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Introduction

After the introduction of fuzzy sets by L.A.Zadeh[15],
several researchers explored on the generalization of the notion
of fuzzy set. The concept of intuitionistic L-fuzzy subset was
introduced by K.T.Atanassov[4,5], as a generalization of the
notion of fuzzy set. Azriel Rosenfeld[6] defined a fuzzy groups.
Asok Kumer Ray[3] defined a product of fuzzy subgroups and
A.Solairaju and R.Nagarajan[13,14] have introduced and
defined a new algebraic structure called Q-fuzzy subgroups. We
introduce the concept of Q-intuitionistic L-fuzzy subnearring of
a nearring and established some results.
1.Preliminaries:
1.1 Definition: Let X be a non-empty set and L = (L, <) be a
lattice with least element 0 and greatest element 1 and Q be a
non-empty set. A (Q, L)-fuzzy subset A of X is a function A :
XxQ — L.
1.2 Definition: Let (L, <) be a complete lattice with an
involutive order reversing operation N : L — L and Q be a non-
empty set. A Q-intuitionistic L-fuzzy subset (QILFS) A in X is
defined as an object of the form A={< (X, q), pa(X, 9), va(X, q) >
/xin Xand ginQ }, where pa: XxQ > L and va: XxQ > L
define the degree of membership and the degree of non-
membership of the element xe X respectively and for every xe X
satisfying pa(x) < N( va(X)).
1.3 Definition: Let ( R, +, .) be a nearring. A Q-intuitionistic L-
fuzzy subset A of R is said to be a Q-intuitionistic L-fuzzy
subnearring(QILFSNR) of R if it satisfies the following axioms:
() palx=y, ) =palx, ) A paly, )
(i) pa(xy, @) = pa(x, @) A paly, )
(iii) va(x-y, q) < va(X, 9) Vv va(y, 0)
(iv) va(xy, q) < va(X, q) v va(y, q), forall xand y in R and q in
Q.
1.4 Definition: Let A and B be any two Q-intuitionistic L-fuzzy
subnearrings of nearrings R; and R, respectively. The product of
A and B denoted by AxB is defined as
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AxB :{ < ( (X! y)’ q )l HAXB( ( X, y)v q )! VAXB( ( X, y)l q ) >/f0r all
xinRyand yin Ry and g in Q }, where paxs( (X, ¥), 9 ) = pa(X,
q) N “B(yl q) and VAXB( (X! y)’ q ) = VA(Xi q) Vv VB(y, q)

1.5 Definition: Let A be a Q-intuitionistic L-fuzzy subset in a
set S, the strongest Q-intuitionistic L-fuzzy relation on S, that is
a Q-intuitionistic L-fuzzy relation on A is V given by py( (X, ),
q ) = “A(X! q) A “A(y! q) and VV( (X, y)l q ) = VA(Xi q) \4 VA(y’ q):
forall xandyinSandqinQ.

2. Some properties of g-intuitionistic I-fuzzy subnearrings of
a nearring

2.1 Theorem: Intersection of any two Q-intuitionistic L-fuzzy
subnearrings of a nearring R is a Q-intuitionistic L-fuzzy
subnearring of R.

Proof: Let A and B be any two Q-intuitionistic L-fuzzy
subnearrings of a nearring Rand x and y in R and g in Q. Let A
={ ((x, a), pax, ), valx, 9) ) / xeR and g in Q } and
B={((x q), us(X 0g), va(X,q) ) / xeR and q in Q } and also let
C=AnB = { ( (X1 q)l MC(XI q)l VC(XI q) ) / xeR and q in Q }1
where pa(X, 0) A ps(X, ) = pc(x, ) and va(x, 0) v ve(x, q) =
ve(X, g). Now, pe(X =Yy, ) =pa(X-Yy,q) Aps(X -y, q) =
[raX, @) A pa(y, D] A [re(x, 9) A pa(y, 9] = [ra(X, @) A pa(X,
DI A [raly, ) A ps(y, @)1 = pe(X, @) A pc(y, ). Therefore, pc( X
-vy,q) > uc(X q) A pe(y, q), forall xandyinRand g in Q.

