
R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022 
 

12005 

Introduction  

Power estimation:  

Power estimation is defined as the process of calculating 

power and energy dissipated with a considerable accuracy at 

different phases of the design process. Power estimation also 

refers to the estimation of the average power dissipation of a 

digital circuit, which is different from worst case instantaneous 

power estimation, often referred as the voltage drop problem. 

Chip heating and temperature are related to the average power. 

Power estimation can be performed with various models of a 

design: low-level analytical models, C-based architectural 

models, and structural RTL (Register Transfer Level) models, 

gate-level models with and without layout data and circuit-level 

models. Estimating power using each of these models has its 

own advantages and disadvantages [1]. 

Need for Low Power Design:  

In the early 1970s high speed digital circuit design 

reduction in area is the main design challenge. Most of the EDA 

tools were designed specifically to meet these criteria. Power 

consumption estimation was also a major part of the design 

process but not very obvious. The reduction of area of digital 

circuits is simplified today with new IC production techniques 

capable of fabricating millions of transistors in a single IC. 

Shrinking sizes of circuits have resulted in reduced power 

consumption leading to extended battery life. Also in submicron 

technologies, proper functioning of circuits is limited by the heat 

generated by power dissipation. The market demands low power 

devices to have a better lifetime and also should be reliable, 

portable, should provide better performance, reduced cost and a 

better time to market. This is true in the field of personal 

computing devices, wireless communications systems, home 

entertainment systems, which are becoming very popular now-a-

days. High-performance computing devices need to dissipate 

less power to function for an extended period of time [3]. 

Keeping these in mind, low power designs have become one of 

the most important design parameters for VLSI (Very Large 

Scale Integration) systems.  

Design Flow with and without Power:  

Figure 1 illustrates a top-down ordinary VLSI design 

approach. The figure summarizes the flow of steps that are 

required to follow from a system-level specification to the 

physical design .The approach was aimed at performance 

optimization and area minimization. However, introducing the 

third parameter of power dissipation made the designers to 

change the flow as shown in the right-hand side of the Figure 1. 

In each of the design levels, there are two important power 

factors, namely power optimization and power estimation. 

Power optimization is defined as the process of obtaining the 

best design knowing the design constraints without violating 

design specifications. In order to meet design and required goals, 

a suitable power optimization technique should be employed. 

Power estimation is defined as the process of calculating power 

and energy dissipated with a considerable percentage of 

accuracy and at different phases of the design process. Power 

estimation techniques evaluate the effect of various 

optimizations and design modifications on power at different 

abstraction levels. 

Generally, a design performs a power optimization step 

followed by a power estimation step, but at a certain design 

level, there is no specific design procedure. Each design level 

includes a large collection of low power techniques. Each may 

result in a significant power dissipation reduction. However, a 

certain combination of low power techniques may lead to better 

results than another series of techniques. Generally, power is 

consumed by the capacitors in the circuits during their charging 

and discharging due to switching activities. This power 

dissipation is conserved by shutting down portions of the system 

when they are not needed which reduces the switching activity. 
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Large VLSI circuits contain different components like a 

processor, a functional unit and controllers. The idea of power 

reduction is to stop the processor components when they are idle 

so that power dissipation will be reduced when the processor is 

operating [3].   

 
Figure 1 VLSI Design Flow 

Relationship between Different Abstraction Levels: 

Figure 2. Illustrates the relationship between design 

abstraction level and power estimation. The power estimation at 

the higher level is much faster, but the accuracy will be reduced 

due to the limited design information A number of CAD 

techniques for power estimation at lower levels of abstraction, 

such as transistor-level [3] or gate-level, have been proposed. 

 
Figure 2 Relationship between different abstraction level & 

Power estimation techniques 

Generally speaking, they can provide more accurate 

estimation results. However, they may become unpractical for 

complex designs due to the whole system simulation requires 

too many computation resources in such as low abstract levels. 

In addition, when the design has been specified down to gate 

level or lower, it is too expensive to shift back in fixing high-

power problems. Most importantly, IP vendors may not expose 

such a low-level description to protect their knowledge. 

Basic Concepts for Power:  

The power dissipation of digital CMOS circuits can be 

described by  

 

Pavg = P dynamic + P short-circuit + P leakage + P static 

Pavg is the average power dissipation; P dynamic is the dynamic 

power dissipation due to switching of transistors; P short-circuit is 

the short-circuit current power dissipation when there is a direct 

current path from the power supply down to be ground , P leakage 

is the power dissipation due to leakage currents, P static and is the 

static power dissipation [3]. 

