Some properties of Q-Intuitionistic L-Fuzzy subnearrings of a nearring

M.M.Shanmugapriya ${ }^{1}$ and K.Arjunan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Karpagam University, Coimbatore -641021, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, H.H. The Rajah’s College, Pudukkottai-622001, Tamilnadu, India.

ARTICLE INFO

Article history:

Received: 4 March 2012;
Received in revised form:
11 November 2012;
Accepted: 15 November 2012;

Keywords

(Q, L)-fuzzy subset,
Q-intuitionistic L-fuzzy subset,
Q-intuitionistic L-fuzzy subnearring,
Q-intuitionistic L-fuzzy relation,
Product of Q-intuitionistic
L-fuzzy subsets.

Abstract

In this paper, we study some of the properties of Q-intuitionistic L-fuzzy subnearring of a nearring and prove some results on these.

Introduction

After the introduction of fuzzy sets by L.A.Zadeh[15], several researchers explored on the generalization of the notion of fuzzy set. The concept of intuitionistic L-fuzzy subset was introduced by K.T.Atanassov[4,5], as a generalization of the notion of fuzzy set. Azriel Rosenfeld[6] defined a fuzzy groups. Asok Kumer Ray[3] defined a product of fuzzy subgroups and A.Solairaju and R.Nagarajan[13,14] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of Q-intuitionistic L-fuzzy subnearring of a nearring and established some results.

1.Preliminaries:

1.1 Definition: Let X be a non-empty set and $\mathrm{L}=(\mathrm{L}, \leq)$ be a lattice with least element 0 and greatest element 1 and Q be a non-empty set. A (Q, L)-fuzzy subset A of X is a function A : $\mathrm{XxQ} \rightarrow \mathrm{L}$.
1.2 Definition: Let (L, \leq) be a complete lattice with an involutive order reversing operation $\mathrm{N}: \mathrm{L} \rightarrow \mathrm{L}$ and Q be a nonempty set. A Q-intuitionistic L-fuzzy subset (QILFS) A in X is defined as an object of the form $\mathrm{A}=\left\{\left\langle(\mathrm{x}, \mathrm{q}), \mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}), \mathrm{v}_{\mathrm{A}}(\mathrm{x}, \mathrm{q})\right\rangle\right.$ $/ \mathrm{x}$ in X and q in Q$\}$, where $\mu_{\mathrm{A}}: \mathrm{XxQ} \rightarrow \mathrm{L}$ and $\nu_{\mathrm{A}}: \mathrm{XxQ} \rightarrow \mathrm{L}$ define the degree of membership and the degree of nonmembership of the element $x \in X$ respectively and for every $x \in X$ satisfying $\mu_{\mathrm{A}}(\mathrm{x}) \leq \mathrm{N}\left(\nu_{\mathrm{A}}(\mathrm{x})\right)$.
1.3 Definition: Let ($\mathrm{R},+$, .) be a nearring. A Q-intuitionistic Lfuzzy subset A of R is said to be a Q -intuitionistic L -fuzzy subnearring(QILFSNR) of R if it satisfies the following axioms:
(i) $\mu_{\mathrm{A}}(\mathrm{x}-\mathrm{y}, \mathrm{q}) \geq \mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$
(ii) $\mu_{\mathrm{A}}(\mathrm{xy}, \mathrm{q}) \geq \mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$
(iii) $v_{A}(x-y, q) \leq v_{A}(x, q) \vee v_{A}(y, q)$
(iv) $v_{A}(x y, q) \leq v_{A}(x, q) \vee v_{A}(y, q)$, for all x and y in R and q in Q.
1.4 Definition: Let A and B be any two Q-intuitionistic L-fuzzy subnearrings of nearrings R_{1} and R_{2} respectively. The product of A and B denoted by $A x B$ is defined as
$\mathrm{AxB}=\left\{\left\langle((x, y), q), \mu_{\mathrm{AxB}}((\mathrm{x}, \mathrm{y}), \mathrm{q}), v_{\mathrm{AxB}}((\mathrm{x}, \mathrm{y}), \mathrm{q})\right\rangle /\right.$ for all x in R_{1} and y in R_{2} and q in $\left.Q\right\}$, where $\mu_{A x B}((x, y), q)=\mu_{A}(x$, $q) \wedge \mu_{B}(y, q)$ and $v_{A \times B}((x, y), q)=v_{A}(x, q) \vee v_{B}(y, q)$.
1.5 Definition: Let A be a Q-intuitionistic L-fuzzy subset in a set S , the strongest Q -intuitionistic L -fuzzy relation on S , that is a Q-intuitionistic L-fuzzy relation on A is V given by $\mu_{\mathrm{V}}(\mathrm{x}, \mathrm{y})$, $\mathrm{q})=\mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$ and $\left.v_{\mathrm{v}}(\mathrm{x}, \mathrm{y}), \mathrm{q}\right)=v_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \vee v_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$, for all x and y in S and q in Q .
2. Some properties of \mathbf{q}-intuitionistic l-fuzzy subnearrings of a nearring
2.1 Theorem: Intersection of any two Q-intuitionistic L-fuzzy subnearrings of a nearring R is a Q -intuitionistic L-fuzzy subnearring of R.
Proof: Let A and B be any two Q-intuitionistic L-fuzzy subnearrings of a nearring R and x and y in R and q in Q. Let A $=\left\{\left((x, q), \mu_{A}(x, q), v_{A}(x, q)\right) / x \in R\right.$ and q in $\left.Q\right\}$ and $B=\left\{\left((x, q), \mu_{B}(x, q), v_{B}(x, q)\right) / x \in R\right.$ and q in $\left.Q\right\}$ and also let $C=A \cap B=\left\{\left((x, q), \mu_{C}(x, q), v_{C}(x, q)\right) / x \in R\right.$ and q in $\left.Q\right\}$, where $\mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q})=\mu_{\mathrm{C}}(\mathrm{x}, \mathrm{q})$ and $v_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \vee v_{\mathrm{B}}(\mathrm{x}, \mathrm{q})=$ $v_{C}(x, q)$. Now, $\mu_{C}(x-y, q)=\mu_{A}(x-y, q) \wedge \mu_{B}(x-y, q) \geq$ $\left[\mu_{A}(x, q) \wedge \mu_{A}(y, q)\right] \wedge\left[\mu_{B}(x, q) \wedge \mu_{B}(y, q)\right]=\left[\mu_{A}(x, q) \wedge \mu_{B}(x\right.$, $q)] \wedge\left[\mu_{A}(y, q) \wedge \mu_{B}(y, q)\right]=\mu_{C}(x, q) \wedge \mu_{C}(y, q)$. Therefore, $\mu_{C}(x$ $-y, q) \geq \mu_{C}(x, q) \wedge \mu_{C}(y, q)$, for all x and y in R and q in Q.
And, $\mu_{C}(x y, q)=\mu_{A}(x y, q) \wedge \mu_{B}(x y, q) \geq\left[\mu_{A}(x, q) \wedge \mu_{A}(y, q)\right] \wedge$ $\left[\mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{y}, \mathrm{q})\right]=\left[\mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q})\right] \wedge\left[\mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{y}\right.$, $q)]=\mu_{C}(x, q) \wedge \mu_{C}(y, q)$. Therefore, $\mu_{C}(x y, q) \geq \mu_{C}(x, q) \wedge \mu_{C}(y$, $q)$, for all x and y in R and q in Q. Also, $v_{C}(x-y, q)=v_{A}(x-y$, q) $\vee v_{B}(x-y, q) \leq\left[v_{A}(x, q) \vee v_{A}(y, q)\right] \vee\left[v_{B}(x, q) \vee v_{B}(y\right.$, $q)]=\left[v_{A}(x, q) \vee v_{B}(x, q)\right] \vee\left[v_{A}(y, q) \vee v_{B}(y, q)\right]=v_{C}(x, q) \vee v_{C}(y$, q). Therefore, $v_{C}(x-y, q) \leq v_{C}(x, q) \vee v_{C}(y, q)$, for all x and y in R and q in Q. And, $v_{C}(x y, q)=v_{A}(x y, q) \vee v_{B}(x y, q) \leq\left[v_{A}(x, q)\right.$ $\left.\vee v_{A}(y, q)\right] \vee\left[v_{B}(x, q) \vee v_{B}(y, q)\right]=\left[v_{A}(x, q) \vee v_{B}(x, q)\right] \vee$ $\left[v_{A}(y, q) \vee v_{B}(y, q)\right]=v_{C}(x, q) \vee v_{C}(y, q)$.

