
Bahman Rashidi et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12059-12064

12059

Introduction

 The amount of data in our world has been exploding, and

analysing large data sets called big data, will become a key basis

of many researches. Data is being collected and stored at

unprecedented rates. The challenge is not only to store and

manage the vast volume of data (―big data‖), but also to analyse

and extract meaningful value from it. There are several

approaches to collecting, storing, processing, and analysing big

data. MapReduce is one of existing mechanisms for big data

processing.

 MapReduce is a distributed programming framework

designed to ease the development of scalable data-intensive

applications for large clusters of commodity machines. The

MapReduce distributed data analysis framework model

introduced by Google provides an easy-to-use programming

model that features fault tolerance, automatic parallelization,

scalability and data locality-based optimizations. Due to their

excellent fault tolerance features, MapReduce frameworks are

well-suited for the execution of large distributed jobs in brittle

environments such as commodity clusters and cloud

infrastructures [5][12].

 Hadoop MapReduce provides a mechanism for

programmers to leverage the distributed systems for processing

data sets. MapReduce can be divided into two distinct phases:

• Map Phase: Divides the workload into smaller sub

workloads and assigns tasks to Mapper, which processes

each unit block of data. The output of Mapper is a sorted list of

(key, value) pairs. This list is passed (also called shuffling) to

the next phase.

• Reduce: analyses and merges the input to produce the final

output. The final output is written to the HDFS in the cluster.

 Cloud computing is a new paradigm for the provision of

computing infrastructure. This paradigm shifts the location of

this infrastructure to the network to reduce the costs associated

with the management of hardware and software resources.

Hence, businesses and users become able to access application

services from anywhere in the world [11].

 Characteristics of cloud services like On-demand self-

service, Broad network access, Resource pooling, Rapid

elasticity and Measured Service cause MapReduce take

advantage of cloud infrastructure services and probably cloud is

a good platform for implementation of MapReduce [3] [11].

 In this paper we bring out a complete comparison of the two

different implementations of MapReduce programming model

that implemented on top of cloud computing. The rest of the

paper is organized as follows. The cloud computing and cloud

service models are briefly explained. Also the MapReduce and

his architecture are briefly explained and the characteristics of

MapReduce implementation in the cloud environment.At last

discusses and compares two models of cloud MapReduce.

Concluding remarks are presented.

Cloud Computing

 The concept of cloud computing addresses the next

evolutionary step distributed computing. The goal of this

computing model is to make a better use of distributed

resources, put them together in order to achieve higher

throughput and be able to tackle large scale computation

problems. Cloud computing is not a completely new concept for

the development and operation of web application. It allows for

the most cost-effective development of scalable web portals on

highly available and fail-safe infrastructure [1].

 Cloud computing deals with virtualization, scalability,

interoperability, quality of service and the delivery models of

the cloud, namely private, public and hybrid.

 A more structured definition is given by Buyya et al [2]:

who define a Cloud as a ―type of parallel and distributed

system consisting of a collection of interconnected and

Tele:

E-mail addresses: b_rashidi@comp.iust.ac.ir

 © 2012 Elixir All rights reserved

A Comparison of Amazon Elastic Mapreduce and Azure Mapreduce
Bahman Rashidi

1
, Esmail Asyabi

1
 and Talie Jafari

2

1
Iran University of Science and Technology (IUST).

2
Amirkabir University of Technology.

ABSTRACT

In last two decades continues increase of comput-ational power and recent advance in the

web technology cause to provide large amounts of data. That needs large scale data

processing mechanism to handle this volume of data. MapReduce is a programming model

for large scale distributed data processing in an efficient and transparent way. Due to its

excellent fault tolerance features, scalability and the ease of use. Currently, there are several

options for using MapReduce in cloud environments, such as using MapReduce as a service,

setting up one’s own MapReduce cluster on cloud instances, or using specialized cloud

MapReduce runtimes that take advantage of cloud infrastructure services. Cloud computing

has recently emerged as a new paradigm that provide computing infrastructure and large

scale data processing mechanism in the network. The cloud is on demand, scalable and high

availability so implement of MapReduce on the top of cloud services cause faster, scalable

and high available MapReduce framework for large scale data processing. In this paper we

explain how to implement MapReduce in the cloud and also have a comparison between

implementations of MapReduce on AzureCloud, Amazon Cloud and Hadoop at the end.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 18 October 2012;

Received in revised form:

7 December 2012;

Accepted: 14 December 2012;

Keywords

Cloud computing.

Mapreduce.