And, uc(xy, g) = pa(xy, d) A ue(xy, @) = [pa(X, @) A pa(y, 9)] A
[ne(x, a) A paly, )] = [na(X, A) A pa(X, )] A [ualy, 9) A pa(y,
D] = pelX, 4) A pely, ). Therefore, puc(xy, q) = pe(X, ) A pe(y,
q), for all xand y in R and g in Q. Also, ve(X -V, 0) = va(X -,
q) v ve(X =y, @) < [va(X, @) v valy, @)] v [ve(x, Q) v va(y,
DI=valx, a)vve(x, )] v [valy, ) v ve(y, d)] = ve(x, @) v vely,
q). Therefore, ve(X —y, q) < ve(X, q) v ve(y, q), for all x and y in
Rand g in Q. And, vc(xy, g) = va(Xy, ) v va(xy, q) < [va(X, 0)
v valy, @)1 v [ve(x, @) v ve(y, @)] = [va(x, @) v ve(X, @)] v
[va(y, @) v ve(y, )] = ve(x, @) v vely, 9).
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Therefore, ve(xy, q) < ve(X, q) v ve(y, q), for all x and y in R
and q in Q. Therefore, C is a Q-intuitionistic L-fuzzy
subnearring of a nearring R. Hence, intersection of any two
Q-intuitionistic L-fuzzy subnearrings of a nearring R is a Q-
intuitionistic L-fuzzy subnearring of R.

2.2 Theorem: Let ( R, +, .) is a nearring. The intersection of a
family of Q-intuitionistic L-fuzzy subnearrings of R is a Q-
intuitionistic L-fuzzy subnearring of R.

Proof: Let{V;:i e |} be afamily of Q-intuitionistic L-fuzzy
subnearrings of a nearring Rand let A== 1 V, . Letxand y in

iel

R and q in Q. Then, pa(x — y, Q) = . fMVi(X -y, Q) >

|nf [rvi(x, @) A pvily, A)] = Inf pvi(X, g)A In;f pvi(y, ) = pa(x,

OI)/\MA(M q). Therefore, ua(X-y, q) > pa(X, Q)Aua(y, 9), for all x

and y in R and g in Q. And, pa(xy, g) = . fu\/i(xy, qQ =
n

iel

f[Mw(X a) A pvily, 9 = inf pvi(x, ) A uw(y, a)
HA(X ) A pa(y, ). Therefore, pa(xy, q) = MA(X Q) A pa(y, 9),

forall xand y in R and g in Q. Also, va(x -y, Q)= SupVV'(X Y,
iel

q) < Sup[vVi(x, vy, )] = svupwi(x, q) v S‘upwi(y,q) =

va(X, Q) v va(y, Q). Therefore, va(X -y, qQ) < va(X, Q) v val(y, Q),

forall xand y in R and g in Q. And, va(Xy, ) =  wvi(Xy, Q)
sup

wi(X, Q) v

[vVi(X Q) v owily, )] = sup su

IpVVI(yl q) -

vA(x q) v va(y, q). Therefore, vA(xy, q) < va(X, q)v va(y, q), for
all x and y in R and q in Q. That is, A is a Q-intuitionistic
L-fuzzy subnearring of a nearring R. Hence, the intersection of a
family of Q-intuitionistic L-fuzzy subnearrings of R is a Q-
intuitionistic L-fuzzy subnearring of R.

2.3 Theorem: If A and B are any two Q-intuitionistic L-fuzzy
subnearrings of the nearrings R; and R, respectively, then AxB
is a Q-intuitionistic L-fuzzy subnearring of R{xR.