Static Power:  

Static power is defined as the power dissipated by a gate 

when it is inactive or static. Ideally, CMOS (Complementary 

Metal Oxide Semiconductor) circuits dissipate no static (DC) 

power since in the steady state; there is no direct path from Vdd 

to be ground. This scenario can never be realized in practice, 

because in reality, the MOS transistor is not a perfect switch. 

There will always be leakage currents, sub threshold currents, 

and substrate injection currents, which dissipate certain amounts 

of power. The largest percentage of static power results from 

source-to-drain sub threshold voltage, which is caused by 

turning of the gate by reducing threshold voltages [3].  

Dynamic Power:  

Dynamic power (Pswitching) is the power consumed during 

switching events in the core or I/O of an FPGA. Toggle rate is a 

function of voltage, frequency, and capacitance. The toggles 

may be in internal logic modules, conducting wire of 

interconnect, or external package pins [2]. In the deep sub-

micron meter process, dynamic power can be reduced with 

smaller transistors but static power is increasing because a 

leakage current in smaller transistors becomes bigger. Therefore, 

the proportion of static power in the overall FPGA power 

consumption is growing. It is important to understand both 

power types and their variation under different operating 

conditions so that they can be properly optimized to meet the 

power budget. For dynamic power calculation, the essential 

quantities are a toggle count of transistors and traces, 

capacitance, and toggling rate. Transistors are used for logic, 

and programmable interconnects between metal traces in the 

FPGA. The capacitance consists of a transistor parasitic 

capacitance and metal interconnect capacitance. In CMOS 

circuits, dynamic power consumption is related to charging and 

discharging parasitic capacitances on gates and metal traces, 

which accounts for the overall power consumption of the chip. 

According to the way of reducing dynamic power includes the 

reduction of capacitance, operating voltage, frequency and 

toggles. [2]. 

Short-Circuit Power: 

The last power component is called static power, because it 

is not related to the signal transition. This component appears as 

long as the circuit is powered. Comparing to dynamic power, 

this component dissipates less total power which makes this 

component negligible in some designs. Static power highly 

depends on technology and design. In current technologies, the 

transistor sizes are reduced and this increases leakage currents in 

the circuit which increases the amount of static power in the 

circuit. In order to have a better performance, alternative design 

methods such as pseudo logic, domino logic, etc can be used that 

affects the amount of static power. 
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Above Fig illustrates the pseudo NMOS logic as an 

example to show the design of a circuit that can affect the static 

power. In this circuit, the single NMOS transistor is always on 

since its gate is connected to the VDD. As long as the output is 

zero, there is a path in the pull dawn network to connect VDD to 

the ground. This path carries the current from VDD to be ground 

and cause the static power dissipation. [10][28]. 

Leakage Power: The PMOS and NMOS transistors in a 

CMOS logic circuit usually have non-zero reverse leakage and 

sub-threshold currents. These currents can contribute to the total 

power dissipation even when the transistors are not carrying out 

a switching action. The leakage power dissipation, P leakage is 

caused by two types of leakage currents [3]. Advancement in the 

field of embedded system and VLSI has forced the researchers 

in the low power embedded system and VLSI circuit design. 

Most of the embedded systems are battery operated. The power 

loss during static, dynamic and switching characteristics are 

tabulated.   The switching nature in cmos incorporates large 

power loss.  Many research papers have been proposed on 

reduce switching loss and low power estimation. This paper 

clearly demonstrates the comparison among them. The main 

features of the dominated design techniques are methodologies 

of transistor level, gate level, RTL level, behavior level and 

system level are reviewed. The corresponding advantages and 

drawbacks, as well as comparisons between the techniques and 

the methodologies are also presented. The low power design 

process such as transistor level, gate level, RTL level, behavior 

level and system level models are explained [7]. 

 
The leakage power dissipation, P leakage is caused by two 

types of leakage currents  

a) Reverse-bias diode leakage current 

b) Sub threshold current through a turned-off transistor channel 

Low Levels of power estimation: The level of detail in the 

modeling performed by the power simulator influences both the 

accuracy of estimation as well as the speed of the simulator. In 

this section we survey the models frequently used at low level as 

these power consumption estimation techniques cover a range of 

abstractions such as the circuit/transistor level, logic gate level, 

RT level, and architectural level. 