Tele:

E-mail addresses: arjunan.karmegam@gmail.com

Therefore, $v_{C}(x y, q) \leq v_{C}(x, q) \vee v_{C}(y, q)$, for all x and y in R and q in Q . Therefore, C is a Q -intuitionistic L-fuzzy subnearring of a nearring R. Hence, intersection of any two Q -intuitionistic L-fuzzy subnearrings of a nearring R is a Q intuitionistic L-fuzzy subnearring of R.
2.2 Theorem: Let ($R,+$, .) is a nearring. The intersection of a family of Q -intuitionistic L-fuzzy subnearrings of R is a Q intuitionistic L-fuzzy subnearring of R.
Proof: Let $\left\{\mathrm{V}_{\mathrm{i}}: \mathrm{i} \in \mathrm{I}\right\}$ be a family of Q-intuitionistic L-fuzzy subnearrings of a nearring R and let $\mathrm{A}==\mathrm{I} V_{i}$. Let x and y in R and q in Q . Then, $\mu_{\mathrm{A}}(\mathrm{x}-\mathrm{y}, \mathrm{q})=\inf _{i \in I} \mu_{\mathrm{Vi}}(\mathrm{x}-\mathrm{y}, \mathrm{q}) \geq$ $\inf _{i \in I}\left[\mu_{\mathrm{vi}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{vi}}(\mathrm{y}, \mathrm{q})\right]=\inf _{i \in I} \mu_{\mathrm{vi}}(\mathrm{x}, \mathrm{q}) \wedge \inf _{i \in I} \mu_{\mathrm{Vi}}(\mathrm{y}, \mathrm{q})=\mu_{\mathrm{A}}(\mathrm{x}$, q) $\wedge \mu_{A}(y, q)$. Therefore, $\mu_{A}(x-y, q) \geq \mu_{A}(x, q) \wedge \mu_{A}(y, q)$, for all x and y in R and q in Q . And, $\mu_{\mathrm{A}}(\mathrm{xy}, \mathrm{q})=\inf _{\mathrm{ifel}} \mu_{\mathrm{Vi}}(\mathrm{xy}, \mathrm{q}) \geq$ $\inf _{i \in I}\left[\mu_{\mathrm{vi}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{Vi}}(\mathrm{y}, \mathrm{q})\right]=\inf _{i \in I} \mu_{\mathrm{vi}}(\mathrm{x}, \mathrm{q}) \wedge \inf _{i \in I} \mu_{\mathrm{vi}}(\mathrm{y}, \mathrm{q})=$ $\mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$. Therefore, $\mu_{\mathrm{A}}(\mathrm{xy}, \mathrm{q}) \geq \mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$, for all x and y in R and q in Q. Also, $v_{A}(x-y, q)=\sup _{i \in I} v_{V_{i}}(x-y$, $\mathrm{q}) \leq \sup _{i \in 1}\left[v_{\mathrm{Vi}}(\mathrm{x}, \mathrm{q}) \vee \mathrm{v}_{\mathrm{Vi}}(\mathrm{y}, \mathrm{q})\right]=\sup _{i \in I} v_{\mathrm{Vi}}(\mathrm{x}, \mathrm{q}) \vee \sup _{i \in I} v_{\mathrm{Vi}}(\mathrm{y}, \mathrm{q})=$ $v_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \vee v_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$. Therefore, $v_{\mathrm{A}}(\mathrm{x}-\mathrm{y}, \mathrm{q}) \leq v_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \vee v_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$, for all x and y in R and q in Q. And, $v_{A}(x y, q)=\sup _{i \in I} v_{v_{i}}(x y, q)$ $\leq \sup _{i \in I}\left[v_{\mathrm{Vi}_{\mathrm{i}}}(\mathrm{x}, \mathrm{q}) \vee \mathrm{v}_{\mathrm{Vi}}(\mathrm{y}, \mathrm{q})\right]=\sup _{i \in I} \mathrm{v}_{\mathrm{vi}(\mathrm{x}, \mathrm{q})} \vee \sup _{i \in I} v_{\mathrm{Vi}_{\mathrm{i}}}(\mathrm{y}, \mathrm{q})=$ $v_{A}(x, q) \vee v_{A}(y, q)$. Therefore, $v_{A}(x y, q) \leq v_{A}(x, q) \vee v_{A}(y, q)$, for all x and y in R and q in Q. That is, A is a Q -intuitionistic L-fuzzy subnearring of a nearring R. Hence, the intersection of a family of Q -intuitionistic L-fuzzy subnearrings of R is a Q intuitionistic L-fuzzy subnearring of R.
2.3 Theorem: If A and B are any two Q-intuitionistic L-fuzzy subnearrings of the nearrings R_{1} and R_{2} respectively, then AxB is a Q -intuitionistic L-fuzzy subnearring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.
Proof: Let A and B be two Q-intuitionistic L-fuzzy subnearrings of the nearrings R_{1} and R_{2} respectively. Let x_{1} and x_{2} be in R_{1}, y_{1} and y_{2} be in R_{2}. Then (x_{1}, y_{1}) and (x_{2}, y_{2}) in $R_{1} x R_{2}$ and q in Q. Now, $\mu_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right]=\mu_{\mathrm{AxB}}\left(\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}\right), \mathrm{q}\right)=$ $\mu_{\mathrm{A}}\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{q}\right) \wedge \mu_{\mathrm{B}}\left(\mathrm{y}_{1}-\mathrm{y}_{2}, \mathrm{q}\right) \geq\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{B}}\left(\mathrm{y}_{1}\right.\right.$, $\left.\mathrm{q}) \wedge \mu_{\mathrm{B}}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right]=\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{B}}\left(\mathrm{y}_{1}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{2}, \mathrm{q}\right) \wedge \mu_{\mathrm{B}}\left(\mathrm{y}_{2}\right.\right.$, q) $]=\mu_{\mathrm{AxB}}\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{q}\right) \wedge \mu_{\mathrm{AxB}}\left(\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right)$. Therefore, $\mu_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.y_{1}\right)-\left(x_{2}, y_{2}\right), q\right] \geq \mu_{\text {AxB }}\left(\left(x_{1}, y_{1}\right), q\right) \wedge \mu_{\text {AxB }}\left(\left(x_{2}, y_{2}\right), q\right)$, for all ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) in $\mathrm{R}_{1} \times \mathrm{x}_{2}$ and q in Q. Also, μ_{AxB} [$\left(\mathrm{x}_{1}\right.$, $\left.\left.y_{1}\right)\left(x_{2}, y_{2}\right), q\right]=\mu_{A \times B}\left(\left(x_{1} x_{2}, y_{1} y_{2}\right), q\right)=\mu_{A}\left(x_{1} x_{2}, q\right) \wedge \mu_{B}\left(y_{1} y_{2}\right.