Cloud mapreduce.

Azure mapreduce.

Amazon elastic mapreduce.

Elixir Comp. Sci. & Engg. 53 (2012) 12059-12064

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Bahman Rashidi et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12059-12064

12060

virtualized computers that are dynamically provisioned and

presented as one or more unified computing resources based on

service-level agreement‖.

 The US National Institute of Standards and Technology

(NIST) offer a comprehensive and general definitions for cloud

computing, aspects and Characteristics. It summarizes cloud

computing as [3]:

 "Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or

service provider interaction."

 NIST also defines the characteristics of cloud computing,

these characteristics are defined as follows:

 On-demand self-service: A consumer can unilaterally

provision computing capabilities, such as server time and

network storage, as needed automatically without requiring

human interaction with each service provider.

 Broad network access: Capabilities are available over the

network and accessed through standard mechanisms that

promote use by heterogeneous thin or thick client platforms

(e.g., mobile phones, tablets, laptops, and workstations).

 Resource pooling: The provider’s computing resources are

pooled to serve multiple consumers using a multi-tenant model,

with different physical and virtual resources dynamically

assigned and reassigned according to consumer demand. There

is a sense of location independence in that the customer

generally has no control or knowledge over the exact location of

the provided resources but may be able to specify location at a

higher level of abstraction (e.g., country, state, or datacenter).

Examples of resources include storage, processing, memory, and

network bandwidth.

 Rapid elasticity: Capabilities can be elastically provisioned

and released, in some cases automatically, to scale rapidly

outward and inward commensurate with demand. To the

consumer, the capabilities available for provisioning often

appear to be unlimited and can be appropriated in any quantity

at any time.

Fig 1. Models of Cloud Services

 Measured service: Cloud systems automatically control and

optimize resource use by leveraging a metering capability at

some level of abstraction appropriate to the type of service (e.g.,

storage, processing, bandwidth, and active user accounts).

Resource usage can be monitored, controlled, and reported,

providing transparency for both the provider and consumer of

the utilized service.

The NIST definition also the wide variety of services

exposed by the Cloud computing can be classified and organized

into three classes (Figure 1) which are referred to as a services

models:

 Software as a Service (SaaS): The capability provided to the

consumer is to use the provider’s applications running on a

cloud infrastructure. The applications are accessible from

various client devices through either a thin client interface, such

as a web browser (e.g., web-based email), or a program

interface. The consumer does not manage or control the

underlying cloud infrastructure including network, servers,

operating systems, storage, or even individual application

capabilities, with the possible exception of limited user-specific

application configuration settings.

 Platform as a Service (PaaS): The capability provided to the

consumer is to deploy onto the cloud infrastructure consumer-

created or acquired applications created using programming

languages, libraries, services, and tools supported by the

provider. The consumer does not manage or control the

underlying cloud infrastructure including network, servers,

operating systems, or storage, but has control over the deployed

applications and possibly configuration settings for the

application-hosting environment.

 Infrastructure as a Service (IaaS): The capability provided

to the consumer to provision processing, storage, networks, and

other fundamental computing resources where the consumer is

able to deploy and run arbitrary software, which can include

operating systems and applications. The consumer does not

manage or control the underlying cloud infrastructure but has

control over operating systems, storage, and deployed

applications; and possibly limited control of select networking

components (e.g., host firewalls).

 NIST defined primarily four cloud deployments according to

who the owner of the cloud data centre is, which are discussed

below:

 Private cloud: The cloud infrastructure is provisioned for

exclusive use by a single organization comprising multiple

consumers (e.g., business units). It may be owned, managed, and

operated by the organization, a third party, or some combination

of them, and it may exist on or off premises.

 Community cloud: The cloud infrastructure is provisioned for

exclusive use by a specific community of consumers from

organizations that have shared concerns (e.g., mission, security

requirements, policy, and compliance considerations). It may be

owned, managed, and operated by one or more of the

organizations in the community, a third party, or some

combination of them, and it may exist on or off premises.

 Public cloud: The cloud infrastructure is provisioned for open

use by the general public. It may be owned, managed, and

operated by a business, academic, or government organization,

or some combination of them. It exists on the premises of the

cloud provider.

 Hybrid cloud: The cloud infrastructure is a composition of

two or more distinct cloud infrastructures (private, community,

or public) that remain unique entities, but are bound together by

standardized or proprietary technology that enables data and

application portability (e.g., cloud bursting for load balancing

between clouds).

