppose that $\{x\} \subset E \in(1,2)^{*}-\pi G B O(X)$ but $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{cl}(\{y\})$ which is a subset of E^{c} and $\mathrm{x} \notin \mathrm{E}$. But this is a contradiction.
Theorem 3.16: A bitopological space X is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{1} \mathrm{iff}$ the singletons are $(1,2)^{*}-\pi g b$-closed sets.
Proof: LetXbe $(1,2)^{*}-\pi g b-T_{1}$ and x be any point of X. Suppose $y \in\{X\}^{c}$. Then $x \neq y$ and so there exists a $(1,2)^{*}-\pi g b$-open set U such that $y \in U$ but $x \notin U$. Consequently, $y \in U \subset(\{x\})^{c}$. That is $(\{x\})^{c}=\cup\left\{U \mid y \in(\{x\})^{c}\right\}$ which is $(1,2)^{*}-\pi g b-$ open.
Conversely suppose $\{x\}$ is $(1,2)^{*}-\pi g b-c l o s e d$ for every $x \in X$. Let $x, y \in X$ with $x \neq y$. Then $x \neq y \Rightarrow y \in(\{x\})^{c}$. Hence $(\{x\})^{c}$ is a $(1,2)^{*}-\pi g b$-open set containing y but not x. Similarly $(\{y\})^{c}$ is a $(1,2)^{*}-\pi g b-$ open set containing x but not y. Hence X is $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{T}_{1}$-space.
Remark 3.17: If X is $(1,2)^{*}-\pi g b-T_{i}$, then X is $(1,2)^{*}-\pi g b-T_{i-1}$;i=1,2.
Corollary 3.18 : If X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{1}$, then it is $(1,2)^{*}-\pi \mathrm{gb}-$ symmetric.
Proof: In a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{1}$ space, singleton sets are $(1,2)^{*}-\pi \mathrm{gb}-$ closed. By theorem 3.17, and by theorem 3.16, the space is $(1,2) *$ - $\pi g b$-symmetric.

Corollary 3.19: The following statements are equivalent
(i) X is $(1,2)^{*}-\pi \mathrm{gb}$-symmetric and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$
(ii) X is $(1,2)^{*}-\pi g b-\mathrm{T}_{1}$.

Proof: By corollary 3.18 and remark 3.17 ,it suffices to prove (1) \Rightarrow (2).Let $x \neq y$ and by $(1,2)^{*}-\pi g b-T_{0}$,assume that $x \in G_{1} \subset$ $(\{y\})^{c}$ for some $\mathrm{G}_{1} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$. Then $\mathrm{x} \notin(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{y\})$ and hence $y \notin(1,2)^{*}-\pi g b-c l(\{x\})$.There exists a $G_{2} \in$ $(1,2)^{*}-\pi \mathrm{GBO}(X)$ such that $\mathrm{y} \in \mathrm{G}_{2} \subset(\{\mathrm{x}\})^{\mathrm{c}}$. Hence Xis a $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{T}_{1}$ space.
Definition3.20:A space X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{2}$ if for each pair of distinct points x and y in X , there exists a $(1,2)^{*}-\pi g b$-open set U and a $(1,2)^{*}-\pi g b$-open set V in X such that $x \in U, y \in \operatorname{Vand} U \cap V$ $=\Phi$.
Remark 3.21: Every $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{2}$ space is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{1}$.
Definition 3.22: Let X be a bitopological space. Let x be a point of X and G be a subset of X. Then G is called an $(1,2)^{*}-\pi g b-$ neighbourhood of $x\left(b r i e f l y(1,2)^{*}-\pi g b-n b d\right.$ of $\left.x\right)$ if there exists an $(1,2)^{*}-\pi g b-$ open set U of X such that $x \in U \subset G$.
Theorem 3.23: For a bitopological space X the following are equivalent:
(1) X is $(1,2) *-\pi \mathrm{gb}-\mathrm{T}_{2}$
(2)If $x \in X$, then for each $y \neq x$, then there is an $(1,2)^{*}-\pi g b-n b d$ $N(x)$ of x such that $y \nexists(1,2)^{*}-\pi g b c l N(x)$
(3) For each $\mathrm{x} \in\left\{(1,2)^{*}-\pi \mathrm{gbcl}(\mathrm{N}): \mathrm{N}\right.$ is an $(1,2)^{*}-\pi \mathrm{gb}$-nhd of $x\}=\{x\}$.
(2) If $x \in X$, then for each $y \neq \square x$, there is a (1,2)*- $\pi g b$-open set U containing x such that $y \nexists(1,2)^{*}-\pi g b \square-c l(U)$
Proof: (1) \Rightarrow (2):Let $x \in X$. If $y \in X$ is such that $y \neq x$ there exists disjoint $(1,2)^{*}-\pi g b$ open sets U and V such that $x \in U$ and $y \in V$. Then $x \in U \subset X-V$ which implies $X-V$ is $(1,2)^{*}-\pi g b-n b d$ of x. Also $\mathrm{N}(\mathrm{x})=X-\mathrm{V}$. Therefore $\mathrm{y} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl} \mathrm{N}(\mathrm{x})$.
(2) \Rightarrow (3) Obvious
(3) \Rightarrow (1): Let $x, y \in X$ and $x \neq y$. By (2), there exists a (1,2)*- $\pi g b-$ nbd N of x such that $\mathrm{y} \notin(1,2)^{*}-\pi g b-c l(N)$.Therefore $\mathrm{y} \in \mathrm{X}-$ $\left((1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{N})\right)$. $\mathrm{X}-\left((1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{N})\right)$ is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{open}$. Since N is $(1,2)^{*}-\pi g b-n b d$ of x, there exists $U \in(1,2)^{*}$ $\pi \mathrm{GBO}(\mathrm{X})$ such that $\mathrm{x} \in \mathrm{U} \subset \mathrm{N}$ and $\mathrm{U} \cap \mathrm{X}-\left((1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{N})\right)=\Phi$. Hence X is $(1,2)^{*}-\pi g b-T_{2}$.
Theorem 3.24: Iff : $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right) \rightarrow\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ is injective, $(1,2)^{*}$ $\pi \mathrm{gb}$-irresolute open map and Y is $(1,2)^{*}-\pi g b-\mathrm{T}_{2}$,then X is $(1,2) *-\pi g b-T_{2}$.
Proof: Let $x, y \in X$ and $x \neq y$. Since f is injective, $f(x) \neq f(y)$ in Y and there exists disjoint $(1,2)^{*}$ - $\pi g b$-open sets U and V such that $f(x) \in U$ and $f(y) \in V$.Let $G=f^{-1}(U)$ and $H=f^{-1}(V)$. Then $G \cap H=f$ ${ }^{1}(\mathrm{U}) \cap \mathrm{f}^{-1}(\mathrm{~V})=\mathrm{f}^{-1}(\mathrm{U} \cap \mathrm{V})=\Phi$. Hence X is $(1,2)^{*}-\pi g b-\mathrm{T}_{2}$.
4. (1,2)*- $\pi \mathrm{gb}-\mathrm{D}$-sets and associated separation axioms