$, $\mathrm{q}) \geq\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{B}}\left(\mathrm{y}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{B}}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right]=\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right.\right.$, q) $\left.\wedge \mu_{\mathrm{B}}\left(\mathrm{y}_{1}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{2}, \mathrm{q}\right) \wedge \mu_{\mathrm{B}}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right]=\mu_{\mathrm{AxB}}\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{q}\right) \wedge$ $\mu_{\mathrm{AxB}}\left(\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right)$. Therefore, $\mu_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right] \geq \mu_{\mathrm{AxB}}\left(\left(\mathrm{x}_{1}\right.\right.$, $\left.\left.y_{1}\right), q\right) \wedge \mu_{A \times B}\left(\left(x_{2}, y_{2}\right), q\right)$, for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $R_{1} x R_{2}$ and q in Q . And, $v_{\text {AxB }}\left[\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right), q\right]=v_{\text {AxB }}\left(\left(x_{1}-x_{2}, y_{1}-\right.\right.$ $\left.\left.y_{2}\right), q\right)=v_{A}\left(x_{1}-x_{2}, q\right) \vee v_{B}\left(y_{1}-y_{2}, q\right) \leq\left[v_{A}\left(x_{1}, q\right) \vee v_{A}\left(x_{2}, q\right)\right.$ $] \vee\left[v_{B}\left(y_{1}, q\right) \vee v_{B}\left(y_{2}, q\right)\right]=\left[v_{A}\left(x_{1}, q\right) \vee v_{B}\left(y_{1}, q\right)\right] \vee\left[v_{A}\left(x_{2}, q\right)\right.$ $\left.\vee v_{B}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right]=v_{\mathrm{AxB}}\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{q}\right) \vee v_{\mathrm{AxB}}\left(\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right)$. Therefore, $v_{\text {AxB }}\left[\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right), q\right] \leq v_{\text {AxB }}\left(\left(x_{1}, y_{1}\right), q\right) \vee v_{\text {AxB }}\left(\left(x_{2}, y_{2}\right)\right.$, q), for all (x_{1}, y_{1}) and (x_{2}, y_{2}) in $R_{1} x_{2}$ and q in Q. Also, $v_{\text {AxB }}$ $\left[\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right), q\right]=v_{\text {AxB }}\left(\left(x_{1} x_{2}, y_{1} y_{2}\right), q\right)=v_{A}\left(x_{1} x_{2}, q\right) \vee$ $v_{B}\left(y_{1} y_{2}, q\right) \leq\left[v_{A}\left(x_{1}, q\right) \vee v_{A}\left(x_{2}, q\right)\right] \vee\left[v_{B}\left(y_{1}, q\right) \vee v_{B}\left(y_{2}, q\right)\right]=[$ $\left.v_{A}\left(x_{1}, q\right) \vee v_{B}\left(y_{1}, q\right)\right] \vee\left[v_{A}\left(x_{2}, q\right) \vee v_{B}\left(y_{2}, q\right)\right]=v_{A x B}\left(\left(x_{1}, y_{1}\right), q\right.$
$) \vee v_{\text {AxB }}\left(\left(x_{2}, y_{2}\right), q\right)$. Therefore, $v_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right] \leq v_{\mathrm{AxB}}($ $\left.\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{q}\right) \vee v_{\mathrm{AxB}}\left(\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{q}\right)$, for all $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ in $\mathrm{R}_{1} \mathrm{xR}_{2}$ and q in Q . Hence $A x B$ is a Q -intuitionistic L-fuzzy subnearring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.
2.4 Theorem: Let A and B be Q-intuitionistic L-fuzzy subnearrings of the nearrings R_{1} and R_{2} respectively. Suppose that e and e^{\prime} are the identity element of R_{1} and R_{2} respectively. If AxB is a Q-intuitionistic L-fuzzy subnearring of $R_{1} \times R_{2}$, then at least one of the following two statements must hold.
(i) $\quad \mu_{B}\left(e^{\prime}, q\right) \geq \mu_{A}(x, q)$ and $v_{B}\left(e^{\prime}, q\right) \leq v_{A}(x, q)$, for all x in R_{1} and q in Q ,
(ii) $\mu_{A}(e, q) \geq \mu_{B}(y, q)$ and $\quad v_{A}(e, q) \leq v_{B}(y, q)$, for all y in R_{2} and q in Q .
Proof: Let AxB be a Q-intuitionistic L-fuzzy subnearring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$. By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find a in R_{1} and b in R_{2} such that $\mu_{\mathrm{A}}(\mathrm{a}, \mathrm{q})>\mu_{\mathrm{B}}\left(\mathrm{e}^{\prime}, \mathrm{q}\right), v_{\mathrm{A}}(\mathrm{a}, \mathrm{q})<v_{\mathrm{B}}\left(\mathrm{e}^{\prime}, q\right)$ and $\mu_{\mathrm{B}}(\mathrm{b}, \mathrm{q})>\mu_{\mathrm{A}}(\mathrm{e}, \mathrm{q})$, $v_{\mathrm{B}}(\mathrm{b}, \mathrm{q})<v_{\mathrm{A}}(\mathrm{e}, \mathrm{q})$. We have, $\mu_{\mathrm{AxB}}((\mathrm{a}, \mathrm{b}), \mathrm{q})=\mu_{\mathrm{A}}(\mathrm{a}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{b}$, $\mathrm{q})>\mu_{\mathrm{B}}\left(\mathrm{e}^{\prime}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}(\mathrm{e}, \mathrm{q})=\mu_{\mathrm{A}}(\mathrm{e}, \mathrm{q}) \wedge \mu_{\mathrm{B}}\left(\mathrm{e}^{\mathrm{l}}, \mathrm{q}\right)=\mu_{\mathrm{AxB}}\left(\left(\mathrm{e}, \mathrm{e}^{\mathrm{l}}\right), \mathrm{q}\right)$. And, $v_{\text {AxB }}((a, b), q)=v_{A}(a, q) \vee v_{B}(b, q)<v_{B}\left(e^{\prime}, q\right) \vee v_{A}(e, q)$ $=v_{A}(e, q) \vee v_{B}\left(e^{\prime}, q\right)=v_{A x B}\left(\left(e, e^{\prime}\right), q\right)$. Thus AxB is not a $Q-$ intuitionistic L-fuzzy subnearring of $R_{1} \times R_{2}$. Hence either $\mu_{B}\left(e^{1}\right.$, $q) \geq \mu_{A}(x, q)$ and $v_{B}\left(e^{\prime}, q\right) \leq v_{A}(x, q)$, for all x in R_{1} and q in Q or $\mu_{\mathrm{A}}(\mathrm{e}, \mathrm{q}) \geq \mu_{\mathrm{B}}(\mathrm{y}, \mathrm{q})$ and $v_{\mathrm{A}}(\mathrm{e}, \mathrm{q}) \leq v_{\mathrm{B}}(\mathrm{y}, \mathrm{q})$, for all y in R_{2} and q in Q.
