
Challa Vanitha Reddy et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12035-12037

12035

Introduction

This decade is marked by a paradigm shift of the industrial

information technology towards a subscription based or pay-per-

use service business model known as cloud computing. This

paradigm provides users with a long list of advantages, such as

provision computing capabilities; broad, heterogeneous network

access; resource pooling and rapid elasticity with measured

services [1].

The single cloud will not be more effective for MTC

paradigm (MAny-Task Computing (MTC) paradigm [2]

embraces different types of high-performance applications

involving many different tasks, and requiring large number of

computational resources over short periods of time. These tasks

can be of very different nature, with sizes from small to large,

loosely coupled or tightly coupled, or compute-intensive or data-

intensive). As the single cloud will not be efficient for MTC

paradigm we can also go with Computing Clusters.

Computing clusters have been one of the most popular

platforms for solving MTC problems, specially in the case of

loosely coupled tasks (e.g. high-throughput computing

applications). However, building and managing physical clusters

exhibits several drawbacks: 1) major investments in hardware,

specialized installations (cooling, power, etc.), and qualified

personal; 2) long periods of cluster under-utilization; 3) cluster

overloading and insufficient computational resources during

peak demand periods. To over come the above draw backs in

cluster computing we go for computing clusters over a multi

cloud.

The simultaneous use of different cloud providers to deploy

a computing cluster spanning different clouds can provide

several benefits:

• High-availability and fault tolerance, the cluster worker nodes

can be spread on different cloud sites, so in case of cloud

downtime or failure, the cluster operation will not be disrupted.

Furthermore, in this situation, we can dynamically deploy new

cluster nodes in a different cloud to avoid the degradation of the

cluster performance.

• Infrastructure cost reduction, since different cloud providers

can follow different pricing strategies, and even variable pricing

models (based on the level of demand of a particular resource

type, daytime versus night-time, weekdays versus weekends,

spot prices, and so forth), the different cluster nodes can change

dynamically their locations, from one cloud provider to another

one, in order to reduce the overall infrastructure cost [3].

The rest of this paper explains about the Background,

Related work, MTC application through programming model

and Conclusion.

Back Ground

Many-task computing aims to bridge the gap between two

computing paradigms, high throughput computing and high

performance computing. Many task computing differs from high

throughput computing in the emphasis of using large number of

computing resources over short periods of time to accomplish

many computational tasks (i.e. including both dependent and

independent tasks), where primary metrics are measured in

seconds (e.g. FLOPS, tasks/sec, MB/s I/O rates), as opposed to

operations (e.g. jobs) per month. Many task computing denotes

high-performance computations comprising multiple distinct

activities, coupled via file system operations [4]. Tasks may be

small or large, uniprocessor or multiprocessor, computeintensive

or data-intensive. The set of tasks may be static or dynamic,

homogeneous or heterogeneous, loosely coupled or tightly

coupled. The aggregate number of tasks, quantity of computing,

and volumes of data may be extremely large. Many task

computing includes loosely coupled applications that are

generally communication-intensive but not naturally expressed

using standard message passing interface commonly found in

high performance computing, drawing attention to the many

computations that are heterogeneous but not “happily” parallel.

Related Work

We have found many applications that are a better fit for

MTC than HTC or HPC. Their characteristics include having a

large number of small parallel jobs, a common pattern observed

in many scientific applications [5]. They also use files (instead

messages, as in MPI) for intra-processor communication, which

tends to make these applications data intensive. While we can

push hundreds or even thousands of such small jobs via GRAM

Tele:

E-mail addresses: vanithareddy52@gmail.com

 © 2012 Elixir All rights reserved

Computing over a multi cloud for MTC applications
Challa Vanitha Reddy and Battula Sudheer Kumar

C.V.S.R College Of Engineering, JNTU.

ABSTRACT

IT organizations can now outsource computer hardware by leasing CPU time through cloud

computing services. The problem here is the effectiveness is becoming less due to burden on

single cloud while working with MTC applications .This paper deals with defining the

feasible solutions with MTC applications using the programming models for computing over

a Multi clouds instead of single cloud for effectiveness.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 15 April 2012;

Received in revised form:

7 December 2012;

Accepted: 12 December 2012;

Keywords

Cloud Computing,

MTC applications,

HTC.

Elixir Comp. Sci. & Engg. 53 (2012) 12035-12037

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Challa Vanitha Reddy et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12035-12037

12036

to a traditional local resource manager (e.g. Condor [6]), the

achieved utilization of a modest to large resource set will be

poor due to high queuing and dispatching overheads, which

ultimately results in low job throughput. A common technique to

amortize the costs of the local resource management is to

“cluster” multiple jobs into a single larger job. Although this

lowers the per job overhead, it is best suited when the set of jobs

to be executed are homogenous in execution times, or accurate

execution time information is available prior to job execution;

with heterogeneous job execution times, it is hard to maintain

good load balancing of the underlying resource, causing low

resource utilization. We claim that “clustering” jobs is not

enough, and that the middleware that manages jobs must be

streamlined and made as light-weight as possible to allow

applications with heterogonous execution times to execute

without “clustering” with high efficiency.