MapReduce Programming Model

 MapReduce is a programming model introduced by Google

for large scale data processing. These processing is parallel

essentially, so we can give the large-scale data analysis to any

operators with enough machines [5]. MapReduces core task is

to divide the data into different logic blocks, programs written

with the distributed properties model, can process on distributed

clusters in parallel [6].

Bahman Rashidi et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12059-12064

12061

 The computation takes a set of input key/value pairs, and

produces a set of output key/value pairs. MapReduce model is

inspired by the map and reduce functions commonly used in

functional programming. The Map function takes an input pair,

and then generates an intermediate key/value pairs set.

MapReduce library put all values with the same intermediate

key together, then pass them to the Reduce function.

 The Reduce function accepts an intermediate key and related

value, it combined the value to form a set of relatively small

value set, and usually this collection is smaller than the input.

Typically just 0 or 1 output value is produced per Reduce

invocation. The intermediate values are supplied to the user’s

reduce function via an iterator [5]. The MapReduce data process

model is shown in Figure 2.

 The Map/Reduce framework consists of a single master and

one worker in each node of machines. The master is responsible

for scheduling the jobs component tasks on the workers,

monitoring them and re-executing the failed tasks and also the

master keeps several data structures. For each map task and

reduce task, it stores the state (idle, in-progress, or completed),

and the identity of the worker machine (for non-idle tasks).

 After the assignment of map tasks to the registered workers,

the job of the worker is to process the assigned job and return

the intermediate result to master. Master collects all the results

and consolidate the intermediate result, then assign the reduce

task to the workers. Number of reduce workers depend on the

size of the intermediate result. After collecting the reduce result

from the workers, master returns the consolidated data to the

user program [4][5].

 MapReduce has slowly gained popularity with its swift and

efficient data-intensive processing abilities, so the MapReduce

model has become a widely acclaimed processing model for big

data and also for complex computations on these data [7][8].

Fig 2. MapReduce Process Architecture

MapReduce has many implementations, Hadoop is an open

source implementation of MapReduce. It is a free, Java-based

programming framework that supports the processing of large

data sets in a distributed computing environment. According to

the MapReduce programming model, It is designed to scale up

from a single server to thousands of machines, with a very high

degree of fault tolerance [9].

 Hadoop MapReduce uses the HDFS distributed parallel file

system for data storage, which stores the data across the local

disks of the computing nodes while presenting a single file

system view through the HDFS API [9].

MapReduce In The Cloud

In cloud environments data processing has become an

important research problem. As a cloud is a proper distributed

system platform, parallel programming model like MapReduce

is widely used for developing scalable and fault tolerant

applications deployable on cloud [10].

 In this new architecture of MapReduce implementation we

can use of MapReduce programming model advantages in a

cloud computing environment for process large scale data. With

implementation of the MapReduce model in cloud, MapReduce

resource requirements prepared from cloud services or resources

(e.g., network, storage, computing, services).

 The main purpose of implementation MapReduce in the

cloud is that a cloud provider offers the MapReduce

programming model as a service, So consumers Including

regular Internet users or small organizations that do not have

adequate equipment for the processing of their data can upload

his data on storage of cloud datacenter and cloud service process

these data with the use of two user-defined map and reduce

function and return back the result of processing to the

consumer. The user defines map and reduce functions and these

functions are sent to the cloud.

Characteristics

The characteristics of the implementation MapReduce on a

cloud platform as a service for processing large scale data sets

are defined as follows [11]:

 Availability: Service must be always accessible even on the

occasions where there is a network failure or a whole datacenter

has gone offline.

 Scalability: Cloud service must be able to support very large

databases with very high request rates at very low latency. And

with adding tasks and operations to cloud, cloud resource

management prepares resource for tasks without much effort

beyond that of adding more hardware. So we do not have a drop

in performance.

 Multitenancy: Cloud service must be able to support many

applications (tenants) on the same hardware and software

infrastructure. However, the performance of this tenant must be

isolated from each other. Adding a new tenant should require

little or no effort beyond that of ensuring that enough system

capacity has been provisioned for the new load.

 Fault Tolerance: For transactional workloads, a fault tolerant

cloud data management system needs to be able to recover from

a failure without losing any data or updates from recently

committed transactions.

Why MapReduce in the cloud?

While clouds offer raw computing power combined with

cloud infrastructure services offering storage and other services,

there is a need for distributed computing frameworks to harness

the power of clouds both easily and effectively.

 Implementation of MapReduce cloud takes advantage of the

scalability, high availability and the distributed nature of cloud

infrastructure services, guaranteed by cloud service provider, to

deliver a fault tolerant, dynamically scalable runtime with a

familiar programming model for the users [12].