 

 Transistor level Gate  level RTL  level Behavior  level Software  level 

 
Transistor level power estimation: 

Introduction:  

A transistor-level programmable technology is composed of 

two key mechanisms. One is that a MOS transistor is divided 

into parallel connected sub-transistors, so that the transistor 

possesses various characteristics by switching the parallel 

connection. The other mechanical changes Vth and GM of the 

transistor by adjusting the bulk potential based on body effect. In 

the post-layout simulation, the results indicated that our 

mechanisms could tune the circuit performance such as the gain 

continuously as well as over a wide range [5][6]. Up to now 

several logic-level power estimation, techniques have been 

described. In some cases, these techniques may suffer from the 

problem of inaccuracy, since they ignore short-circuit currents 

and the glitching power consumption is strongly dependent on 

the delay model incorporated. However, the power estimation 

methods, based on transistor-level power simulation, have been 

providing more accurate results. Running such a simulator with 

a given set of simulation vectors, provides efficient estimation of 

the power dissipated in digital circuits, since glitches and short-

circuit currents also take into consideration. While such 

techniques are more effective than some logic-level estimation 

techniques, they consume excessive CPU time, hence they are 

not suitable in large circuits estimation [8]. We call V the 

original vector set and S and NS the transistor-level simulated 

and non-simulated vector sets, respectively. Running a logic 

simulation for each set computes the switching activity Esw for 

each internal node, providing thus a transition measure Ф, which 

in fact is the total effective capacitance of the circuit, that is: 

 

 

 

On the other hand, the application of transistor-level 

simulation to set S results in the accurate calculation of its power 

dissipation. The next step is to compare this result with the 

transitional measure found by logic simulation. Therefore, a 

relationship factor R (S) is extracted from the simulation process 

for set S, which is the ratio of power dissipation of transition 

measure: 

R(S) = P(S) / Ф(S)  

According to the authors this factor can then be used in 

order to estimate the power dissipation of the non simulated 

setting, as follows: 

Pestimated (NS) = R(S) * Ф (NS)  

until the approximation error becomes minimum (stopping 

criterion). 

 
Fig 3. The mixed-level power estimation process 

Which is the power estimated over all the original vectors. The 

whole process, step by step, is shown in Figure 4. After simple 

algebraic manipulations, this is equivalent to compute 

Pestimated (V) = R(S) * Ф (V)  

Consider the extreme case that power simulation (we mean 

transistor-level simulation) has been done on the entire set of 

original vectors, (i.e. S=V), so the estimated power is equal to 

the total power dissipation of the circuit. But, as we mentioned 

earlier,this process would require very large CPU time. In our 

case study, when only a subset of vectors is used for power 

simulation, a certain degree of error will be introduced by this 

approximation. The approximation error is: 
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And converges zero very fast as the number of vectors increases. 

Sometimes it is not possible to predict the number of input 

vectors that must be simulated in order to achieve a possible 

accurate result. Therefore, an alternative process which consists 

of dividing the original set of input vectors into a large number 

of packets (each packet consists of a fixed number of vectors) 

and then simulating sequenced these packets,  

Transistor Level Simulation: 

1. Circuit level 

2. Switch level 

1. Circuit level: Circuit level simulators are responsible for 

estimating power. This is done by calculating the average 

current (I) that flow from the circuit power source and then the 

average power can be obtained.  

SPICE is an example of an accurate circuit level simulator.  

P = IavgVDD 

Iavg =∫Idt/T 

At this level there are accurate models for circuit devices 

such as transistors. Capacitances and resistors have values close 

to the reality so the output of estimation is accurate and testable. 

Estimation in the case of large circuits is complex and time 

consuming. The first limitation is that we have to solve complex 

systems of equations. This is only feasible for fairly small 

circuits. SPICE solves an equation for each node of the circuit 

and a growth in the circuit size will dramatically increase the 

complexity of the problem. The other limitation is the length of 

the input vectors must be short; otherwise the simulation would 

be time consuming. R. Marculescu and C. Ababei has proposed 

a technique to reduce the length of this sequence “by an order of 

magnitude” without losing accuracy (around %5 lost). This can 

be done by obtaining a” compact representation” of input 

vectors with an acceptable approximation [10]. Because of these 

limitations power estimation at the circuit level with high 

accuracy using realistic models is only performed for small 

circuits. A simpler power estimation method is to use simple 

models for transistors instead of complex ones. Each transistor 

can be modeled as a switch that is either conducting or not in a 

switch level simulation. As this method simplifies transistor 

models, it can estimate larger circuits and use more input 

vectors. Although the data obtained from the power estimation is 

not as accurate as the previous method especially in the 

estimation of static power consumption, dynamic and short 

circuit Power estimation can be done by these techniques and 

then the static power should be estimated based on its specific 

techniques. 