Definition 4.1: A subset A of a bitopological space X is called $(1,2)^{*}$-D-set if there are two $\mathrm{U}, \mathrm{V} \in\left((1,2)^{*}-\mathrm{O}(\mathrm{X})\right.$ such that $\mathrm{U} \neq \mathrm{X}$ and $A=U-V$.
Definition 4.2 : A space X is said to be
(i) $(1,2)^{*}-\mathrm{D}_{0}$ if for any pair of distinct points x and y of X , there exist a (1,2)*-D-set in X containing x but not y (or) a $(1,2)^{*}$-D-set in X containing y but not x.
(ii) $(1,2)^{*}-\mathrm{D}_{1}$ if for any pair of distinct points x and y in X ,there exists a (1,2)*-D-set of X containing x but not y and a (1,2)*-Dset in X containing y but not x.
(iii) $(1,2)^{*}-\mathrm{D}_{2}$ if for any pair of distinct points x and y of X , there exists disjoint $\left((1,2)^{*}\right.$-D-sets G and H in X containing x and y respectively.
Definition 4.3: A bitopological space X is said to be (1,2)*-Dconnected if X cannot be expressed as the union of two disjoint non-empty (1,2)*-D-sets.
Definition 4.4: A bitopological space X is said to be $(1,2)^{*}$ - D compact if every cover of X by $(1,2)^{*}$-D-sets has a finite subcover.
Definition 4.5: A subset A of a bitopological space X is called $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set if there are two $\mathrm{U}, \mathrm{V} \in\left((1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})\right.$ such that $\mathrm{U} \neq \mathrm{X}$ and $\mathrm{A}=\mathrm{U}-\mathrm{V}$.
Clearly every $(1,2)^{*}-\pi g b$-open set U different from X is a $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{D}$ set if $\mathrm{A}=\mathrm{U}$ and $\mathrm{V}=\Phi$.
Example 4.6 : Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\tau_{1}=\{\Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$, $\tau_{2}=\{\Phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\} .$. Then $\{\mathrm{c}\}$ is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set but not $(1,2)^{*}$ $\pi g b-$ open. \quad Since $\quad(1,2)^{*}-\pi G B O(X)=\{$ $\Phi,\{a\},\{b\},\{b, c\},\{a, c\},\{a, b\}, X\}$. Then $U=\{b, c\} \neq X$ and $V=\{a, b\}$ are $(1,2)^{*}-\pi g b$-open sets in X. For U and V, since $U-V=\{b, c\}-$ $\{\mathrm{a}, \mathrm{b}\}=\{\mathrm{c}\}$,then we have $\mathrm{S}=\{\mathrm{c}\}$ is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}-$ set but not $(1,2)^{*}-\pi \mathrm{gb}-$ open.
Definition4.7: A space X is said to be
(iv) $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{0}$ if for any pair of distinct points x and y of X ,there exist a (1,2)*- $\pi \mathrm{gb}$-D-set in X containing x but not y (or) a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}-$ set in X containing y but not x .
(v) $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1}$ if for any pair of distinct points x and y in X ,there exists a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set of X containing x but not y and

(vi) $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{2}$ if for any pair of distinct points x and y of X , there exists disjoint $(1,2)^{*}-\pi g b-D-s e t s \mathrm{G}$ and H in X containing x and y respectively.

Example	4.8	Let	$\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$	
$\tau_{1}=\{\Phi,\{$				
$\tau_{2}=\{\Phi,\{\mathrm{a}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$, then X is $(1,2) *-\pi \mathrm{gb}-\mathrm{D}_{\mathrm{i}}, \mathrm{i}=0,1,2$.				

Remark 4.9:

(i)If X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{\mathrm{i}}$, then Xis $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{\mathrm{i}} ; \mathrm{i}=0,1,2$.
(ii) If Xis $(1,2)^{*}-\pi g b-D_{\mathrm{i}}$, then it is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{\mathrm{i}-1} ; i=1,2$.

Theorem4.10: For a bitopological space X, the following statements hold.
(i) X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{0}$ iff it is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$
(ii) X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1} \mathrm{iff}$ it is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{2}$.

Proof: (1)The sufficiency is stated in remark 4.9 (i)
Let Xbe $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{0}$. Then for any two distinct points $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, atleast one of x, y say x belongs to $(1,2) *-\pi g b-D$-set G where $\mathrm{y} \notin \mathrm{G}$. Let $\mathrm{G}=\mathrm{U}_{1}-\mathrm{U}_{2}$ where $\mathrm{U}_{1} \neq \mathrm{X}$ and U_{1} and $\mathrm{U}_{2} \in(1,2)^{*}$ $\pi \mathrm{GBO}(\mathrm{X})$.Then $\mathrm{x} \in \mathrm{U}_{1}$. For $\mathrm{y} \notin \mathrm{G}$ we have two cases.(a) $\mathrm{y} \notin \mathrm{U} 1$ (b) $y \in U_{1}$ and $y \in U_{2}$.

In case (a), $x \in U_{1}$ but $y \notin U_{1} ;$ In case (b); $y \in U_{2}$ and $\mathrm{x} \notin \mathrm{U}_{2}$. Hence X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T} 0$.
(2) Sufficiency: Remark 4.9 (ii).

Necessity: Suppose X is $(1,2)^{*}-\pi g b-D_{1}$. Then for each distinct pair $x, y \in X$, we have $(1,2)^{*}-\pi g b-D$-sets G_{1} and G_{2} such that $x \in G_{1}$ and $y \notin G_{1} ; x \notin G_{2}$ and $y \in G_{2}$. Let $G_{1}=U_{1}-U_{2}$ and $G_{2}=U_{3}$ $-U_{4}$. By $x \notin G_{2}$, it follows that either $x \notin U 3$ or $x \in U_{3}$ and $x \in$ U_{4}
Now we have two cases(i)x $\notin \mathrm{U} 3$. By $\mathrm{y} \notin \mathrm{G}$, we have two subcases (a) $y \notin U_{1}$.By $x \in U_{1}-U_{2}$, it follows that $x \in U_{1}-\left(U_{2} \cup\right.$
$\left.U_{3}\right)$ and by $y \in U_{3}-U_{4}$, we have $y \in U_{3}-\left(U_{1} \cup U_{4}\right)$.Hence $\left(U_{1}-\right.$ $\left.\left(\mathrm{U}_{3} \cup \mathrm{U}_{4}\right)\right) \cap \mathrm{U}_{3}-\left(\mathrm{U}_{1} \cup \mathrm{U}_{4}\right)=\Phi$. $(\mathrm{b}) \mathrm{y} \in \mathrm{U} 1$ and $\mathrm{y} \in \mathrm{U}_{2}$, we have $\mathrm{x} \in \mathrm{U}_{1}-\mathrm{U}_{2} ; \mathrm{y} \in \mathrm{U} 2 . \Rightarrow\left(\mathrm{U}_{1}-\mathrm{U}_{2}\right) \cap \mathrm{U}_{2}=\Phi$..
(ii) $x \in U_{3}$ and $x \in U_{4}$. We have $y \in U_{3}-U_{4} ; x \in U_{4} \Rightarrow\left(U_{3}-U_{4}\right)$ $\cap \mathrm{U}_{4}=\Phi$. We get $\mathrm{U}_{1}-\mathrm{U}_{2}$ and U_{2} are disjoint $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$ sets containing x and y respectively Thus X is $(1,2)^{*}-\pi g b-\mathrm{D}_{2}$.
Theorem4.11: If X is $(1,2)^{*}-\pi g b-D_{1}$, then it is $(1,2)^{*}-\pi g b-T_{0}$.
Proof: Remark 4.9 and theorem 4.10.
Theorem 4.12: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a (1,2)*- $\pi \mathrm{gb}$-continuous surjective function and S is a $(1,2)^{*}$-D-set of Y ,then the inverse image of S is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set of X .
Proof: Let U_{1} and U_{2} be two open sets of Y.Let $S=U_{1}-U_{2}$ be a $(1,2)^{*}$-D-set and $U_{1} \neq Y$.We have $f^{1}\left(U_{1}\right) \in(1,2)^{*}-\pi G B O(X)$ and $\mathrm{f}^{1}\left(\mathrm{U}_{2}\right) \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$ and $\mathrm{f}^{1}\left(\mathrm{U}_{1}\right) \neq$ X. Hencef ${ }^{-1}(\mathrm{~S})=\mathrm{f}^{-1}\left(\mathrm{U}_{1}-\right.$ $\left.U_{2}\right)=\mathrm{f}^{-1}\left(\mathrm{U}_{1}\right)-\mathrm{f}^{-1}\left(\mathrm{U}_{2}\right)$. Hence $\mathrm{f}^{-1}(\mathrm{~S})$ is a $(1,2)^{*}-\pi$ gb-D-set.
Theorem 4.13 J: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a $(1,2)^{*}-\pi \mathrm{gb}$-irresolute surjection and E is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set in Y,then the inverse image of E is an $(1,2)^{*}-\pi g b-D-s e t$ in X.
Proof: Let E be a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}-$ set in Y.Then there are $(1,2)^{*}$ $\pi g b$-open sets U_{1} and U_{2} in Y such that $E=U_{1}-U_{2}$ and $\cup_{1} \neq \mathrm{Y}$. Since f is $(1,2)^{*}-\pi g b$-irresolute, $\mathrm{f}^{-1}\left(\mathrm{U}_{1}\right)$ and $\mathrm{f}^{-1}\left(\mathrm{U}_{2}\right)$ $(1,2)^{*}-\pi g b$-open in X.Since $U_{1} \neq Y$, we have $f^{1}\left(U_{1}\right) \neq X$. Hence f ${ }^{1}(E)=f^{-1}\left(U_{1}-U_{2}\right)=f^{-1}\left(U_{1}\right)-f^{-1}\left(U_{2}\right)$ is a $(1,2)^{*}-\pi g b-D-s e t$.
Definition 4.14: A point $x \in X$ which has X as a $(1,2)^{*}-\pi g b-$ neighbourhood is called $(1,2)^{*}-\pi g b-n e a t$ point.
Example4.15: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} . \tau_{1}=\{\Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\} . \tau_{2}=\{\Phi,\{\mathrm{a}\}$,\{a,b\},X\}.
$(1,2)^{*} \pi g b O(X)=\{\Phi,\{a\},\{b\},\{a, b\},\{b, c\},\{a, c\}, X\}$. The point $\{c\}$ is a $(1,2)^{*}-\pi \mathrm{gb}-$ neat point.
Theorem 4.16: For a $(1,2)^{*}-\pi g b-T_{0}$ bitopological spaceX, the following are equivalent.
(i) X is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1}$
(ii) X has no $(1,2)^{*}-\pi \mathrm{gb}-$ neat point.