2.5 Theorem: Let A and B be two Q-intuitionistic L-fuzzy subsets of the nearrings R_{1} and R_{2} respectively and $A x B$ is a Qintuitionistic L-fuzzy subnearring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$. Then the following are true :
(i) if $\mu_{A}(x, q) \leq \mu_{B}\left(e^{\prime}, q\right)$ and $v_{A}(x, q) \geq v_{B}\left(e^{\prime}, q\right)$, then A is a Q-intuitionistic L-fuzzy subnearring of R_{1}.
(ii) if $\mu_{B}(x, q) \leq \mu_{A}(e, q)$ and $v_{B}(x, q) \geq v_{A}(e, q)$, then B is a Q-intuitionistic L-fuzzy subnearring of R_{2}.
(iii) either A is a Q -intuitionistic L-fuzzy subnearring of R_{1} or B is a Q -intuitionistic L -fuzzy subnearring of R_{2}.
Proof: Let AxB be a Q-intuitionistic L-fuzzy subnearring of $R_{1} \times R_{2}, x$ and y in R_{1} and e^{\prime} in R_{2}. Then (x, e^{\prime}) and (y, e^{\prime}) are in $R_{1} \times R_{2}$. Now, using the property that $\mu_{A}(x, q) \leq$ $\mu_{B}\left(e^{\prime}, q\right)$ and $v_{A}(x, q) \geq v_{B}\left(e^{\prime}, q\right)$, for all x in R_{1} and q in Q, we get, $\mu_{\mathrm{A}}(\mathrm{x}-\mathrm{y}, \mathrm{q})=\mu_{\mathrm{A}}(\mathrm{x}-\mathrm{y}, \mathrm{q}) \wedge \mu_{\mathrm{B}}\left(\mathrm{e}^{\prime}+\mathrm{e}^{\mathrm{l}}, \mathrm{q}\right)=\mu_{\mathrm{AxB}}[((\mathrm{x}-\mathrm{y})$, $\left.\left.\left(e^{1}+e^{\prime}\right)\right), q\right]=\mu_{A x B}\left[\left(x, e^{\prime}\right)+\left(-y, e^{\prime}\right), q\right] \geq \mu_{A x B}\left(\left(x, e^{\prime}\right), q\right) \wedge$ $\mu_{A x B}\left(\left(-y, e^{\prime}\right), q\right)=\left[\mu_{A}(x, q) \wedge \mu_{B}\left(e^{\prime}, q\right)\right] \wedge\left[\mu_{A}(-y, q) \wedge \mu_{B}\left(e^{1}, q\right)\right]$ $=\mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(-\mathrm{y}, \mathrm{q}) \geq \mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$. Therefore, $\mu_{\mathrm{A}}(\mathrm{x}-$ $y, q) \geq \mu_{A}(x, q) \wedge \mu_{A}(y, q)$, for all x and y in R_{1} and q in Q. Also, $\mu_{\mathrm{A}}(\mathrm{xy}, \mathrm{q})=\mu_{\mathrm{A}}(\mathrm{xy}, \mathrm{q}) \wedge \mu_{\mathrm{B}}\left(\mathrm{e}^{\prime} \mathrm{e}^{\prime}, q\right)=\mu_{\mathrm{AxB}}\left[\left((\mathrm{xy}),\left(\mathrm{e}^{\prime} \mathrm{e}^{\prime}\right)\right), q\right]=$ $\mu_{\mathrm{AxB}}\left[\left(x, e^{\prime}\right)\left(y, e^{\prime}\right), q\right] \geq \mu_{\mathrm{AxB}}\left(\left(x, e^{\prime}\right), q\right) \wedge \mu_{\mathrm{AxB}}\left(\left(y, e^{\prime}\right), q\right)=$ $\left[\mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{B}}\left(\mathrm{e}^{\prime}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q}) \wedge \mu_{\mathrm{B}}\left(\mathrm{e}^{\prime}, \mathrm{q}\right)\right]=\mu_{\mathrm{A}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{y}, \mathrm{q})$. Therefore, $\mu_{A}(x y, q) \geq \mu_{A}(x, q) \wedge \mu_{A}(y, q)$, for all x and y in R_{1} and q in Q. And, $v_{A}(x-y, q)=v_{A}(x-y, q) \vee v_{B}\left(e^{\prime}+e^{\prime}, q\right)=$ $v_{A x B}\left[\left((x-y),\left(e^{\prime}+e^{\prime}\right)\right), q\right]=v_{A x B}\left[\left(x, e^{\prime}\right)+\left(-y, e^{\prime}\right), q\right] \leq v_{A x B}($ $\left.\left(x, e^{\prime}\right), q\right) \vee v_{A x B}\left(\left(-y, e^{\prime}\right), q\right)=\left[v_{A}(x, q) \vee v_{B}\left(e^{\prime}, q\right)\right] \vee\left[v_{A}(-y\right.$, $\left.q) \vee v_{B}\left(e^{\prime}, q\right)\right]=v_{A}(x, q) \vee v_{A}(-y, q) \leq v_{A}(x, q) \vee v_{A}(y, q)$. Therefore, $v_{A}(x-y, q) \leq v_{A}(x, q) \vee v_{A}(y, q)$, for all x and y in R_{1} and q in Q. Also, $v_{A}(x y, q)=v_{A}(x y, q) \vee v_{B}\left(e^{\prime} e^{\prime}, q\right)=v_{A x B}[($ (xy), ($\left.\left.\left.e^{\prime} e^{\prime}\right)\right), q\right]=v_{A x B}\left[\left(x, e^{\prime}\right)\left(y, e^{\prime}\right), q\right] \leq v_{A x B}\left(\left(x, e^{\prime}\right), q\right) \vee v_{A x B}($ $\left.\left(y, e^{\prime}\right), q\right)=\left[v_{A}(x, q) \vee v_{B}\left(e^{\prime}, q\right)\right] \vee\left[v_{A}(y, q) \vee v_{B}\left(e^{\prime}, q\right)\right]=$ $v_{A}(x, q) \vee v_{A}(y, q)$. Therefore, $v_{A}(x y, q) \leq v_{A}(x, q) \vee v_{A}(y, q)$, for all x and y in R_{1} and q in Q. Hence A is a Q-intuitionistic Lfuzzy subnearring of R_{1}. Thus (i) is proved.
Now, using the property that $\mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q}) \leq \mu_{\mathrm{A}}(\mathrm{e}, \mathrm{q})$ and $\nu_{\mathrm{B}}(\mathrm{x}, \mathrm{q}) \geq$ $v_{A}(e, q)$, for all x in R_{2} and q in Q. Let x and y in R_{2} and e in R_{1}.