2. Switch level:  

Switch level simulators like MOSSIM and IRSIM view 

transistors as bidirectional switches and circuit nodes as charge 

storage nodes. When a transistor is in an ON state, the switch 

closes creating a conduction path between the drain and source 

nodes of a transistor. In this model, simulation can be performed 

with an approximate RC calculation, thus making it faster than 

the normal transistor level analysis. Switch level simulators can 

be extended for power analysis by calculating the approximate 

switching capacitance for dynamic power estimation. Though 

other components like leakage and short circuit power can be 

estimated, these are not very accurate compared to transistor 

level analysis. For example, short circuit power must be 

accounted for by examining the time in which the switches form 

a path from power to ground. A switch level simulator does not 

accurately model timing. Besides, the modeling does not 

consider the output load capacitance which leads to further 

inaccuracies. 

Transistor-Level Programmable:  

We propose a transistor-level programmable technology in 

analog circuits by introducing two mechanisms for pseudo 

sizing of MOS transistors as follows [9]. 

1) A MOS transistor is divided into two or more parallel 

connected sub-transistors. The number of active sub-transistors 

can be switched using the transfer gates. 

2) A MOS transistor has an independent well area, and the 

threshold voltage and gm can be adjusted by changing the bulk 

potential (i.e. body biasing). 

Each mechanism can adjust the transistor characteristic after 

manufacturing the chip. The former is associated with the tuning 

of channel-width (W) in a usual MOS analog circuit design. This 

serves the tuning over a wide range but discrete. Meanwhile, the 

latter is associated with the tuning of channel-length (L), and the 

tunable range is narrow but continuous. To check the feasibility 

of our ideas, we embed these programmable mechanisms into a 

common-source-amp part of an op amp, and evaluate the 

programmability of the circuit performance. In the post-layout 

simulation with considering the parasite, it was shown that our 

programmable mechanism combining the sub-transistor 

switching and the body biasing could adjust the gain 

continuously as well as over the widest range. To the best of our 

knowledge, this is the first work of transistor-level 

programmable technology with body biasing. 

Transistor Sizing and Body Biasing:  

We propose a mechanism for tuning analog circuit 

performance continuously by adjusting the bulk potential of 

MOS transistors. This makes use of body effect of MOS 

transistor. Plus, we are aiming to associate the adjustment of the 

bulk potential with the channel-length (L) sizing of the MOS 

transistor, because L sizing is used for optimizing an analog 

circuit in a usual design [9]. 

Body Effect:  

A MOS transistor is regarded as a device with four 

terminals; gate, source, drain and bulk. In general, the transistor 

is used so that the potential between the bulk and the source is 

the same (i.e. Vsb=0V). Plus, the threshold voltage Vth of the 

transistor is dependent on Vsb. This dependency is called body 

effect, and formulated as Eq. (1) [9]. 

 
Where ФF is the surface potential of the channel, and γ is the 

body effect coefficient. The drain-to-source current Ids are 

dependent on Vth as described in Eq. (2). 

 
In nmos transistor, as the potential of the bulk is becoming 

lower than that of the source, Vth is growing up and Ids is 

decreasing. Furthermore, changing of Ids influences the trans-

conductance gm of the transistor as shown in Eq. (3). 

 
As is well known, gm is an important parameter for 

describing the circuit of analog circuit. This means that the bulk 

potential is an available parameter for tuning the analog circuit 
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performance. Methodologies that deal with the transistor-level 

implementation of a gate are mainly directed towards 

minimizing the total number of transistors with indirect gains in 

other performance criteria. That is, the power minimization is 

implicit in these methodologies. Two main approaches exist: 

factorization methods and graph-oriented methods. All these 

methodologies try to minimize the total number of transistors 

but they do not take into account about certain inputs that are 

more critical (i.e., Have a higher switching activity) than others. 

Some rules for transistor-level design styles with respect to low 

voltage, low power, and power-delay products have been given 

in [27]. Some other existing transistor-level approaches deal 

with specific design styles such as pass transistor logic. For 

achieving low power consumption, a solution should minimize 

the number of transistors driven by “critical” inputs (the ones 

with high activity) at the expense perhaps of the number of 

transistors driven by non-critical inputs. In the proposed 

methodology we explicitly address this issue by considering the 

switching activity of each particular input, and obtain a 

transistor-level implementation that has low power consumption 

and, secondarily, minimizes the number of transistors required 

for the implementation [4]. 