Proof: Let A and B be two Q-intuitionistic L-fuzzy subnearrings
of the nearrings R; and R, respectively. Let x; and X, be in Ry, y;
and y, be in R,. Then (xy, y1) and (X, ¥») in RixR; and g in Q.
Now, paxe [ (X1, Y1) — (X2, ¥2), A ] = paxe ( (Xi— X2, Y1— ¥2), ) =
Ha( Xi— X2, ) Apa(Yi— Yz, A)= [Ha(Xe, @) A pa(X2, @) T AL ps(ys,
Q) A sy @) 1= [ palxe ) A ps(yn @) 1A [Halxe ) A pa(Ye,
) 1= taxe ( (X1, Y1), @) A paxe ( (X2, ¥2), 0). Therefore, paxe [ (X1,
Y1) — (X2 ¥2), 412 paxe ( (X2, Y1), 4) A paxe ( (X2, ¥2), 9), for all
(X1, Y1) and ( Xy, ¥2) in RiXR, and q in Q. Also, uaxs [ (X1,
Y1)(X2, ¥2), 4 1= paxe ((XiXa, Y1Y2), @) = pa( XXz, 0 ) A pa( Y1y,
a) = [ pa(Xs, @) A pal*2, @) JAL ey @) A pe(Yz, @)1 = [ paxy,
a) A pe(yn 9) 1 A [palxe, DApe(Y2 @)1= pae((X1, Y1), DA
taxe((X2, Y2), 9). Therefore, uaxe[(X1, Y1)(X2, ¥2), Al = pae( (X1,
Y1), @) Abaxe ( (X2, Y2), G), forall (X3, y1) and (Xa, y2) in RixR;
and g in Q. And, vaxs[ (X1, Y1)—(X2, ¥2), Al = va( (Xi— X2, Y1~
Y2), 0)= va( Xi— Xz, ) v ve( Y1~ Y2, 4 ) < [ va(Xy, @) v va(Xz, Q)
1v [velyn @) v ve(Yz 0) 1= [va(xs, @) v ve(ys, @) ] v [ val%z @)
v ve(Yz @) 1= vae ( (X1, Y1), @)vvae ( (X2, Y2), 9). Therefore,
vae [ (X1, Y1) = (X2, ¥2), 91 < vaxe ( (X1, Y1), 0) v vaxe ( (X2, Y2),
q),forall (xq,y:)and (X, ¥2) in RiXR;, and g in Q. Also, vaxe
[ X YD ¥Y2), 6 1= vae ( (XiXa, Y1¥2), 0) = valXiXe, @) v
ve(Y1Y2 0) < [ va(Xi, 4) v va(Xe, 0) V[ ve(ys, 0) vve(yz @)1 = [
va(X1, @) v ve(ys, @) ] v [ va(Xz, ) vve(Yz, 0) ]= vase ( (X, ¥1).0

M.M.Shanmugapriya et al./ Elixir Appl. Math. 52A (2012) 11541-11543

)V vaxs ( (X2, Y2), 0). Therefore, vaxs [ (X1, Y1) (X2, ¥2),0 ] < vace (
(X1, Y1), @) Vv vaxe ( (X2, Y2), 9), for all (x;, y1) and (xz, y2) in
RixR, and q in Q. Hence AxB is a Q-intuitionistic L-fuzzy
subnearring of RixR.

2.4 Theorem: Let A and B be Q-intuitionistic L-fuzzy
subnearrings of the nearrings R; and R, respectively. Suppose
that e and e 'are the identity element of R, and R, respectively. If
AXxB is a Q-intuitionistic L-fuzzy subnearring of R;xR,, then at
least one of the following two statements must hold.

(i) pe(e',q)=palx, g)and vg(e', g) < valx, q), forall x in Ry
and g inQ,

(i) pa(e,q) = pa(y, @) and va(e, ) < ve(y, g), forally in R,
and g in Q.