Then (e, x) and (e, y) are in $R_{1} x R_{2}$. We get, $\mu_{B}(x-y, q)=\mu_{B}(x$ $-\mathrm{y}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{e}+\mathrm{e}, \mathrm{q})=\mu_{\mathrm{A}}(\mathrm{e}+\mathrm{e}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{x}-\mathrm{y}, \mathrm{q})=\mu_{\mathrm{AxB}}[($ $(e+e),(x-y)), q]=\mu_{A x B}[(e, x)+(e,-y), q] \geq \mu_{A x B}((e, x), q) \wedge$ $\mu_{\mathrm{AxB}}((\mathrm{e},-\mathrm{y}), \mathrm{q})=\left[\mu_{\mathrm{A}}(\mathrm{e}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q})\right] \wedge\left[\mu_{\mathrm{A}}(\mathrm{e}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(-\mathrm{y}, \mathrm{q})\right]$ $=\mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(-\mathrm{y}, \mathrm{q}) \geq \mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{y}, \mathrm{q})$.
Therefore, $\mu_{B}(x-y, q) \geq \mu_{B}(x, q) \wedge \mu_{B}(y, q)$, for all x and y in R_{2} and q in Q . Also, $\mu_{\mathrm{B}}(\mathrm{xy}, \mathrm{q})=\mu_{\mathrm{B}}(\mathrm{xy}, \mathrm{q}) \wedge \mu_{\mathrm{A}}(\mathrm{ee}, \mathrm{q})=\mu_{\mathrm{A}}(e \mathrm{e}, \mathrm{q}) \wedge$ $\mu_{\mathrm{B}}(\mathrm{xy}, \mathrm{q})=\mu_{\mathrm{AxB}}[((e e),(x y)), q]=\mu_{\mathrm{AxB}}[(\mathrm{e}, \mathrm{x})(\mathrm{e}, \mathrm{y}), \mathrm{q}] \geq \mu_{\mathrm{AxB}}($ $(e, x), q) \wedge \mu_{A x B}((e, y), q)=\left[\mu_{A}(e, q) \wedge \mu_{B}(x, q)\right] \wedge\left[\mu_{A}(e, q) \wedge\right.$ $\left.\mu_{\mathrm{B}}(\mathrm{y}, \mathrm{q})\right]=\mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{B}}(\mathrm{y}, \mathrm{q})$. Therefore, $\mu_{\mathrm{B}}(\mathrm{xy}, \mathrm{q}) \geq \mu_{\mathrm{B}}(\mathrm{x}, \mathrm{q}) \wedge$ $\mu_{B}(y, q)$, for all x and y in R_{2} and q in Q. And, $v_{B}(x-y, q)=$ $v_{B}(x-y, \quad q) \quad \vee v_{A}(e+e, q)=v_{A}(e+e, \quad q) \quad v v_{B}(x-y, \quad q)$ $=v_{A x B}[((e+e),(x-y)), q]=v_{\text {AxB }}[(e, x)+(e,-y), q] \leq v_{A x B}(e$, $x), q) \vee v_{A x B}((e,-y), q)=\left[v_{A}(e, q) \vee v_{B}(x, q)\right] \vee\left[v_{A}(e, q) \vee\right.$ $\left.v_{B}(-y, q)\right]=v_{B}(x, q) \vee v_{B}(-y, q) \leq v_{B}(x, q) \vee v_{B}(y, q)$. Therefore, $v_{B}(x-y, q) \leq v_{B}(x, q) \vee v_{B}(y, q)$, for all x and y in R_{2} and q in Q. Also, $v_{B}(x y, q)=v_{B}(x y, q) \vee v_{A}(e e, q)=v_{A}(e e, q) \vee$ $v_{B}(x y, q)=v_{\text {AxB }}[((e e),(x y)), q]=v_{\text {AxB }}[(e, x)(e, y), q] \leq$ $v_{\text {AxB }}((e, x), q) \vee v_{\text {AxB }}((e, y), q)=\left[v_{A}(e, q) \vee v_{B}(x, q)\right] \vee\left[v_{A}(e, q)\right.$ $\left.\vee v_{B}(y, q)\right]=v_{B}(x, q) \vee v_{B}(y, q)$. Therefore, $v_{B}(x y, q) \leq v_{B}(x, q)$ $\vee v_{B}(y, q)$, for all x and y in R_{2} and q in Q. Hence B is a $Q-$ intuitionistic L-fuzzy subnearring of a nearring R_{2}. Thus (ii) is proved. (iii) is clear.
2.6 Theorem: Let A be a Q-intuitionistic L-fuzzy subset of a nearring R and V be the strongest Q -intuitionistic L -fuzzy relation of R. Then A is a Q-intuitionistic L-fuzzy subnearring of R if and only if V is a Q-intuitionistic L-fuzzy subnearring of RxR.
Proof: Suppose that A is a Q-intuitionistic L-fuzzy subnearring of a nearring R. Then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in RxR and q in Q . We have, $\mu_{\mathrm{V}}(\mathrm{x}-\mathrm{y}, \mathrm{q})=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right.$, $\mathrm{q}]=\mu_{\mathrm{v}}\left[\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{x}_{2}-\mathrm{y}_{2}\right), \mathrm{q}\right]=\mu_{\mathrm{A}}\left(\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right), \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right), \mathrm{q}\right) \geq$ $\left[\mu_{A}\left(x_{1}, q\right) \wedge \mu_{A}\left(y_{1}, q\right)\right] \wedge\left[\mu_{A}\left(x_{2}, q\right) \wedge \mu_{A}\left(y_{2}, q\right)\right]=\left[\mu_{A}\left(x_{1}, q\right) \wedge\right.