Proof: (i) \Rightarrow (ii). Since X is a $(1,2)^{*}-\pi g b-D_{1}$, then each point x of X is contained in an $(1,2)^{*}-\pi g b-D-s e t ~ O=U-V$ and hence in U.By definition, $\mathrm{U} \neq \mathrm{X}$. This implies x is not a $(1,2)^{*}-\pi \mathrm{gb}$-neat point.
(ii) \Rightarrow (i) If X is $(1,2) *-\pi g b-T_{0}$, then for each distinct points x, $y \in X$, atleast one of them $\operatorname{say}(x)$ has a (1,2)*- $\pi g b-$ neighbourhood U containing x and not y. Thus $U \neq X$ is a $(1,2)^{*}-\pi g b-D-s e t$. If X has no $(1,2)^{*}-\pi g b-n e a t$ point, then y is not a $(1,2)^{*}-\pi g b-n e a t ~ p o i n t . ~ T h a t ~ i s ~ t h e r e ~ e x i s t s ~(1,2) *-\pi g b-~$ neighbourhood V of y such that $V \neq X$. Thus $y \in(V-U)$ but not x and V-U is a $(1,2)^{*}-\pi g b-D-$ set. Hence X is $(1,2) *-\pi g b-D_{1}$.
Remark 4.17: It is clear that an $(1,2) *-\pi g b-T_{0} b i t o p o l o g i c a l$ space X is not a $(1,2)^{*}-\pi g b-\mathrm{D}_{1}$ iff there is a $(1,2)^{*}-\pi g b-n e a t$ point in X . It is unique because x and y are both $(1,2)^{*}-\pi g b-n e a t$ point in X,then atleast one of them say x has an $(1,2)^{*}-\pi \mathrm{gb}-$ neighbourhood U containing x but not y .This is a contradiction since $U \neq X$.
Theorem 4.18: If Yis a $(1,2)^{*}-D_{1}$ space and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a $(1,2)^{*}-\pi g b-c o n t i n u o u s ~ b i j e c t i v e ~ f u n c t i o n, t h e n ~ X i s ~ a ~(1,2) *-\pi g b-~$ D_{1}-space.
Proof: Suppose Y is a $(1,2)^{*}$ - D_{1} space.Let x and y be any pair of distinct points in X,Since f is injective and Y is a $(1,2)^{*}$ D_{1} space, yhen there exists $(1,2)^{*}$-D-sets S_{x} and S_{y} of Y containing $f(x)$ and $f(y)$ respectively that $f(x) \notin S_{y}$ and $f(y)$ $\notin S_{x}$. By theorem $4.1 \mathrm{f}^{-1}\left(\mathrm{~S}_{\mathrm{x}}\right)$ and $\mathrm{f}^{-1}\left(\mathrm{~S}_{\mathrm{y}}\right)$ are $(1,2)^{*}$ - $\pi \mathrm{gb}$-D-sets in X containing x and y respectively such that $x \notin f^{-1}\left(S_{y}\right)$ and $y \notin f$ ${ }^{1}\left(\mathrm{~S}_{\mathrm{x}}\right)$.Hence X is a $(1,2)^{*}-\pi g b-\mathrm{D}_{1}$-space.