The synthesis technique: 

In order to demonstrate the effect of proper transistor level 

synthesis for CMOS gates the function F =AB + AC + AD + CE 

is examined. Two implementations for the n-MOS part of 

function F are shown in Fig5. Assuming that all transistors are 

the same size then an approximation of the power can be given 

by the equation (ζAαA+ ζBαB+ ζCαC+ ζDαD+ ζEαE) * f * C * V 
2
, 

where ζX is the number of transistors driven by input X and αX is 

the switching activity of input X. With P =f * C* V 
2
, the power 

for the implementation of Fig. 5a will be P1 = (2αA+ αB+ αC+ 

αD+ αE) * P, and for Fig.5b, P2 = (αA+ αB+ 2αC+ αD+ αE) * P. 

Different profiles of the input switching activities can determine 

which implementation has the lowest power consumption. For 

example, with a profile of switching activities αC= 0.5 and 

αA=αB=αD=αE= 0.1, P1 = 1*Pand P2 = 1.4 *P and thus the 

design of Fig. 5b has 40%more power consumption than that of 

Fig. 5a. However, for a profile of αA= 0.5 and αB = αC = αD = 

αE = 0.1,P1 = 1.4 *P and P2 = 1 *P and thus now the design of 

Fig.5a has 40% more power consumption. It is explicitly clear 

that the selection of an appropriate transistor-level design for a 

gate with a known switching activity profile at the inputs can 

result in reduction of the overall power consumption. In this 

paper a transistor-level synthesis algorithm that takes into 

account these profiles in order to give a low power design is 

given. We assume that the vector of the switching activity values 

for the inputs of the super gate has been given. Namely, if the 

super gate has n inputs, the switching activities will be denoted 

by α1, α2... αn. For our comparative purposes, the quantity that 

represents the power consumption of a given candidate 

implementation for the gate is taken to be S= ∑
 n

 i=1ζiαi, where ζi 

is the total number of transistors (assumed all to be of the same 

minimum size) in the candidate implementation driven by input i 

or its complement. (The power consumption is proportional to 

S.). The fundamental part of the proposed methodology is, given 

a partial transistor diagram D (i.e., a diagram implementing a 

subset of the given product terms) and a product term τ 

(represented as a set of literals (transistors)) to be placed next, to 

find the most power-efficient placement of τ in D without 

creating any escape paths. The placement is done by considering 

three alternatives (“parallel,”“splice,” and “bridge”) as was done 

in [4]. This part is described below as procedure PLACE (D, τ). 

(The terminals of the network are referred to as “VDD” and 

“GND” for ease of reference (in reality only one of them will be 

VDD or GND)). 

 
Fig 4: The effect of switching activities on transistor-level 

implementations 
Logic function F= AB + AC + AD + CE.   With switching 

activity vector [αA= 0.1, αB= 0.1, αC=0.5, αD= 0.1, αE= 0.1], the 

network in (a) is better than (b). With switching activity vector 

[αA= 0.5, αB= 0.1, αC=0.1, αD= 0.1, αE= 0.1, the network in (b) is 

better than (a). 

Transistor Folding:  

Transistor sizing is essential to produce high performance 

circuits. Many tools are able to perform individual transistor 

sizing to optimize timing and power consumption [5]. Layouts 

produced in the 1D layout style with different sized transistors 

tend to waste area since the height of each diffusion row is 

adjusted accordingly to its tallest transistor.  

 
Fig 5. Transistor folding in a large transistor 

To solve this problem, one of the most used methods is the 

transistor folding as illustrated in the Figure 6. It consists of 

breaking bigger transistors into smaller ones connected in 

parallel to keep short the cell height, at the expense of a little 

increase in the cell width. According to [5], the folding problem 

can be classified as static/dynamic placement with 

static/dynamic folding. Our approach addresses the dynamic 

placement with the static folding problem. Given the diffusion 

row limits, we fold the transistors by directly modifying the cell 

netlist. Creating new transistors in parallel, before the execution 

of the placement step. This approach s gives more freedom to 
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the placement algorithm so that it can achieve better results than 

the folding executed after the placement as in. 

Logic-level power estimation: 

Introduction:  

Since power consumption has become one of the most 

important concerns in digital VLSI design, with special 

emphasis on portable applications, designers must follow a 

variety of power optimization techniques in order to reduce the 

total cost and improve the performance of such systems. The 

power management of a particular design adds to a list of 

problems that VLSI designers and design managers have to 

contend with. Computer Aided Design (CAD) tools are essential 

for power management tasks. Specifically CAD tools should be 

enhanced to estimate power dissipation during the design phase 

in order to meet the power specifications without a costly 

redesign process [2][6].  