$ $\left.\mu_{\mathrm{A}}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{A}}\left(\mathrm{y}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right]=\mu_{\mathrm{V}}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{q}\right) \wedge \mu_{\mathrm{V}}\left(\left(\mathrm{y}_{1}\right.\right.$, $\left.\left.y_{2}\right), q\right)=\mu_{V}(x, q) \wedge \mu_{V}(y, q)$. Therefore, $\mu_{V}(x-y, q) \geq \mu_{V}(x, q) \wedge$ $\mu_{\mathrm{V}}(\mathrm{y}, \mathrm{q})$, for all x and y in RxR and q in Q . And, $\mu_{\mathrm{V}}(\mathrm{xy}, \mathrm{q})=$ $\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right]=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right), \mathrm{q}\right]=\mu_{\mathrm{A}}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{q}\right) \wedge$ $\mu_{\mathrm{A}}\left(\mathrm{x}_{2} \mathrm{y}_{2}, \mathrm{q}\right) \geq\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\mathrm{y}_{1}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{2}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right]=$ $\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\mathrm{x}_{2}, \mathrm{q}\right)\right] \wedge\left[\mu_{\mathrm{A}}\left(\mathrm{y}_{1}, \mathrm{q}\right) \wedge \mu_{\mathrm{A}}\left(\mathrm{y}_{2}, \mathrm{q}\right)\right]=\mu_{\mathrm{V}}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{q}\right)$ $\wedge \mu_{\mathrm{v}}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right)=\mu_{\mathrm{V}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{v}}(\mathrm{y}, \mathrm{q})$. Therefore, $\mu_{\mathrm{V}}(\mathrm{xy}, \mathrm{q}) \geq$ $\mu_{\mathrm{V}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{V}}(\mathrm{y}, \mathrm{q})$, for all x and y in $R \mathrm{xR}$ and q in Q . Also we have, $v_{\mathrm{V}}(\mathrm{x}-\mathrm{y}, \mathrm{q})=\mathrm{v}_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right]=\mathrm{v}_{\mathrm{V}}\left[\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{x}_{2}-\mathrm{y}_{2}\right.\right.$), q$]=v_{\mathrm{A}}\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{q}\right) \vee v_{\mathrm{A}}\left(\mathrm{x}_{2}-\mathrm{y}_{2}, \mathrm{q}\right) \leq\left[v_{\mathrm{A}}\left(\mathrm{x}_{1}, \mathrm{q}\right) \vee v_{\mathrm{A}}\left(\mathrm{y}_{1}, \mathrm{q}\right)\right]$ $\vee\left[v_{A}\left(x_{2}, q\right) \vee v_{A}\left(y_{2}, q\right)\right]=\left[v_{A}\left(x_{1}, q\right) \vee v_{A}\left(x_{2}, q\right)\right] \vee\left[v_{A}\left(y_{1}, q\right) \vee\right.$ $\left.v_{A}\left(y_{2}, q\right)\right]=v_{V}\left(\left(x_{1}, x_{2}\right), q\right) \vee v_{V}\left(\left(y_{1}, y_{2}\right), q\right)=v_{V}(x, q) \vee v_{V}(y$, q). Therefore, $v_{V}(x-y, q) \leq v_{V}(x, q) \vee v_{V}(y, q)$, for all x and y in $R x R$ and q in Q. And, $v_{v}(x y, q)=v_{v}\left[\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right), q\right]=v_{v}($ $\left.\left(x_{1} y_{1}, x_{2} y_{2}\right), q\right)=v_{A}\left(x_{1} y_{1}, q\right) \vee v_{A}\left(x_{2} y_{2}, q\right) \leq\left[v_{A}\left(x_{1}, q\right) \vee v_{A}\left(y_{1}\right.\right.$, q) $] \vee\left[v_{A}\left(x_{2}, q\right) \vee v_{A}\left(y_{2}, q\right)\right]=\left[v_{A}\left(x_{1}, q\right) \vee v_{A}\left(x_{2}, q\right)\right] \vee\left[v_{A}\left(y_{1}, q\right)\right.$ $\left.\vee v_{A}\left(y_{2}, q\right)\right]=v_{V}\left(\left(x_{1}, x_{2}\right), q\right) \vee v_{V}\left(\left(y_{1}, y_{2}\right), q\right)=v_{V}(x, q) \vee v_{V}$ (y, q). Therefore, $v_{V}(x y, q) \leq v_{V}(x, q) \vee v_{V}(y, q)$, for all x and y in RxR and q in Q . This proves that V is a Q -intuitionistic L-fuzzy subnearring of RxR. Conversely assume that V is a Q intuitionistic L-fuzzy subnearring of RxR, then for any $x=\left(x_{1}\right.