Proof: Let AXB be a Q-intuitionistic L-fuzzy subnearring of
R1xR,. By contraposition, suppose that none of the statements (i)
and (ii) holds. Then we can find a in R; and b in R, such that
uA(a! Q) > uB(ell q)l VA(al Q) < VB(eI! q) and ”B(b! q) > uA(e! q )l
VB(bl q) < VA(el q) We have, “AXB( (a! b), Q) = “A(a! q) A MB(bl
) > (€', a) A ua(e, ) = pa(e, 9) A ps(e', ) = pacs ( (e, ), a).
And, vae ((a, b), 0) = va(a, ) v ve(b, q) < ve(e', a) v va(e, q)
= va(e, q) v ve(€, 9) = vas ( (&, €', q). Thus AxB is not a Q-
intuitionistic L-fuzzy subnearring of RyxR,. Hence either pg(e',
) > pa(x, q) and vg(e', q) < va(x, q), for all x in Ry and g in Q or
pa(e, d) = pa(y, d) and va(e, @) < ve(y, g), forally in R;and g in
Q

2.5 Theorem: Let A and B be two Q-intuitionistic L-fuzzy
subsets of the nearrings R; and R, respectively and AxB is a Q-
intuitionistic L-fuzzy subnearring of R;xR,. Then the following
are true :

(i) if palx, @) < pa(e', g) and va(x, q) > vg(e', q), then Ais a
Q-intuitionistic L-fuzzy subnearring of R;.

(i) if pa(x, q) < pa(e, g) and vg( X, q) > va( &, q), then B is a
Q-intuitionistic L-fuzzy subnearring of R,.

(iii) either A is a Q-intuitionistic L-fuzzy subnearring of R, or B
is a Q-intuitionistic L-fuzzy subnearring of R,.

Proof: Let AxB be a Q-intuitionistic L-fuzzy subnearring of
R:iXR,, x and y in R;and €' in R,. Then (x, e') and (y, ') are in
RixR,.  Now, using the property that pa(X, q) <
us(e', q) and va(x, q) = vg(e', q), for all x in Ryand g in Q, we
get, na(x=y, 9) = pa(x-y, @) A pe(e' + €', q) = pas[ (X -Y),
€' +e)) al=pael (x €)=y, ), g1 > pae( (x €),a) A
nae( (Y, €, ) = [na(x, @) A pa(e', 9 AL pa(=y, 0) A ps(e', 0)]
= pa(X, @) A pa=y, @) 2 palX, d) A paly, ). Therefore, pa( x-
Y, q) = pa(X, ) A pa(y, q), for all xand y in Ryand g in Q. Also,
pa(xy, q) = pa(xy, q) A us( €', q) = pas[( (xy), (€€')), ql=
bas [(x ") (v, €'), a1 2 pas( (% &), Dapas( (v, €), 0) =
[ax, A)Aus(e', 1A [ua(y, a) A ws(e', )] = palx, QApay, 9)-
Therefore, pa(Xy, q) = pa(x, 9) A pa(y, q), forall x and y in Ry
and g in Q. And, va( X-Y, q) = va(Xx-y, q) v vg(e' + €', q) =
vas [((x-y), (&' +€)), a1 =vaas [ (x, )+ (-y, €'), 1< va(
(x, €),9) v vas( (=Y, €), a) = [va(x, @) v va(€', q)] v [va(-,
Q) v va(e, ) 1 = vaX, @) vva(-y, @) < va(X, Q)vva(y, ).
Therefore, va(x-y, q) < va(X, @) v va(y, q), forall xand y in R;
and g in Q. Also, va(xy, q) = va(xy, @) v ve(e'e', q) = vael(
(xy), (€'€")), a] = vaxel(x, €')(y, &), 4 1= vac( (%, €), 4 )vvae(
(v, €'),0) = [ va(x, @) v ve(e', @) 1 v [ valy, a) v ve(e',q) ] =
va(X, @) v Va(y, 0). Therefore, va(xy, 9) < va(X, @) v va(y, 0),
for all xand y in Ry and g in Q. Hence A is a Q-intuitionistic L-
fuzzy subnearring of Ry. Thus (i) is proved.