Theorem 4.19: If Y is $(1,2)^{*}-\pi g b-\mathrm{D}_{1}$ andf: $\mathrm{X} \rightarrow \mathrm{Y}$ is $(1,2)^{*}-$ $\pi \mathrm{gb}$-irresolute and bijective, then X is $(1,2) *-\pi \mathrm{gb}-\mathrm{D}_{1}$.
Proof: Suppose Y is $(1,2)^{*}-\pi g b-D_{1}$ and f is bijective, $(1,2)^{*}-$ $\pi \mathrm{gb}$-irresolute. Let x, y be any pair of distinct points of X. Since f is injective and Y is $(1,2)^{*}-\pi g b-\mathrm{D}_{1}$, there exists $(1,2)^{*}-\pi g b-\mathrm{D}-$ sets G_{x} and G_{y} of Y containing $f(x)$ and $f(y)$ respectively such that $\mathrm{f}(\mathrm{y}) \notin \mathrm{G}_{\mathrm{z}}$ and $\mathrm{f}(\mathrm{x}) \notin \mathrm{G}_{\mathrm{y} \text {. }}$ By theorem $4.9, \mathrm{f}^{-1}\left(\mathrm{G}_{\mathrm{z}}\right)$ and $\mathrm{f}^{-1}\left(\mathrm{G}_{\mathrm{y}}\right)$ are $(1,2)^{*}-\pi g b-D$-sets in X containing x and y respectively. Hence X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1}$.
Theorem 4.20: A topological space Xis a $(1,2) *-\pi g b-D_{1}$ if for each pair of distinct points $x, y \in X$, there exists a $(1,2)^{*}-\pi g b-$ continuous surjective function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ where Y is a $(1,2)^{*}$ - D_{1} space such that $f(x)$ and $f(y)$ are distinct.
Proof: Let x and y be any pair of distinct points in X,By hypothesis, there exists a $(1,2)^{*}-\pi g b-c o n t i n u o u s ~ s u r j e c t i v e ~$ function f of a space X onto a $(1,2)^{*}$ - D_{1}-space Y such that $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$.Hence there exists disjoint $(1,2)^{*}$-D-sets S_{x} andS $_{\mathrm{y}}$ in Y such that $f(x) \in S_{x}$ and $f(y) \in S_{y}$. Since f is $(1,2)^{*}-\pi g b-$ continuous and surjective, by theorem $4.8, \mathrm{f}^{-1}\left(\mathrm{~S}_{\mathrm{x}}\right)$ and $\mathrm{f}^{-1}\left(\mathrm{~S}_{\mathrm{y}}\right)$ are disjoint $(1,2) *-\pi g b-D-s e t s$ in X containing x and y respectively. HenceX is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1}$-set.
Theorem 4.21: X is $(1,2)^{*}-\pi g b-\mathrm{D}_{1}$ iff for each pair of distinct points $x, y \in X$,there exists a $(1,2)^{*}-\pi g b$-irresolute surjective function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, where Y is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1}$ space such that $f(x)$ and $f(y)$ are distinct.
Proof: Necessity: For every pair of distinct points $x, y \in X$, it suffices to take the identity function on X.
Sufficiency: Let $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$.By hypothesis ,there exists a $(1,2)^{*}{ }^{-}$ $\pi \mathrm{gb}$-irresolute, surjective function from X onto a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1}$ space such that $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$. Hence there exists disjoint $(1,2)^{*}-\pi \mathrm{gb}-$
Dsets $G_{x}, G_{y} \subset Y$ such that $f(x) \in G_{x}$ and $f(y) \in G_{y}$. Since f is $(1,2)^{*}-\pi \mathrm{gb}$-irresolute and surjective, by theorem $4.2, \mathrm{f}^{-1}\left(\mathrm{G}_{\mathrm{x}}\right)$ and $\mathrm{f}^{-1}\left(\mathrm{G}_{\mathrm{y}}\right)$ are disjoint $(1,2)^{*}$ - $\pi \mathrm{gb}$-D-sets in X containing x and y respectively. Therefore X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}_{1}$ space.
Definition 4.22: A bitopological space X is said to be $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{D}-$ connected if Xcannot be expressed as the union of two disjoint non-empty $(1,2)^{*}-\pi g b-D-$ sets.
Theorem 4.23: If $X \rightarrow Y$ is $(1,2)^{*}-\pi g b-c o n t i n u o u s ~ s u r j e c t i o n ~$ and X is $(1,2)^{*}$ - $\pi \mathrm{gb}-\mathrm{D}$-connected, then Y is $(1,2)^{*}$-D-connected. Proof: Suppose Y is not $(1,2)^{*}$-D-connected. Let $\mathrm{Y}=\mathrm{A} \cup \mathrm{B}$ where A and B are two disjoint non empty (1,2)*-D sets in Y. Since f is $(1,2)^{*}-\pi \mathrm{gb}$-continuous and onto, $\mathrm{X}=\mathrm{f}^{-1}(\mathrm{~A}) \cup \mathrm{f}^{-1}(\mathrm{~B})$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty $(1,2)^{*}-\pi g b-D-$ sets in X . This contradicts the fact that X is $(1,2)^{*}-\pi g b-\mathrm{D}-$ connected. Hence Y is $(1,2)^{*}$-D-connected.
Theorem 4.24: If $X \rightarrow Y$ is $(1,2)^{*}$ - $\pi g b$-irresolute surjection and Xis $(1,2)^{*}-\pi g b-\mathrm{D}-$ connected, then Y is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}-$ connected.
Proof: Suppose Y is not $(1,2)^{*}-\pi g b-D-c o n n e c t e d . L e t ~ Y=A \cup B$ where A and B are two disjoint non empty (1,2)*- $\pi \mathrm{gb}$-D-sets in Y.Since f is $(1,2)^{*}-\pi g b$-irreesolute and onto, $X=f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty $(1,2)^{*}-\pi g b-D-$ sets in X.This contradicts the fact that X is $(1,2)^{*}-\pi g b-\mathrm{D}-$ connected. Hence Y is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}-$ connected.
Definition 4.25: A bitopological space X is said to be $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{D}$-compact if every cover of X by $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-sets has a finite subcover.
Theorem 4.26: If a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $(1,2)^{*}-\pi \mathrm{gb}-$ continuous surjection and (X, τ) is $(1,2)^{*}-\pi g b-\mathrm{D}$-compact then Yis (1,2)*-D-compact.

Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $(1,2)^{*}-\pi \mathrm{gb}$-continuous surjection.Let $\left\{\mathrm{A}_{\mathrm{i}}: \mathrm{i} \in \wedge\right\}$ be a cover of Y by $(1,2)^{*}$-D-set.Then $\left\{\mathrm{f}^{-1}\left(\mathrm{~A}_{\mathrm{i}}\right): \mathrm{i} \in \wedge\right\}$ is a cover of X by $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set.Since X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}-$ compact,every cover of X by $(1,2)^{*}$ - $\pi \mathrm{gb}-\mathrm{D}$ set has a finite subcover, $\operatorname{say}\left\{\mathrm{f}^{-1}\left(\mathrm{~A}_{1}\right), \mathrm{f}^{-1}\left(\mathrm{~A}_{2}\right) \ldots . \mathrm{f}^{1}\left(\mathrm{~A}_{\mathrm{n}}\right)\right\}$. Since f is onto, $\left\{A_{1}, A_{2} \ldots \ldots ., A_{n}\right)$ is a cover of Y by (1,2)*-D-set has a finite subcover.Therefore Y is $(1,2)^{*}$-D-compact.
Theorem 4.27: If a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $(1,2)^{*}-\pi \mathrm{gb}$-irresolute surjection and Xis $(1,2)^{*}$ - $\pi \mathrm{gb}$-D-compact then Yis $(1,2)^{*}-\pi \mathrm{gb}-$ D-compact.
Proof:Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $(1,2)^{*}-\pi \mathrm{gb}$-irresolutesurjection.Let $\left\{\mathrm{A}_{\mathrm{i}}: \mathrm{i} \in \wedge\right\}$ be a cover of Y by $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set. Hence $Y=Y A_{i}$ Then $X=f^{-1}(Y)=f^{-1}\left(Y A_{i}\right)=Y f^{-1}\left(A_{i}\right)$. Since f is $(1,2)^{*}$ $\pi g b$-irresolute, for each $i \in \wedge,\left\{f^{-1}\left(A_{i}\right): i \in \wedge\right\}$ is a cover of X by $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$-set.Since X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}-$ compact,every cover of X by $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{D}$ set has a finite subcover , say $\left\{\mathrm{f}^{-1}\left(\mathrm{~A}_{1}\right)\right.$, f $\left.{ }^{1}\left(A_{2}\right) \ldots . f^{1}\left(A_{n}\right)\right\}$. Since f is onto, $\left\{A_{1}, A_{2} \ldots \ldots . . A_{n}\right)$ is a cover of Y by $(1,2)^{*}-\pi g b-\mathrm{D}$-set has a finite subcover.Therefore Y is $(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{D}-\mathrm{compact}$.
$5 .(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$ spaces and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{1}$ spaces
Definition 5.1: Let X be a bitopological space then the $(1,2)^{*}$ $\pi \mathrm{gb}$-closure of A denoted by $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{A})$ is defined by $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\mathrm{A})=\cap\left\{\mathrm{F} \mid \mathrm{F} \in(1,2)^{*}-\pi \mathrm{gbC}(\mathrm{X}, \tau)\right.$ and $\left.\mathrm{F} \supset \mathrm{A}\right\}$.
Definition 5.2: Let x be a point of bitopological space X.Then $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{Kernel}$ of x is defined and denoted by $\operatorname{Ker}(1,2)^{*}$ $\pi \mathrm{gb}\{\mathrm{x}\}=\cap\left\{\mathrm{U}: \mathrm{U} \in(1,2)^{*}-\pi \mathrm{gbO}(\mathrm{X})\right.$ and $\left.\mathrm{x} \in \mathrm{U}\right\}$.
Definition 5.3: Let F be a subset of a bitopological space X
 $\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\mathrm{F})=\cap\left\{\mathrm{U}: \mathrm{U} \in(1,2)^{*}-\pi \mathrm{gbO}(\mathrm{X})\right.$ and $\left.\mathrm{F} \subset \mathrm{U}\right\}$.
Lemma 5.4: Let Xbe a bitopological space and $x \in X$.Then $\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\mathrm{A})=\left\{\mathrm{x} \in \mathrm{X} \mid(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{A} \neq \Phi\right\}$.
Proof: Let $x \in \operatorname{Ker}(1,2)^{*}-\pi g b(A)$ and $(1,2)^{*}-\pi g b-c l(\{x\}) \cap \mathrm{A}=$ Φ. Hence $\mathrm{x} \notin \mathrm{X}-(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ which is an $(1,2)^{*}-\pi \mathrm{gb}-$ open set containing A. This is impossible, since $x \in \operatorname{Ker}(1,2)^{*}-\pi g b$ (A).