$, $\left.x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in $R x R$ and q in Q, we have $\mu_{A}\left(x_{1}-y_{1}, q\right)$ $\wedge \mu_{\mathrm{A}}\left(\mathrm{x}_{2}-\mathrm{y}_{2}, \mathrm{q}\right)=\mu_{\mathrm{V}}\left(\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{x}_{2}-\mathrm{y}_{2}\right), \mathrm{q}\right)=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)-\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right.$, $\mathrm{q}]=\mu_{\mathrm{V}}(\mathrm{x}-\mathrm{y}, \mathrm{q}) \geq \mu_{\mathrm{V}}(\mathrm{x}, \mathrm{q}) \wedge \mu_{\mathrm{V}}(\mathrm{y}, \mathrm{q})=\mu_{\mathrm{V}}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{q}\right) \wedge \mu_{\mathrm{V}}($
$\left.\left(y_{1}, y_{2}\right), q\right)=\left[\mu_{A}\left(x_{1}, q\right) \wedge \mu_{A}\left(x_{2}, q\right)\right] \wedge\left[\mu_{A}\left(y_{1}, q\right) \wedge \mu_{A}\left(y_{2}, q\right)\right]$. If we put $x_{2}=y_{2}=0$, we get, $\mu_{A}\left(x_{1}-y_{1}, q\right) \geq \mu_{A}\left(x_{1}, q\right) \wedge \mu_{A}\left(y_{1}, q\right)$, for all x_{1} and y_{1} in R and q in Q. And, $\mu_{A}\left(x_{1} y_{1}, q\right) \wedge \mu_{A}\left(x_{2} y_{2}, q\right)=$ $\mu_{\mathrm{V}}\left(\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right), \mathrm{q}\right)=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right]=\mu_{\mathrm{V}}(\mathrm{xy}, \mathrm{q}) \geq \mu_{\mathrm{V}}(\mathrm{x}$, q) $\wedge \mu_{\mathrm{v}}(\mathrm{y}, \mathrm{q})=\mu_{\mathrm{V}}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{q}\right) \wedge \mu_{\mathrm{V}}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{q}\right)=\left[\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right.\right.$, q) $\left.\wedge \mu_{A}\left(x_{2}, q\right)\right] \wedge\left[\mu_{A}\left(y_{1}, q\right) \wedge \mu_{A}\left(y_{2}, q\right)\right]$. If we put $x_{2}=y_{2}=0$, we get, $\mu_{A}\left(x_{1} y_{1}, q\right) \geq \mu_{A}\left(x_{1}, q\right) \wedge \mu_{A}\left(y_{1}, q\right)$, for all x_{1} and y_{1} in R and q in Q . Also we have, $v_{A}\left(\mathrm{x}_{1}-\mathrm{y}_{1}, q\right) \vee v_{\mathrm{A}}\left(\mathrm{x}_{2}-\mathrm{y}_{2}, q\right)=v_{\mathrm{V}}\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right.$, $\left.\left.x_{2}-y_{2}\right), q\right)=v_{V}\left[\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right), q\right]=v_{V}(x-y, q) \leq v_{V}(x$, $q) \vee v_{V}(y, q)=v_{V}\left(\left(x_{1}, x_{2}\right), q\right) \vee v_{V}\left(\left(y_{1}, y_{2}\right), q\right)=$ $\left[v_{A}\left(x_{1}, q\right) \vee v_{A}\left(x_{2}, q\right)\right] \vee\left[v_{A}\left(y_{1}, q\right) \vee v_{A}\left(y_{2}, q\right)\right]$. If we put $x_{2}=y_{2}=$ 0 , we get, $v_{A}\left(x_{1}-y_{1}, q\right) \leq v_{A}\left(x_{1}, q\right) \vee v_{A}\left(y_{1}, q\right)$, for all x_{1} and y_{1} in R and q in Q. And, $v_{A}\left(x_{1} y_{1}, q\right) \vee v_{A}\left(x_{2} y_{2}, q\right)=v_{V}\left(x_{1} y_{1}, x_{2} y_{2}\right)$, $q)=v_{V}\left[\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right), q\right]=v_{V}(x y, q) \leq v_{V}(x, q) \vee v_{V}(y, q)=$ $v_{V}\left(\left(x_{1}, x_{2}\right), q\right) \vee v_{V}\left(\left(y_{1}, y_{2}\right), q\right)=\left[v_{A}\left(x_{1}, q\right) \vee v_{A}\left(x_{2}, q\right)\right] \vee$ $\left[v_{A}\left(y_{1}, q\right) \vee v_{A}\left(y_{2}, q\right)\right]$. If we put $x_{2}=y_{2}=0$, we get, $v_{A}\left(x_{1} y_{1}, q\right)$ $\leq v_{A}\left(x_{1}, q\right) \vee v_{A}\left(y_{1}, q\right)$, for all x_{1} and y_{1} in R and q in Q. Hence A is a A is a Q -intuitionistic L-fuzzy subnearring of a nearring R.