Now, using the property that pg(X, q) < pa(e, q) and vg(X, q) >
va(e, q), forall x inR,and q in Q. Let x and y in R, and e in R;.
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Then (e, X) and (e, y) are in RixR,. We get, us( X — VY, q) = ug(X
-V q)/\ MA(e+el q) = MA(e+el q)/\ HB(X_y: q): HAXB[(
(e+e)1 (X_y) )! Q]: uAXB[(ev X) + (er - y)v q] 2 HAXB( (ea X), q) A
Hae( (& —Y), d) = [a(e, ) A pa(x, A)] A [nale, ) A pa(=y, 9)]
= MB(Xv q)/\MB(_yl q) 2 HB(X’ Q)/\HB(y, q)

Therefore, ug( x-y, q) > ps(X, q) A ps(y, q), forall xandy in R,
and g in Q. Also, pg(xy, )= pa(xy, Q)A palee, q) = palee, )A
uB(Xyl q) = HaxB [ ( (ee)v (Xy) )l q] = UaxB [(e! X)(e! y)r q] 2 HAXB(
(&, X), Drnac( (& Y), @) = [ pale, Qaus(x, DIAL pale, a) A
ma(y, )] = us(x, A)Aps(y, 0). Therefore, ug(xy, q) = ps(x, q) A
us(y, q), for all x and y in R, and g in Q. And, vg( X-y, q) =
ve(x-y, ) Vv valete, q) = valete, q) wvve(x-y, Q)
=vael((ete), (x-y)), dl=vael (&, X)*(e, -y), q]< vae( (e,
X), @) vvas( (&, -Y), d) = [va(e, ) v ve(x, @) ] v [va(e, q) v
ve(=y, Q)] = ve(X, @) v ve(=y, @) < ve(X, ) v va(y, Q).
Therefore, vg( X=y, q) < va(X, q) v vg(y, q), forall xand y in R,
and g in Q. Also, vg(xy, ) = va(Xy, q) v va(ee, q) = va(ee, q) v
ve(xy, 0) = vae [ ((e€), (xy) ), a] = vae [ (& X)(e, ¥), 9] <
vas( (8, X), @) v vae( (e, Y), A)=[ va(e, q)vve(x, a) Iv[ vale, )
v ve(y, ) 1 = ve(x, 6) v ve(y, 0). Therefore, vg(xy, q) < vg(x, q)
v vg(y, ), for all x and y in R, and q in Q. Hence B is a Q-
intuitionistic  L-fuzzy subnearring of a nearring R,
Thus (ii) is proved. (iii) is clear.

2.6 Theorem: Let A be a Q-intuitionistic L-fuzzy subset of a
nearring R and V be the strongest Q-intuitionistic L-fuzzy
relation of R. Then A is a Q-intuitionistic L-fuzzy subnearring of
R if and only if V is a Q-intuitionistic L-fuzzy subnearring of
RxR.