Power estimation techniques:  

Power consumption of a gate for each transition is 

calculated by Ec= 1/2CoutV
2

DD.In this equation, Cout can be 

calculated using “parasitic gate and wire capacitance models” 

and then obtaining each gate‟s switching activity will enable us 

to estimate the dynamic power . Although switching level 

techniques are as accurate as circuit level estimation techniques 

they are faster in the order of magnitude. An approach to obtain 

power dissipation is to calculate dynamic power by switching 

level techniques and static power dissipation using 

aforementioned methods [10][29].The power estimation 

techniques at the gate level and lower levels of abstraction can 

be broadly classified into: 

1. Simulation based techniques 

2. Probabilistic techniques and 

3. Statistical techniques 

Simulation-Based Techniques:  

In the earliest proposed simulation based techniques, the 

average power is calculated by monitoring both the supply 

voltage and current waveforms. These are too slow to handle 

very large circuits. Other simulation based techniques assume 

that the power supply and ground voltages are constant, 

estimating only the supply current waveform. Although these are 

efficient in handling very large circuits, the estimation is 

strongly dependent on the set of input vectors. Using a logic 

simulator the design is fed with test vectors to obtain the 

switching activity at each gate. There are two factors of 

consideration in this approach: The number of test vectors and 

the delay model. 

1) Number of Test Vectors: It is important to take into 

consideration, the minimum number of test vectors needed for 

power estimation.  R. Burch and F. N. Najm discussed some 

suggestions to calculate it. However, a small number of test 

vectors have been usually enough to estimate the power with a 

fair level of accuracy [10]. 

2) Delay Model: If we do not take the gate‟s delay into account, 

a change in the test vector will result in at most one transition 

per each gate, and all gate‟s transitions happen at the same time. 

This approach is fast and simple but ignores spurious activities 

of the signals in reality that causes underestimation of the 

dynamic power estimation. Then on-zero delay models propose 

that each gate has a delay and propagation of a signal through 

the circuit takes time. Applying this model will result in power 

estimation with a higher level of precision. 

 

 
Fig. 6: A combinational circuits with two inputs 

In Fig. 6 ‟x‟ is ‟0‟ and ‟y‟ is ‟1‟ so at the beginning ‟w‟ is 

‟0‟ and ‟z‟ is ‟0‟. Then ‟y‟ goes from ‟1‟ to ‟0‟. The input to ‟w‟ 

and ‟z‟ change so ‟z‟ and ‟w‟ go high. Changing the ‟w‟ has 

affected on ‟z‟ and it switches back to 0[9]. 

Probabilistic Techniques: 

In probabilistic techniques, user-supplied input signal 

probabilities are propagated into the circuit. To achieve this, 

special models for the components have to be developed and 

stored in the module library. Cirit first proposed power 

estimation based on the probabilities. Based on this, 

probabilistic simulation was proposed which accepts the 

specification of probability waveforms. It was further enhanced 

for more accuracy by Stamoulis et al., and Tsui et al.  Other 

probabilistic approaches based on transition density and on 

Binary Decision Diagrams (BDDs) are proposed. All the above 

approaches are applicable only for combinational circuits. For 

sequential circuits various approaches have been proposed 

which assume that the future of the FSM is dependent only on 

its present state and independent of its past state. These 

techniques are based on propagating the statistics of input 

vectors through the circuit to calculate the internal switching 

probability [34]. 

 

 
Fig. 7: A 2-input AND gate 

Fig. 7 shows an AND gate with an input probability of P
1
x 

and P
1
y (P

1
x is the probability of high state for x) then for the 

output probability we have: 

P
1
x P

1
y= P

1
z 

The three major issues to be considered are Delay model, spatial 

correlation, and temporal correlation. 

1) Delay Model: Using the non-zero model in Fig. 4 , if the delay 

of gates is ∆1 and ∆2 from left to right, signal z may have a 

transition at ∆2 and another at ‟ ∆1 + ∆2‟, the probability of 

transition of z is obtained by adding these two probabilities . 

2) Spatial Correlation: Before calculating a gates probability we 

have to consider whether it has independent inputs or not, that is 

not having common inputs. In Fig. 7, Px = Py=0.5 so to calculate 

Pw we have 

Pw = (1− Px).(1 – Py) 

                                  = 1− Px – Py+ PxPy 

                                  = 1− 0.5 − 0.5 + 0.25 = 0.25 

This type of calculation does not hold for ‟z‟ because its inputs 

are not independent. Therefore the following is a wrong 

calculation. 