Consequently, $(1,2)^{*}-\pi \mathrm{gb}-\quad \operatorname{cl}(\{\mathrm{x}\}) \cap \mathrm{A} \neq \Phi$ Let $(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\}) \cap \mathrm{A} \neq \Phi$ and $\mathrm{x} \notin \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\mathrm{A})$. Then there exists an $(1,2)^{*}-\pi \mathrm{gb}-$ open set G containing A and $\mathrm{x} \notin \mathrm{G}$. Let $\mathrm{y} \in(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{A}$. Hence G is an $(1,2)^{*}-\pi \mathrm{gb}-$ neighbourhood of y where $\mathrm{x} \notin \mathrm{G}$. By this contradiction, $\mathrm{x} \in \operatorname{Ker}(1,2)^{*}-\pi g b(\mathrm{~A})$.
Lemma 5.5: Let X be a bitopological space and $x \in X$. Then y $\in \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\})$ if and only if $\mathrm{x} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{Cl}(\{y\})$.
Proof: Suppose that $y \notin \operatorname{Ker}(1,2)^{*}-\pi g b(\{x\})$. Then there exists an $(1,2)^{*}$ - $\pi g b$-open set V containing x such that $y \notin V$. Therefore we have $\mathrm{x} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$. Converse part is similar.
Lemma 5.6: The following statements are equivalent for any two points x and y in abitopological space X
(1) $\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{x\}) \neq \operatorname{Ker}(1,2)^{*}-\pi g b(\{y\})$;
(2) $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$.