 The most important advantages of cloud MapReduce are

listed as follows [13].

Scalability: we have adopted a fully distributed architecture for

implementation of MapReduce in the cloud. And we do not

have a single master node as a bottleneck. Besides these

Bahman Rashidi et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12059-12064

12062

advantages, on demand and scalable cloud services make

MapReduce implementation on top of these services, is scalable

and reliable.

Simplicity: when we implement the MapReduce as a service in

the cloud computing every part of the MapReduce operations

(e.g., data storing, data processing, data management) is service

based. So in MapReduce operations do not exist this need to

know the storage service or other services how to work.

Faster acting: Parallelize processing and data transferring:

Cloud MapReduce starts uploading reduce results as soon as

they are produced in the map phase even before a map task

finishes. This parallelizes the network transfer with the CPU

intensive processing.

No disk paging: Since the number of key-value pairs in a

reduce task is unbounded, Because Hadoop implementation of

MapReduce there is no enough memory available then may have

to spill partial sorting results to disk multiple times in order to fit

within the main memory. But in cloud we have a lot of memory,

then we do not need paging.

 No staging: Hadoop always stores the intermediate results

on disks and then copies over the results to the hard disks on the

destination node when instructed by the master. As a result, the

data not only transits through the network once, but it also

transits twice through the local disk. In comparison, MapReduce

in the cloud can do everything in memory; therefore, the data

only transits once through the network.

 Incast problem: Hadoop and other MapReduce

implementations start to shuffle data from mappers to reducers

at the end of the map stage. The simultaneous transfers of a

large amount of data could overflow the switch buffer, resulting

in packet losses, which in turn causes TCP to back off. Current

TCP implementations require a 200ms wait time before they

retry, which significantly lower the overall throughput. This

problem is referred to as the incast problem, and it has been

observed in data centers [14]. In contrast, MapReduce in the

cloud starts to transfer data as soon as it is generated. Because

traffic is smoothed out, it is unlikely to trigger the incast

problem.

Implementations of Mapreduce in the cloud environments

 Cloud services are on demand, scalable and high available

services. In addition distributed nature of such services cause to

avoid single point of failure [17][11]. So implementing of

MapReduce on the top of cloud services allows MapReduce take

advantage of cloud services.

 There are two implementations of cloud MapReduce in

cloud computing environments, AzureMapReduce [12] and

Amazon Elastic MapReduce [16]. We explain these

implementations and also have a comparison between them at

the end of the paper.

Azure MapReduce

 Azure MapReduce is a PaaS cloud that offers a platform as

a service to users. As mentioned for implementing MapReduce

on the top of cloud services, we need capabilities such as

storage, and compute instance and so on. Azure MapReduce

provides all of these capabilities. Beside this we need

Scheduling mechanism to deploy MapReduce in the cloud.

Azure has a queue mechanism that is used for scheduling of

MapReduce operations.

 The Azure storage queue is an eventual consistent, reliable,

scalable and distributed web scale message queue service, ideal

for small, short-lived, transient messages. This messaging

framework can be used as a message-passing mechanism to

communicate between distributed components of any

application running in the cloud [12].

 The Azure BLOB service provides storage service. We can

utilize this service to perform MapReduce operation on top on

Microsoft Azure cloud. This service is a scalable distributed

storage service that can be easily used to store and retrieve data

from it. Azure MapReduce uses Azure BLOB and Azure queue

with virtual compute instances to perform MapReduce

operations. The architecture of MapReduce implementation on

the top of Microsoft Azure cloud is shown in Figure 3 [12].

 As mentioned many of MapReduce implementations such

as Hadoop use single node to control operations. This node

called master node, handles task assignment, fault tolerance and

mentoring for map and reduce computations. Hadoop

implementation supposes master node failure is rare. Cloud

environments are more brittle than the traditional computing

clusters are. Thus, cloud applications should be developed to

anticipate and withstand these failures. Because of this, it is not

possible for AzureMapReduce to make the same assumptions of

reliability about a master node as in the above-mentioned

runtimes. Due to these reasons, AzureMapReduce is designed

around a decentralized control model without a master node,

thus avoiding the possible single point of failure [12].

 This implementation uses Azure queues for map and

reduces task scheduling, Azure tables for metadata and

monitoring data storage, Azure BLOB storage for input, output

and intermediate data storage and the Window Azure Compute

worker roles to perform the computations. The map and reduce

tasks of the AzureMapReduce runtime are dynamically

scheduled using a global queue.