Pw = (1− Pw).(1 –Py) 

                                  = 1− Pw–Py + PwPy 

                                  = 1− 0.50.25 + 0.125 = 0.375 

To calculate z‟s probability: 

     Pz = (1− Pw).(1 – Py) = 1 − Pw – Py + PwPy 

         = 1− [1 –Px–Py +PxPy] –Py + Py[1 − Px–Py +PxPy] 
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         = 1− 1 + Px +Py −PxPy– Py +Py– PyPx– PyPy+PxPyPy 

        = Px− PxPy +Py–PyPx −Py +PxPy = Px– PyPx 

        = 0.5 − 0.25 = 0.25 

In this equation PyPy is the probability of Py when Py holds, so 

the second Py is equal to ‟1‟ and PyPy= Py. 

Temporal Correlation: As the following truth table depicts that 

the probability of all three bits is the same and is equal to 0.5. 

However it can be seen that ‟x‟ has a transition activity of 

αx=Px
01

+ Px
10

 =0.125 while the activity for ‟z‟ is αz= Pz
01

+ 

Pz=0.5+0.5=1. Transition activity is a major power dissipation 

factor and should be considered [10]. 

 Figure 8 probabilistic techniques are about the input stream 

to estimate the internal switching activity of the circuit. These 

techniques are very efficient, but they cannot accurately capture 

factors like glitch generation, propagation etc. While in 

statistical techniques the circuit is simulated under randomly 

generated input patterns and monitoring the power dissipation 

using a Simulator. For accurate power estimation, we need to 

produce a record number of simulated vectors, which is usually 

high and cause run time problem. To handle this problem, a 

Monte Carlo simulation technique was superscalar RISC 

processor based on 64-bit MIPS instruction set. The highest 

frequency of the chip is 1.0GHz and the power dissipation 

ranges from 4.0 to 7.0 watts depending on the applications. We 

use 

 
Fig 8: An alternative flow for power estimation 

Presented in. This technique uses input vectors that are 

randomly generated and the power sample is computed [30]. 

Statistical techniques:  

As opposed to simulation based techniques, statistical 

techniques do not require any specialized models for the 

components. The idea is to simulate the circuit with randomly 

generated input vectors until power converges to the average 

power. The convergence is tested by statistical mean estimation 

techniques. 

Gate-level netlist based power analysis:  

Figure 10 describes the typical gate-level simulation and 

power estimation flow. First, the gate level simulation gets 

design netlist, the Verilog simulation library and test bench, the 

simulation tool records all switching activities of inputs and 

outputs as well as all internal states of given circuits. The 

statistical results of switching activities can be recorded in the 

form of dynamic preservation, such as VCD (Value Change 

Dump) file, and also recorded in the form of the average 

statistics preservation, such as SAIF (Switching Activity 

Interchange Format) file. The gate level power calculation tool 

receives these switching activity files, power  

models for each cell type, wire parasitic file (SPEF), clock 

constraints, etc.  To calculate the actual power consumptions of 

giving netlist circuit and benchmark. We have applied the flow 

mentioned above to the gate-level power analysis of a high-

performance 64-bit general-purpose processor - Godson 2E [4]. 

The Godson series microprocessors are the first attempt to 

design general-purpose microprocessor in China [5]. The latest 

Godson-2E processor is a four-issue Cadence Nc-verilog to 

simulate the processor‟s netlist and Synospsy Prime Power to 

calculate the power. Figure 10 shows the average power 

consumption for each circuit type of Godson-2E processor [15].  

 
Fig 9. Average Power for Each Circuit Type of Godson-2E 

processor 

Proposed speedup method for gate level power Simulation:  

From the flow described above, the gate-level netlist based 

power analysis method focuses on accurate records of switching 

activities in all cells of a given circuit. However large records 

are needed for large circuits which has a large amount of cells 

when program is running dynamically. It slows down the 

simulation speed. This paper presents a methodology to 

accelerate the gate-level simulation and power estimation 

[15].Different from all previous gate-level power simulation 

methods, we utilize static probability propagation scheme and 

apply it in conventional  

 
Figure 10. Gate-level Simulation and Power Analysis Flow 
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Figure 11 Gate power estimation flow 

The comparison of the two flows exposes the sources of 

inaccuracy of RTL against gate-level estimation. First, the use of 

the internal database as a working description; the RTL 

description is structural, but has little to do with the synthesized 

gate-level netlist (but the functionality, of course).Secondly, the 

granularity of simulation; RTL simulation will annotate only a 

subset of the nets annotated in the gate-level flow. These two 

differences are also the sources of the speedup of RTL against 

gate-level estimation. 
Architecture level/rt level power estimation 

Introduction:  