Proof: Suppose that A is a Q-intuitionistic L-fuzzy subnearring
of a nearring R. Then for any x = (X{, X, ) and y = (y1, Y») are in
RxR and g in Q. We have, py ( x=y, @) = py[ (X1, X2) — (Y1, Y2),
al = pvl (Xi=y1, Xe=Y2), A] = pa( (Xa=Y1), Q) A pal (X2—y2), ) =
[ka(X1, @) A palys, )] A [Ha(%2, 9) A pa(Y2 9)] = [ra(xs, @) A
Ha(X2, )] A [a(ys @) A palyz, DI = pv (X1, X2), 9) A py (Y1,
¥2), @) = wv (X Q)Apy (Y, 9). Therefore, py (x=y, 0) = pv (X, @) A
py (v, q), for all x and y in RXR and g in Q. And, py (Xy, q) =
v [(Xe, X2) (Y1, ¥2), d] = pvl ( Xays, XaY2), A = pa(Xays, A
Ha(XaY2, ) 2 [pa(X1, @) A pays O A [Hake, @) Apa(yz )] =
[ra(x1, @) A pa(Xe, DI A [ualys a) A palyz, 9] = pvl( (X1, X2), 0)
A pv( (Y1, ¥2), 9) = pv (X, @) A py (Y, 9). Therefore, py (xy, ) =
py (X, @) A py (Y, g), forall x and y in RxR and g in Q. Also we
have, vv (x=y, @) = v [(X1, X2) =(Y1, ¥2), Al = v (Xi=y1, X2=Y2
), dl = valXi=y, 4) v valXe—Y2, Q) < [va(Xi, @)vvalys ) ]
VIva(Xz, @) v va(yz, @)] = [va(X, @) v va(Xz, 9) IvIvalys, @) v
Va(Y2, )] = vv ( (X1, X2), @) v vy (Y1, ¥2), @) = vw (X, ) v vy (Y,
q). Therefore, vy (X=y, q) < w (X, 9) v vy (Y, q), for all x and y
in RxR and q in Q. And, vy (xy, q) = vwil(X1, X2) (Y1, ¥2), ] = vw(
(X1, X2¥2), 0) = va(XaY1, 0) vva(Xey2, ) < [va(x, 0) v va(ys,
D] v [valxz, ) v va(yz, Q)] = [va(Xs, Q) v va(X2, 0)] v [va(ys, 0)
v Va(Y2 )] = vy ( (X1 X2), )vvy (Y1, ¥2), @) = vv (X, ) v vy
(y, q). Therefore, vy (xy, @) < v (X, q) v w(y, g), for all x and y
in RxR and q in Q. This proves that V is a Q-intuitionistic
L-fuzzy subnearring of RxR. Conversely assume that V is a Q-
intuitionistic L-fuzzy subnearring of RxR, then for any x = (X4,
Xo) and y = (Yy, ¥2) are in RXR and g in Q, we have pa(X;— Y1, Q)
A pa(Xo— Y2, 0)= pv( (X1— Y1, Xo— ¥2), d) = pv [(X1, X2) —(Y1, Y2),
al = pv (X =y, 4) 2 pyv (X, 8) A py (Y, 9) = py (X X2), @) A py (
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Y1, ¥2), @) = [na(X, 9) A pa(X2, O A [Halys A) A palYz 9)]- If
we put X, =y, = 0, we get, pa(Xi— Y1, ) = pa(Xs, @) A pa(ys, 9),
forall x;and y; in R and g in Q. And, pa(X1y1, Q) A pa(Xay2, Q) =
uv( (XaY1, X2Y2), @) = pl(X1, X2) (Yo, Y2), 9] = pv (XY, 0)= py (X,
Q) A pu(ys @) = (X, X2, @) Apyv ( (Y Y2), @)= [pa(xs,
DAMAX2, DIALMAYL, DA palY2 9)]. If we put x; =y, = 0, we
get, pa(Xay1, ) = pa(Xe, @) A pa(ys, ), forall x;and y; in R and
q in Q Also we have, VA(Xl_ylx q)\/VA(XZ— Yo, q) = Vv( (Xl_yla
X~ ¥2), ) = v [(X1, X2) = (Y, Y2), 4] = vw (X =Y, Q) <wy (X,
Dvvy (Y, @) = vw (X, X)), Dvwy ( (Y Y2, @) =
[va(x1, @)vva(xz, Q)] v [va(ys, @) v va(yz, @)]. If we put x,=y, =
0, we get, va(X1— Y1, q) < va(X1, Q)vva(Yi, 9), for all x; and y; in
Rand g in Q. And, va(X1y1, G) v va(Xay2, ) = vu( (X1, X2Y2),
q) = v (X, X2) (Y, ¥2), d] = vw (XY, @) < vw (X, @) v vy (Y, Q) =
vy (X1, X2), @) v vy (Yo, Y2), @) = [va(Xs, ) v valXe, 9)] v
[Va(ys, @) v va(yz, @)]. If we put x, =y, = 0, we get, va(Xiy1, 9)
< valXy, Q) v valYw ), for all x;and y; in R and g in Q. Hence
A is a A is a Q-intuitionistic L-fuzzy subnearring of a nearring
R.
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