Proof: (1) \Rightarrow (2): Suppose that $\operatorname{Ker}(1,2)^{*}-\pi g b(\{x\}) \neq$ Ker $(1,2)^{*}-\pi \mathrm{gb}(\{y\})$ then there exists a point z in X such that $\mathrm{z} \in \mathrm{X}$ such that $\mathrm{z} \in \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{x\})$ and $\mathrm{z} \notin \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{y\})$. It follows from $\mathrm{z} \in \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\})$ that $\{\mathrm{x}\} \cap(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{z\}) \neq \Phi$. This implies that $x \in(1,2)^{*}-\pi g b-c l(\{z\})$. By $z \notin$ Ker
$(1,2)^{*}-\pi g b(\{y\})$, we have $\{y\} \cap(1,2)^{*}-\pi g b-\operatorname{cl}(\{z\})=\Phi$. Since x $\in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{z}\}),(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \subset(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{z}\})$ and $\{y\} \cap(1,2)^{*}-\pi g b-c l(\{z\})=\Phi$. Therefore, $(1,2)^{*}-\pi g b-c l(\{x\})$ $\neq(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$. Now $\operatorname{Ker}(1,2)^{*}-\pi g b(\{x\}) \neq \operatorname{Ker}(1,2)^{*}-$ $\pi \mathrm{gb}(\{\mathrm{y}\})$ implies that $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{x\}) \neq(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$.
$(2) \Rightarrow(1)$: Suppose that $(1,2)^{*}-\pi g b-c l(\{x\}) \neq(1,2)^{*}-\pi g b-\operatorname{cl}(\{y\})$. Then there exists a point $\mathrm{z} \in \mathrm{X}$ such that $\mathrm{z} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ and $\mathrm{z} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$. Then, there exists an $(1,2)^{*}-\pi \mathrm{gb}-$ open set containing z and hence containing x but not y , i.e., $\mathrm{y} \notin$ $\operatorname{Ker}(\{x\})$. Hence $\operatorname{Ker}(\{x\}) \neq \operatorname{Ker}(\{y\})$.
Definition 5.7: A bitopological space X is said to be $(1,2)^{*}-\pi \mathrm{gb}-$ $\mathrm{R}_{0} \mathrm{iff}(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subseteq \mathrm{G}$ whenever $\mathrm{x} \in \mathrm{G} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$.
Definition 5.8: A bitopological space X is said to be $(1,2)^{*}-\pi \mathrm{gb}-$ R_{1} if for any x, y in X with $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-\pi \mathrm{gb}-$ $\mathrm{cl}(\{y\})$,there exists disjoint $(1,2)^{*}-\pi \mathrm{gb}$-open sets U and V such that $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$.
Definition 5.9: A bitopological space X is said to be $(1,2)^{*}$ weakly $\pi \mathrm{gb}-\mathrm{R}_{0}$ if $\cap \mathrm{X} \in \mathrm{X}(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})=\Phi$.
Example5.10:Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} . \tau_{1}=\{\Phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$,$\tau_{2}=\{\Phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\} .(1,2)^{*}-\pi \mathrm{gbO}(\mathrm{X}, \tau)=\mathrm{P}(\mathrm{X})$, Then X is $(1,2)^{*}-\pi \mathrm{gb}-$ R_{0}, weakly $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$.
Remark 5.11: Every $(1,2)^{*}-\pi g b-\mathrm{R}_{1}$ space is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$ space.
Let U be a $(1,2)^{*}-\pi g b$-open set such that $\mathrm{x} \in \mathrm{U}$. If $\mathrm{y} \notin \mathrm{U}$,then since $\quad x \notin(1,2)^{*}-\pi g b-c l(\{y\}),(1,2)^{*}-\pi g b-c l(\{x\}) \neq(1,2)^{*}-\pi g b-$ $\operatorname{cl}(\{y\})$. Hence there exists an $(1,2)^{*}-\pi g b-o p e n ~ s e t ~ V ~ s u c h ~ t h a t ~$ $y \in V$ such that $(1,2)^{*}-\pi g b-c l(\{y\}) \subset V$ and $x \notin V \Rightarrow y \notin(1,2)^{*}-$ $\pi g b-c l(\{x\})$.Hence $(1,2)^{*}-\pi g b-c l(\{x\}) \subseteq U$. Hence X is $(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{R}_{0}$.
Theorem 5.12: X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$ iff given $\mathrm{x} \neq \mathrm{y}$; $(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}\{x\} \neq(1,2)^{*}-\pi g b-c l\{y\}$.
Proof: Let X be $(1,2)^{*}-\pi g b-R_{0}$ and let $x \neq y \in X$. Suppose U is a $(1,2)^{*}-\pi g b-o p e n ~ s e t ~ c o n t a i n i n g ~ x ~ b u t ~ n o t ~ y, ~ t h e n ~ y \in(1,2)^{*}-\pi g b-$ $\operatorname{cl}\{y\} \subset X-U$ and hence $x \notin(1,2)^{*}-\pi g b-c l\{y\}$.Hence $(1,2)^{*}-\pi g b-$ $\operatorname{cl}\{x\} \neq(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{y}\}$.
Conversely, let $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ such that $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \neq(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{y}\}$, .This implies $\quad(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subset \mathrm{X}-\quad(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}\{\mathrm{y}\}=\mathrm{U}($ say $), \mathrm{a}(1,2)^{*}-\pi \mathrm{gb}$-open set in X . This is true for every $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\}$.Thus $\cap(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subseteq \mathrm{U} \quad$ where $\quad \mathrm{x} \in$ $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subset \mathrm{U} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$.This implies $\cap(1,2)^{*}$ $\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subseteq \mathrm{U}$ where $\mathrm{x} \in \mathrm{U} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$. Hence X is $(1,2)^{*}-\pi g b-\mathrm{R}_{0}$.
Theorem 5.13 : The following statements are equivalent
(i) X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$-space
(ii)For each $x \in X,(1,2)^{*}-\pi g b-c l\{x\} \subset \operatorname{Ker}(1,2)^{*}-\pi g b\{x\}$
(iii)For any (1,2$)^{*}-\pi g b$-closed set F and a point $\mathrm{x} \notin \mathrm{F}$, there exists $\mathrm{U} \in(1,2)^{*}-\pi \mathrm{gbO}(\mathrm{X})$ such that $\mathrm{x} \notin \mathrm{U}$ and $\mathrm{F} \subset \mathrm{U}$,
(iv) Each $(1,2)^{*}-\pi g b-c l o s e d F$ can be expressed as $F=\cap\{G: G$ is $(1,2)^{*}$ - $\pi g b$-open and $\left.\mathrm{F} \subset \mathrm{G}\right\}$
(v)) Each $(1,2)^{*}-\pi \mathrm{gb}$-open G can be expressed as $\mathrm{G}=\cup\{\mathrm{A}: \mathrm{A}$ is $(1,2)^{*}-\pi g b-c l o s e d$ and $\left.\mathrm{A} \subset \mathrm{G}\right\}$
(vi) For each $(1,2)^{*}-\pi \mathrm{gb}$-closed set, $\mathrm{x} \notin \mathrm{F}$ implies $(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}\{x\} \cap F=\Phi$.
Proof: (i) \Rightarrow (ii): For any $x \in X$, we have $\operatorname{Ker}(1,2)^{*}-\pi g b\{x\}=$ $\cap\left\{\mathrm{U}: \mathrm{U} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})\right.$. Since X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$,there exists
$(1,2)^{*}-\pi \mathrm{gb}$-open set containing x contains $(1,2)^{*}$ - $\pi \mathrm{gb}-$ $\operatorname{cl}\{\mathrm{x}\}$.Hence $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subset \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}\{\mathrm{x}\}$.
(ii) \Rightarrow (iii): Let $x \notin \mathrm{~F} \in(1,2)^{*}-\pi \mathrm{GBC}(\mathrm{X})$. Then for any $\mathrm{y} \in \mathrm{F}$, $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{y}\} \subset \mathrm{F}$ and so $\mathrm{x} \notin(1,2)^{*}-\pi \mathrm{gb}-\operatorname{cl}\{\mathrm{y}\} \Rightarrow \mathrm{y} \notin(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\}$.That is there exists $\mathrm{U}_{\mathrm{y}} \in(1,2)^{*}-\pi \mathrm{gbO}(\mathrm{X})$ such that $\mathrm{y} \in \mathrm{U}_{\mathrm{y}}$ and $\mathrm{x} \notin \mathrm{U}_{\mathrm{y}}$ for all $\mathrm{y} \in \mathrm{F}$. Let $\mathrm{U}=\cup\left\{\mathrm{U}_{\mathrm{y}} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})\right.$ such that $\mathrm{y} \in \mathrm{U}_{\mathrm{y}}$ and $\left.\mathrm{x} \notin \mathrm{U}_{\mathrm{y}}\right\}$.Then U is $(1,2)^{*}-\pi \mathrm{gb}$-open such that $\mathrm{X} \notin \mathrm{U}$ and $\mathrm{F} \subset \mathrm{U}$.
(iii) \Rightarrow (iv): Let F be any $(1,2)^{*}-\pi \mathrm{gb}$-closed set and $\mathrm{N}=\cap\{\mathrm{G}: \mathrm{G}$ is $(1,2)^{*}-\pi g b$-open and $\left.\mathrm{F} \subset \mathrm{G}\right\}$. Then $\mathrm{F} \subset \mathrm{N}$---(1). Let $\mathrm{x} \notin \mathrm{F}$, then by (iii) there exists $\mathrm{G} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$ such that $\mathrm{x} \notin \mathrm{G}$ and $F \subset G$, hence $x \notin N$ which implies $x \in N \Rightarrow x \in F$. Hence $N \subset F$.--(2).From (1) and (2),each (1,2)*- π gb-closed $F=\cap\{G: G$ is $(1,2)^{*}-\pi \mathrm{gb}$-open and $\left.\mathrm{F} \subset \mathrm{G}\right\}$.
(iv) \Rightarrow (v) Obvious.
(v) \Rightarrow (vi) Let $x \notin \mathrm{~F} \in(1,2)^{*}-\pi g b C(X)$.Then $X-F=G$ is a $(1,2)^{*}-\pi g b-$ open set containing x.Then by (v), G can be expressed as the union of $(1,2)^{*}-\pi \mathrm{gb}$-closed sets $\mathrm{A} \subseteq \mathrm{G}$ and so
there is an $\mathrm{M} \in(1,2)^{*}-\pi g b C(X)$ such that $\mathrm{x} \in \mathrm{M} \subset \mathrm{G}$ and hence $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subset \mathrm{G}$ implies $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \cap \mathrm{F}=\Phi$.
(vi) \Rightarrow (i) Let $\mathrm{x} \in \mathrm{G} \in(1,2)^{*}-\pi \mathrm{gbO}(\mathrm{X})$.Then $\mathrm{x} \notin(\mathrm{X}-\mathrm{G})$ which is $(1,2)^{*}-\pi g b-c l o s e d ~ s e t . ~ B y ~(v i) ~(1,2) *-\pi g b-c l\{x\} . \cap(X-G)=\Phi$. $\Rightarrow(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \subset \mathrm{G}$.Thus X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$-space.
Theorem 5.14 :A bitopological space X is an $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$ space if and only if for any x and y in $X,(1,2)^{*}-\pi g b-c l(\{x\}) \neq$ $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$ implies $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{y\})=\Phi$.
Proof: Necessity. Suppose that X is $(1,2)^{*}-\pi g b-R_{0}$ and $x, y \in X$ such that $(1,2)^{*}-\pi g b-\operatorname{cl}(\{x\}) \neq(1,2)^{*}-\pi g b-\operatorname{cl}(\{y\})$. Then, there exist $\mathrm{z} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ such that $\mathrm{z} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$ (or $\mathrm{z} \in \operatorname{cl}(\{\mathrm{y}\}))$ such that $\mathrm{z} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$. There exists $\mathrm{V} \in$ $(1,2)^{*}-\pi G B O(X)$ such that $y \notin V$ and $z \in V$.Hence $x \in V$.
Therefore, we have $\mathrm{x} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$. Thus $\mathrm{x} \in\left((1,2)^{*}-\right.$ $\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\}))^{\mathrm{c}} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$, which implies $(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\}) \subset((1,2) *-\pi \mathrm{gb}-\mathrm{cl}(\{y\}))^{\mathrm{c}}$ and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})=\Phi$.
Sufficiency. Let $\mathrm{V} \in(1,2)^{*}-\pi \mathrm{GBO}(\mathrm{X})$ and let $\mathrm{x} \in \mathrm{V}$. To show that $(1,2)^{*}-\pi g b-c l _(\{x\}) \subset V$. Let $y \notin V$, i.e., $y \in V^{c}$. Then $x \neq y$ and $x \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$. This showsthat $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ $\neq(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$. By assumption, $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \cap$ $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})=\Phi$. Hencey $\notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ and therefore $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \subset \mathrm{V}$.
Theorem 5.15 : A bitopological space X is an $(1,2)^{*}-\pi g b-R_{0}$ space if and only if for anypoints x and y in X , $\operatorname{Ker}(1,2)^{*}$ $\pi \mathrm{gb}(\{\mathrm{x}\}) \neq \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{y}\})$ implies $\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\})$ กKer $(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{y}\})=\Phi$.
Proof. Suppose that X is an $(1,2)^{*}-\pi g b-\mathrm{R}_{0}$ space. Thus by Lemma 5.6, for any points x and y in X if $\operatorname{Ker}(1,2)^{*}$ $\pi \mathrm{gb}(\{\mathrm{x}\}) \neq \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{y}\})$ then $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \neq(1,2)^{*}-$ $\pi g b-c l(\{y\})$.Now to prove that $\operatorname{Ker}(1,2)^{*}-\pi g b(\{x\}) \cap \operatorname{Ker}(1,2)^{*}-$ $\pi g b(\{y\})=\Phi$. Assume that $z \in \operatorname{Ker}(1,2) *-\pi g b(\{x\}) \cap \operatorname{Ker}$ $(1,2)^{*}-\pi \mathrm{gb}(\{y\})$. By $\mathrm{z} \in \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{x\})$ and Lemma 5.5 , it follows that $x \in(1,2)^{*}-\pi g b-c l(\{z\})$. Since $x \in(1,2)^{*}-\pi g b-$ $\operatorname{cl}(\{\mathrm{z}\}) ; \quad(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})=(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{z}\})$. Similarly, we have $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})=(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{z}\})=(1,2)^{*}-\pi \mathrm{gb}-$
$\operatorname{cl}(\{x\})$. This is a contradiction. Therefore, we have $\operatorname{Ker}(1,2)^{*}-$ $\pi g b(\{x\}) \cap \operatorname{Ker}(1,2)^{*}-\pi g b(\{y\})=\Phi$
Conversely, let X be a topological space such that for any points x and y inX such that $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{x}\} \neq(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}\{\mathrm{y}\}$.Ker $(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\}) \neq \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{y}\})$ implies $\operatorname{Ker}(1,2)^{*}-$ $\pi g b(\{x\}) \cap \operatorname{Ker}(1,2)^{*}-\pi g b(\{y\})=\Phi$. Since $z \in(1,2)^{*}-\pi g b-$ $\operatorname{cl}\{x\} \Rightarrow x \in \operatorname{Ker}(1,2)^{*}-\pi g b(\{z\})$ and therefore $\operatorname{Ker}(1,2)^{*}$ $\pi \mathrm{gb}(\{\mathrm{x}\}) \cap \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{y}\}) \neq \Phi$.By hypothesis, we have Ker $(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\})=\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{z}\})$. Then $\mathrm{z} \in(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\}) \cap(1,2)^{*}-\pi g b-\operatorname{cl}(\{y\})$ implies that $\operatorname{Ker}(1,2)^{*}-\pi g b(\{x\})=$ Ker $\quad(1,2)^{*}-\pi g b(\{z\})=\operatorname{Ker} \quad(1,2)^{*}-\pi g b(\{y\})$. This is a contradiction. Hence $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \cap(1,2)^{*}-\pi \mathrm{gb}-$ $\mathrm{cl}(\{\mathrm{y}\})=\Phi ;$ By theorem $5.14, \mathrm{X}$ is an $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$ space.
Theorem 5.16: For abitopological space X, the following properties are equivalent.
(1) X is an $(1,2)^{*}-\pi g b-R_{0}$ space
(2) $x \in(1,2)^{*}-\pi g b-c l(\{y\})$ if and only if $y \in(1,2)^{*}-\pi g b-c l(\{x\})$, for any points x and y in X .
Proof: $(1) \Rightarrow(2)$: Assume that X is $(1,2)^{*}-\pi g b-R_{0}$. Let $x \in$ $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$ and G be any $(1,2)^{*}-\pi \mathrm{gb}-$ open setsuch that $y \in G$. Now by hypothesis, $x \in G$. Therefore, every $(1,2)^{*}-\pi g b-$ openset containing y contains x . Hence $\mathrm{y} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{Cl}(\{\mathrm{x}\})$. (2) \Rightarrow (1) : Let U be an $(1,2)^{*}-\pi g b-$ open set and $x \in U . I f y$ $\notin \mathrm{U}$, then $\mathrm{x} \notin(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\})$ and hence $\mathrm{y} \notin(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\})$. This implies that $(1,2)^{*}-\pi g b-c l(\{x\}) \subset U$. Hence Xis $(1,2)^{*}-\pi g b-\mathrm{R}_{0}$.
Theorem 5.17: For a bitopological space X, the following properties are equivalent:
(1) X is an $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$ space;
(2) $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})=\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\})$ for all $\mathrm{x} \in \mathrm{X}$.