In addition to streamlined task dispatching, scalable data

management techniques are also required in order to support

MTC applications [7]. MTC applications are often data and/or

meta-data intensive, as each job requires at least one input file

and one output file, and can sometimes involve many files per

job. These data management techniques need to make good

utilization of the full network bandwidth of large scale systems,

which is a function of the number of nodes and networking

technology employed, as opposed to the relatively small number

of storage servers that are behind a parallel file system or

GridFTP server. We have identified various applications (as

detailed below) from many disciplines that demonstrate

characteristics of MTC applications. These applications cover a

wide range of domains, from astronomy, physics, astrophysics,

pharmaceuticals, bioinformatics, biometrics, neuroscience,

medical imaging, chemistry, climate modeling, economics, and

data analytics. They often involve many tasks, ranging from tens

of thousands to billions of tasks, and have a large variance of

task execution times ranging from hundreds of milliseconds to

hours. Furthermore, each task is involved in multiple reads and

writes to and from files, which can range in size from kilobytes

to gigabytes. These characteristics made traditional resource

management techniques found in HTC inefficient; also, although

some of these applications could be coded as HPC applications,

due to the wide variance of the arrival rate of tasks from many

users, an HPC implementation would also yield poor utilization.

Furthermore, the data intensive nature of these applications can

quickly saturate parallel file systems at even modest computing

scales.

MTC Application through Programming Model

MTC applications through programming models and tools

give the feasible and efficient solution for MTC application.

MTC through Programming model (Map Reduce)

MapReduce [8] is one of the most popular programming

models designed to support the development of compute and

data-intensive applications which have high storage and

processing demands which were initially met by large scale

computer systems. MapReduce was initially created by Google

for simplifying the development of large scale web search

applications in data centers and has been proposed to form the

basis of a „Data center computer‟. MapReduce model is suitable

for web search services, scientific research projects referred to

as e-Science and data mining application amongst others.

MTC application is executed in a parallel manner through

two phases in Map reduce model. In the first phase, MTC

application are submitted to map functions and those operations

are known as map operations. all map operations can be

executed independently with each other. In the second phase,

each reduce operation may depend on the outputs generated by

any number of map operations. However, similar to map

operations, all reduce operations can be exe-cuted

independently.

From the perspective of dataflow, MapReduce execution for

MTC applications consists of m independent map tasks and r

independent reduce tasks, each of which may be dependent on m

map tasks. Generally the intermediate results are partitioned into

r pieces for r reduce tasks[9].

The MapReduce runtime system schedules map and reduce

tasks to distributed resources. It manages many technical

problems: parallelization, concurrency control, network com-

munication, and fault tolerance. Furthermore, it performs several

optimizations to de-crease overhead involved in scheduling,

network communication and intermediate group-ing of results.

Thus the MTC application runs very efficiently through map

reduce model.

Conclusion

In this paper we have shown how MTC applications in

multi cloud will be more efficient and feasible than in single

cloud and also the applications with support of Programming

model give the feasible and efficient solution. It takes even very

less time to compute them.

Reference:

[1] P. Mell, T. Grance, “Draft NIST working definition of cloud

computing”, Referenced on June. 3rd, 2009, Online at

http://csrc.nist.gov/groups/SNS/cloud-computing/index.html,

2009.

[2] I. Raicu, I. Foster, Y. Zhao, Many-Task Computing for

Grids and Supercomputers, Workshop on Many-Task

Computing on Grids and Supercomputers, 2008, pp. 1–11

[3] E. Walker, The Real Cost of a CPU Hour. Computer 42(4):

35–41, 2009.

[4] J. Ousterhout, “Scripting: Higher Level Programming for the

21st Century”, IEEE Computer, March 1998

 [5] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast,

Reliable, Loosely Coupled Parallel Computation”, IEEE

Workshop on Scientific Workflows 2007

[6] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke.

“Condor-G: A Computation Management Agent for Multi-

Institutional Grids”, Cluster Computing, 2002.

Challa Vanitha Reddy et al./ Elixir Comp. Sci. & Engg. 53 (2012) 12035-12037

12037

[7] E.V. Hensbergen, Ron Minnich. “System Support for Many

Task Computing”, IEEE Workshop on Many-Task Computing

on Grids and Supercomputers (MTAGS08) 2008

[8] J. Dean, S. Ghemawat. “MapReduce: Simplified data

processing on large clusters.” In OSDI, 2004

[9] M. Cole, Parallel Programming with List Homomorphisms,

Parallel Processing Letters 5 (1995) 191–203.

Sudheer Kumar Battula received the

Bachelor‟s degree from Aurora‟s

Scientific and Technological Institute

affliated to JNTU Hyderabad University

in 2009. I‟m currently pursuing my

Masters from Anurag Group of

Institutions affliated to JNTU

Hyderabad University in Computer

Science & Engineering department.

Vanitha Reddy Challa received the Bachelor‟s degree from

Aurora‟s Scientific and Technological

Institute, affliated to JNTU Hyderabad

University in 2009. I‟m currently

pursuing my Masters from Anurag

Group of Institutions affliated to JNTU

Hyderabad University in Computer

Science & Engineering department