Amazon elastic MapReduce (EMR)

Amazon Elastic MapReduce is an Amazon implementation

of MapReduce framework that uses Amazon infrastructure

services for MapReduce operations. This implementation use

EC2 APIs to spawn up new virtual machines (also called

instances) to process new MapReduce jobs [15][16]. To store

input and possibly output data in use S3 services. By leveraging

the distributed nature of S3, it can achieve higher data

throughput since data come from multiple servers and

communications with the servers potentially all traverse

different network paths. This implementation use SQS, which is

a critical component that allows designing MapReduce in a

simple way. A queue serves two purposes. First, it is a

synchronization point where workers (a process running on an

instance) can coordinate job assignments. Second, a queue

serves as a decoupling mechanism to coordinate data flow

between different stages. Lastly, it uses SimpleDB, which

serves as the central job coordination point in this fully

distributed implementation. It keeps all workers’ status here

[13]. The architecture of the implementation of EMR is shown

in Figure 4.

 This implementation uses SQS queue to handle

communication in MapReduce implementation. Size of

messages in queues should be less than 8KB. For example each

entry in input queue holds the pointer to a chunk of MapReduce

input data. To handle MapReduce operations, one output queue,

one MapReduce queue and multiple reduce queue should be

used.

 A set of map workers, each runs as a separate EC2 instance,

poll the input queue for work, then Map Worker invokes the

user-defined map function to process a chunk of input data that

assign to it.

Bahman Rashidi et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12059-12064

12063

Fig 3. Azure MapReduce Architecture

After all map workers finish their jobs, Reduce workers

start their jobs by polling the MapReduce queue. Similar to map

worker, reduce worker invoke user-defined function to process a

chunk of data that exist in reduce queues and MapReduce queue

point to it.

Fig 4. Amazon Elastic MapReduce Architecture

Summary

Generally speaking, according to the contents of the table. I

and previously mentioned characteristics of each

implementation have different features from other

implementations. For example Azure MapReduce framework

has a decentralized controlling for control task in workers and in

these implementation we do not have bottleneck for controlling.

So if we have a failing in the master node we can control the

tasks in the workers. Which fulfils the much needed requirement

of a distributed programming framework for Azure users. Azure

MapReduce is built using Azure cloud infrastructure services

that take advantage of the quality of service guarantees provided

by the cloud service providers. In contrast, Amazon Elastic

MapReduce(EMR) have a central controlling unit for scheduling

and controlling of tasks. So in these implementations of

MapReduce in the cloud we have bottleneck in controlling unit

and if an error occurs in the master we've been faced with

serious problems in MapReduce operation and in these aspect

Azure MapReduce is superior to Amazon EMR. In data storing

and data management each of implementations such as Azure

or Amazon EMR for providing storage environment for their

operations, for example Amazon employ S3 service and Azure

use Azure blob. Limitation in data storing and data management

is the main difference in these two data management approach in

a cloud environment. Because S3 is a service that offered for

public and general users then in these implementations we have

limitation more than Azure blob storage for example in S3 the

maximum size of each file is 5GB and this maximum size in

Azure blob is unlimited.

In cost estimation for this two implementation we can

conclude that employment of Amazon EMR for processing our

large scale data need to pay cost more than Azure

implementation. Because services in Amazon Web Service are

more expensive than Azure MapReduce.

Although they have different aspects but these

implementations have the same viewpoints in general. For

example the architecture of them constructed from four same

part storage, computational resource, scheduling queue and a

database for preserving task statuses for controlling processes.

In rate of parallelism of operations each of two implementation

we have the same rate of parallelism.

Conclusion

In analysing and comparison these various MapReduce

implementations in the cloud environment we find that there are

salient differences between them, for example control flow, task

scheduling, and also in data management approaches. We also

Table I. Summary of results
 Apache Hadoop Azure MapReduce Amazon EMR

Programming

Model

MapReduce MapReduce - will extend to

Iterative MapReduce

MapReduce - will extend to Iterative MapReduce

Data Handling HDFS (Hadoop Distributed File

System)

Azure Blob Storage (max size of

objects unlimited)

Amazon S3 (max size of object limited to 5GB)

Scheduling Data Locality; Rack aware,

Dynamic task scheduling through

global queue

Dynamic task scheduling through

global queue

Dynamic task scheduling through SQS service

Failure Handling Re-execution of failed tasks;

Duplicate execution of slow tasks

Re-execution of failed tasks;