Proof: $(1) \Rightarrow(2)$: Suppose that X is an $(1,2)^{*}-\pi g b-R_{0}$ space. By theorem 5.13, $(1,2)^{*}-\pi g b-c l(\{x\}) \subset \operatorname{Ker}(1,2)^{*}-\pi g b(\{x\})$ for each $x \in X$. Let $y \in \operatorname{Ker}(1,2)^{*}-\pi g b(\{x\})$, then $x \in(1,2)^{*}-\pi g b-$ $\operatorname{cl}(\{y\})$ and so $(1,2)^{*}-\pi g b-\operatorname{cl}(\{x\})=(1,2)^{*}-\pi g b-\operatorname{cl}(\{y\})$. Therefore, $\mathrm{y} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ and hence $\operatorname{Ker}(1,2)^{*}$ $\pi \mathrm{gb}(\{\mathrm{x}\}) \subset(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$. This shows that $(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\})=\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{x\})$.
(ii) \Rightarrow (i) Obvious from theorem5.15.

Theorem 5.18: For a bitopological space X,the following are equivalent.
(i) X is a $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{0}$ space.
(ii) If F is $(1,2)^{*}-\pi \mathrm{gb}-$ closed, then $\mathrm{F}=\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\mathrm{F})$.
(iii) If F is $(1,2)^{*}-\pi g b$-closed, and $x \in F$, then $\operatorname{Ker}(\{x\}) \subset F$.
(iv) If $x \in X$, then $\operatorname{Ker}(1,2)^{*}-\pi g b(\{x\}) \subset(1,2)^{*}-\pi g b-c l(\{x\})$.