Reference

1.Ajmal.N and Thomas.K.V., Fuzzy lattices, Information sciences 79 (1994), 271-291.
2. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61-76.
3. Asok Kumer Ray, On product of fuzzy subgroups, fuzzy sets and systems, 105, 181-183 (1999).
4. Atanassov.K., Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1), 87-96 (1986).
5. Atanassov.K., Stoeva.S., Intuitionistic L-fuzzy sets, Cybernetics and systems research 2 (Elsevier Sci. Publ., Amsterdam, 1984), 539-540.
6. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications 35, 512-517 (1971).
7. Chakrabarty, K., Biswas, R., Nanda, A note on union and intersection of intuitionistic fuzzy sets, Notes on intuitionistic fuzzy sets, 3(4), (1997).
8. Davvaz.B and Wieslaw.A.Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV0710.3884VI(MATH.RA)20 OCT 2007,1-16.
9. Goran Trajkovski, An approach towards defining L-fuzzy lattices, IEEE, 7(1998), 221-225.
10. Mohammad M. Atallah, On the L-fuzzy prime ideal theorem of distributive lattices, The journal of fuzzy mathematics, Vol.9, No.4, 2001.
11. Palaniappan.N and Arjunan.K, The homomorphism, antihomomorphism of a fuzzy and anti fuzzy ideals, Varahmihir journal of mathematical sciences, Vol. 6 No. 1 (2006), 181-188.
12. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.
13. Solairaju.A and Nagarajan.R, A new structure and construction of Q-fuzzy groups, Advances in fuzzy mathematics, Volume 4, Number 1 (2009) pp. 23-29.
14. Solairaju.A and Nagarajan.R, Lattice Valued Q-fuzzy left R-submodules of near rings with respect to T-norms, Advances in fuzzy mathematics,Vol 4, Num. 2, 137-145(2009).
15. Zadeh.L.A., Fuzzy sets , Information and control ,Vol.8, 338-353 (1965).