Duplicate execution of slow tasks

Re-execution of failed tasks; Duplicate execution of

slow tasks; through (SQS’s visibility timeout,

Simple DB)

Environment Linux Clusters, Amazon Elastic

MapReduce on EC2

Window Azure Compute,

Windows Azure Local

Development Fabric

Linux Clusters, Amazon Elastic MapReduce on EC2

Intermediate Data

Transfer

File, Http Files, TCP File, TCP

Dynamic

Scalability

No Yes Yes

Control Model Central Decentral Central(Simple DB)

Bahman Rashidi et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12059-12064

12064

present the differences between implementation of MapReduce

in the cloud and the traditional implementations (e.g. Hadoop),

For example, implementation of MapReduce in the cloud is

faster and simpler than implementation in non-cloud

environments. Also cloud MapReduce is more scalable.

References

[1] R. Bahaskar Prasad, Eunmi Choi and Iun Lumb, "A

Taxonomy and Survey of Cloud Computing Systems,"

[2] R. Buyya, C.S. Yeo and S. Venugopal, Market-Oriented

Cloud Computing: Vision, Hype, and Reality for Delivering IT

Services as Computing Utilities, Keynote Paper, in Proc. 10th

IEEE International Conference on High Performance

Computing and Communications (HPCC 2008), IEEE CS

Press, Sept. 25–27, 2008, Dalian, China.

[3] P. Mell and T. Grance. Definition of cloud computing.

Technical report, National Institute of Standard and Technology

(NIST), July 2009.

[4] N. Loutas, E. Kamateri, "Cloud Computing

Interoperability: The State of Play," 3rd IEEE International

Conference on Cloud Computing Technology and Science,

Athens, Greece, November 29 - December 1, 2011.

[5] J. Dean, and S. Ghemawat, ―MapReduce: simplified data

processing on large clusters,‖ Commun. ACM, vol. 51, no. 1,

pp. 107-113, 2008.

[6] R. L¨ammel, "Google’s MapReduce programming model

— Revisited," Journal of Science of Computer Programming,

Elsevier, vol. 70, no. 1, pp. 1-30, 2008.

[7] M. Fadhli, T. Abdul Gani et al., "Comparison on Efficiency

of Computational Efforts between Cluster Computation

(MapReduce) and Single Host Computation," International

Conference on Cloud Computing and Social Networking

(ICCCSN), April 26-27, 2012, Bandung, Indonesia.

[8] Z. Fadika, E. Dede et al., " MARLA: MapReduce for

Heterogeneous Clusters," 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid),

May 13-16, 2012, Ottawa, Canada.

[9] Apache Hadoop, Retrieved Aug 20, 2010, from ASF:

http://hadoop.apache.org/core/.

[10] B. Thirumala Rao, L. S. S. Reddy, " Survey on Improved

Scheduling in Hadoop MapReduce in Cloud Environments,"

International Journal of Computer Applications, vol. 34, no. 9,

pp.28-32, 2011

[11] S. Sakr, A. Liu and D. Batista et al., " A Survey of Large

Scale Data Management Approaches in Cloud Environments,"

IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp.

311-336, 2011

[12] T. Gunarathne, T. Lon Wu, J. Qiu et al., " MapReduce in

the Clouds for Science," 2nd IEEE International Conference on

Cloud Computing Technology and Science, Nov. 29- Dec. 1,

2011, Athens, Greece.

[13] H. Liu, D. Orban, " Cloud MapReduce: a MapReduce

Implementation on top of a Cloud Operating System," 11th

IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid), May 23-26, 2011, Newport Beach,

CA, USA.

[14] R. Griffith, Y. Chen, J. Liu et al., " Understanding TCP

Incast Throughput Collapse in Datacenter Networks," In Proc.

ACM SIGCOMM WREN Workshop, Aug. 21, Barcelona,

Spain, 2009

[15] Amazon Web Services LLC, ―Amazon Elastic Compute

Cloud (Amazon EC2),‖ http://aws.amazon.com/ec2/, Last Visit:

Jul 2012.

[16] Amazon Web Services LLC, ―Amazon Elastic MapReduce

(Amazon EMR),‖ http://aws.amazon.com/elasticMapReduce/,

Last Visit: Jul 2012.

[17] L. Zhou, Z. Wang and Xiangfeng, ―A Survey of HPC

Development,‖ IEEE International Conference on Computer

Science and Electronics Engineering (ICCSEE), vol. 2, pp. 103-

106, March 23-25, 2012.