Proof:(i) \Rightarrow (ii) Let F be a $(1,2)^{*}-\pi g b-c l o s e d ~ a n d ~ x \notin F$. Then X$F$ is $(1,2)^{*}-\pi g b-$ open and contains x. Since (X, τ) is a $(1,2)^{*}-$ $\pi \mathrm{gb}-\mathrm{R}_{0},(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{X}-\mathrm{F}$.
Thus $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{F}=\Phi$. And by lemma 5.4, $\mathrm{x} \notin(1,2)^{*}-$ $\pi \mathrm{gb}-\operatorname{Ker}(\mathrm{F})$.Therefore $(1,2)^{*}-\pi \mathrm{gb}-\operatorname{Ker}(\mathrm{F})=\mathrm{F}$.
(ii) \Rightarrow (iii) If $\mathrm{A} \subseteq \mathrm{B}$, then $\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\mathrm{A}) \subseteq \operatorname{Ker}(1,2)^{*}-$ $\pi \mathrm{gb}(\mathrm{B})$.
From (ii),it follows that $\operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\}) \subseteq \operatorname{Ker} \quad(1,2)^{*}-$ $\pi \mathrm{gb}(\mathrm{F})$.
(iii) \Rightarrow (iv) Since $x \in(1,2)^{*}-\pi g b-c l(\{x\})$ and $(1,2)^{*}-\pi g b-c l(\{x\})$ is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{closed}$. $\mathrm{By}(\mathrm{iii}), \operatorname{Ker}(1,2)^{*}-\pi \mathrm{gb}(\{\mathrm{x}\}) \subset(1,2)^{*}-\pi \mathrm{gb}-$ $\mathrm{cl}(\{\mathrm{x}\})$.
(iv) \Rightarrow (i)We prove the result using theorem 5.13. Let $\mathrm{x} \in$ $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$ and by theorem $5.14, \mathrm{y} \in \operatorname{Ker}(1,2)^{*}$ $\pi \mathrm{gb}(\{\mathrm{x}\})$. Since $\mathrm{x} \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ is $(1,2)^{*}-\pi g b-c l o s e d$, then by (iv) we get $y \in \operatorname{Ker}(1,2)^{*}$ $\pi \mathrm{gb}(\{\mathrm{x}\}) \subseteq(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$,Therefore $\mathrm{x} \in(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{y\}) \Rightarrow y \in(1,2)^{*}-\pi g b-\operatorname{cl}(\{x\})$.
Conversely, let $y \in(1,2)^{*}-\pi g b-c l(\{x\})$. By lemma $5.5, x \in \operatorname{Ker}$ $(1,2)^{*}-\pi g b(\{y\})$. Since $y \in(1,2)^{*}-\pi g b-c l(\{y\})$ and $\quad(1,2)^{*}-\pi g b-$ $\mathrm{cl}(\{y\})$ is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{closed}$, then by (iv) we get $\mathrm{x} \in \operatorname{Ker}(1,2)^{*}$ $\pi g b(\{y\}) \subseteq(1,2)^{*}-\pi g b-c l(\{y\})$. Thus $\quad y \in(1,2)^{*}-\pi g b-$ $\operatorname{cl}(\{x\}) \Rightarrow x \in(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})$.By theorem 5.14 , we prove that X is $(1,2) *-\pi g b-R_{0}$ space.
Theorem 5.19: A bitopological space X is $(1,2)^{*}-\pi g b-R_{1}$ iff for
$x, y \in X, \operatorname{Ker}(1,2)^{*}-\pi g b(\{x\}) \neq(1,2)^{*}-\pi g b-c l(\{y\})$,there exists disjoint $(1,2)^{*}-\pi g b-o p e n$ sets U and V such that $(1,2)^{*}-\pi \mathrm{gb}-$ $\operatorname{cl}(\{x\}) \subset U$ and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\}) \subset \mathrm{V}$.
Proof: It follows from lemma 5.5.
Theorem 5.20: Abitopological space X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{2}$ if and only if it is $(1,2)^{*}-\pi g b-\mathrm{T}_{1}$ and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{1}$.
Proof: If X is $(1,2)^{*}-\pi g b-T_{2}$,then it is $(1,2)^{*}-\pi g b-T_{1}$.If $x, y \in X$ such that $(1,2)^{*}-\pi g b-c l(\{x\}) \neq(1,2)^{*}-\pi g b-c l(\{y\})$, then $x \neq y$. Hence there exists disjoint $(1,2)^{*}-\pi g b$ open sets U and V such that $x \in U$ and $y \notin U ; y \in V$ and $x \notin V$. This implies $(1,2)^{*}-\pi g b-$ $\operatorname{cl}(\{x\}) \subseteq U$ and $(1,2)^{*}-\pi g b-c l(\{y\}) \subseteq V$. Hence X is $(1,2)^{*}-\pi g b-$ R_{1}.
Converse: If X is $(1,2)^{*}-\pi g b-T_{1}$ and $(1,2)^{*}-\pi g b-R_{1}$ and $x, y \in X$ such that $(1,2)^{*}-\pi g b-\operatorname{cl}(\{x\}) \neq(1,2)^{*}-\pi g b-\operatorname{cl}(\{y\})$,there exist disjoint $(1,2)^{*}-\pi \mathrm{gb}$ open sets U and V such that $(1,2)^{*}-\pi \mathrm{gb}-$ $\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and 1,2$)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$. Since X is $(1,2)^{*}-\pi \mathrm{gb}-$ $\mathrm{T}_{1}, \quad(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})=\{\mathrm{x}\} \quad \operatorname{and}(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{y\})=\{\mathrm{y}\}$. This implies $x \notin U$ and $y \notin U, y \in V$ and $x \notin V, U \cap V=\Phi$. This implies X is $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{0}$.
Theorem 5.21: A bitopological space X is said to be weakly $(1,2) *-\pi \mathrm{gb}-\mathrm{R}_{0}$ if $(1,2)^{*}-\operatorname{Ker}_{\pi \mathrm{gb}}(\{x\}) \neq \mathrm{X}$ for every $\mathrm{x} \in \mathrm{X}$.
Proof: Suppose that the space X is weakly $(1,2)^{*}$ - $\pi g b-$ R_{0} Assume that there is a point y in X such that $(1,2)^{*}$ $\operatorname{Ker}_{\pi \mathrm{gb}}(\{y\})=X$. Then $\mathrm{y} \notin \mathrm{O}$ where O is some proper $(1,2)^{*}-\pi g b-$ open subset of X. This implies $\mathrm{y} \in \cap_{\mathrm{x}} \in_{\mathrm{X}}(1,2)^{*}-\pi \mathrm{gb}-\mathrm{cl}(\{\mathrm{x}\})$ which is a contradiction.
Conversely, Assume $(1,2)^{*}-\operatorname{Ker}_{\pi g b}(\{x\}) \neq X$ for every $x \in X$. If there is a point $y \in X$ such that $y \in \cap_{x} \in_{x}(1,2)^{*}-\pi g b-c l(\{x\})$,then every $(1,2)^{*}$ - $\pi g b$-open set containing y must contain every point of X . This implies the unique $(1,2)^{*}-\pi g b$-open set containing yis X. Hence $(1,2)^{*}-\operatorname{Ker}_{\pi \mathrm{gb}}(\{y\})=X$, which is a contradiction. Thus X is weakly $(1,2)^{*}-\pi g b-R_{0}$.
Example5.22: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} . \tau_{1}=\{\Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}$ $, c\},\{a, b, c\}, \mathrm{X}\}$ and $\tau_{2}=\{\Phi,\{\mathrm{a}\}, \mathrm{X}\} .(1,2)^{*} \pi \mathrm{gbO}(\mathrm{X}, \tau)=\{\Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{$ $\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}$ $, b, d\}, X$, Then X is $(1,2)^{*}-\pi g b-R_{0}$ but not ultra- $\alpha-R_{0}$.

Conclusion:

A study on new separation axioms called $\pi g b$-separation axioms using the $(1,2)^{*}-\pi \mathrm{gb}$-open sets in bitopological spaces have been done. Also some results of $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{T}_{\mathrm{i}},(1,2)^{*}-\pi \mathrm{gb}-$ D_{i}, where $\mathrm{i}=0,1,2$, and $(1,2)^{*}-\pi \mathrm{gb}-\mathrm{R}_{\mathrm{i}}, \mathrm{i}=0,1$ are studied in this paper.

References

[1] AshishKar and Paritosh Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc. 82 (1990), 415-422.
[2] D. Andrijevic, On b-open sets, Mat. Vesnik 48 (1996), 5964.
[3] S. Athisayaponmani and m. Lellisthivagar, Another form of separation axioms, Methods of functional analysis and topology, vol. 13 (2007), no. 4, pp. 380-385.
[4] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71(1996),109-120.
[5] J.Dontchev and T.Noiri, Quasi Normal Spaces and $\pi \mathrm{g}$ closed sets ,Acta Math. Hungar,89 (3)(2000), 211-219.
[6] E. Ekici and M. Caldas, Slightly -continuous functions, Bol. Soc. Parana. Mat. (3) 22 (2004), 63-74.
[7] M. Ganster and M. Steiner, On b τ-closed sets, Appl. Gen. Topol. 8 (2007), 243-247.
[8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
[9] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89-96.
[10]S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89 (1975), 395-402.
[11] Miguel Caldas, A separation axiom between semi- T_{0} and semi-T ${ }_{1}$, Mem. Fac. Sci. Kochi. Univ.(Math.) 18 (1997), 37-42.
[12]Saeid Jafari, M. Lellis Thivagar and S. Athisaya Ponmani, $(1,2) \alpha$-open sets based on bitopological separation axioms, Soochow Journal of Mathematics ,volume 33, no. 3, pp. 375381, july 2007.
 Topological Spaces, International Journal of Mathematical Archive-2(8), 2011, 1314-1320
[14]D.Sreeja and C.Janaki, On (1,2)*- π gb-closed sets, International Journal of Computer Applications (0975-8887) Volume 42- No.5, March 2012.
[15]D.Sreeja and C.Janaki, A New Type of Homeomorphism in Bitopological Spaces International Journal of Scientific and Research Publications, Volume 2, Issue 7, July 2012.

[^0]: Tele:
 E-mail addresses: sreejadamu@gmail.com