The architectural level is the design entry point for the large 

majority of digital designs. The design decisions at this level can 

have a dramatic impact on the power budget design. Once the 

architecture is defined and specified, using a functional or 

register- transfer level (RTL) description, a more refined power 

profile can be constructed which paves the way for more 

detailed optimizations. The functional blocks may be adders, 

multipliers, controllers, register files and memories [6]. Since 

the detailed information of each block is not available, generally 

speaking, RTL power estimation is less accurate than gate- or 

circuit-level power estimation. However, the increased 

complexity (i.e. millions of transistors) has become RTL power 

estimation and optimization a very critical step in the design 

procedure, since the existing CAD tools are mature for handling 

automatically the lower design levels [8][31].A register-transfer-

level (RTL) data path is characterized by the use of predesigned 

components such as arithmetic components, register, ALUs, etc. 

(control units, buses, memories, and clock trees are excluded 

from this category). Expanding the RTL data path to a lower-

description level, for instance gate level, where an accurate 

measurement can be performed, the power dissipation can be 

estimated with high accuracy. 

 
Fig 12:  Power Estimation Levels 

There are basically two advantages of doing this analysis: 

 If the design is not going to meet the project‟s objectives for 

power and/or performance, the designers will know it at the 

initial stage. Moreover, different architectural option can be 

tested in power before the logic design stage. 

 The biggest effects on power and/or performance can be 

achieved at the RTL and without architecture level analysis, the 

effects of proposed changes will neither be found out early nor 

determined 

Activity Estimation for Correlated Inputs:  

Activity estimator, we will refer to [41] for the definitions 

of spatial and temporal correlations. 

Temporal correlation:  

A signal x is said to be temporally correlated if an event 

(occurrence of certain logic state) at a given time is correlated to 

an event at some past time. In this work, we will concentrate 

only on correlations across one clock edge. For temporally 

correlated primary inputs, the temporal correlation parameter for 

the it input, TCi, is defined as 

 

Where t−1 and t are consecutive clock cycles and where P{・} 

denotes probability. Temporal correlation coefficient (γi) for 

youth input is defined as 

 
Where P(xi) is the probability at an input node xi, and the  only 

quantity which is unknown in is P{x
t
i ^ xi

t−1
=1}. Therefore it is 

possible to estimate γi if TCi can be determined. In [41], the 

authors show that TCi can actually be determined from the 

knowledge of P (xi) and D (xi), and hence temporal correlation 

of the primary inputs is taken care by P (xi) and D (xi) without a 

need to introduce an additional parameter to represent it. The 

relationship between TCi, P (xi) and D (xi) is given by 

 
Spatial correlation:  

A signal x is said to be spatially correlated to another signal 

y if their events are correlated. In this work, we will concentrate 

only on pairwise correlations. Once again, referring to [41], we 

can define SCij , the spatial correlation between the ith and jth 

inputs as [43] 

 
i.e., The probability of the inputs being high simultaneously. 

This definition of SCij as a measure of spatial correlation follows 

from the definition of the correlation coefficient as Introduced in 

[42]  

 
From the definition given in, it is clear that SCij is sufficient to 

capture ρij .  

Instead of considering all the pairwise correlation coefficients, it 

is possible to define SCin (average spatial correlation 

coefficient, i.e., average of all SCij terms). This parameter can be 

calculated as 

 
where n is the number of primary inputs. In [41], the authors go 

on to find upper and lower bounds for scene as 
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Where Pin is the average signal probability for primary inputs.  

In our work, we will use a parameterized measure of spatial 

correlation instead of directly using SCin 

RT-level Power Management:  

Digital circuits usually contain portions that are not 

performing useful computations at each clock cycle. Power 

reductions can then be achieved by shutting down the circuitry 

when it is idle. 

Precomputation Logic:  

Precomputation logic presented in [14], which explains the 

idea of duplicating part of the logic and computing the next 

circuit output values one clock cycle before they are required, 

and then uses these values to reduce the total amount of 

switching during the next clock cycle. In fact, knowing the 

output values one clock cycle in advance allows the original 

logic to be turned off during the next time frame, thus 

eliminating any charging and discharging of the internal 

capacitances. Obviously, the size of the logic that pre-calculates 

the output values must be kept under control since its 

contribution to the total power balance may offset the savings 

achieved by blocking the switching inside the original circuit. 

Several variants to the basic architecture can then be devised to 

address this issue. In particular, sometimes it may be convenient 

to resort to partial, rather than global, shutdown, i.e., To select 

for power management only a (possibly small) subset of the 

circuit inputs. 

  

 

 

 

 

 

 
Figure 13: A pipeline stage of a data path 

Figure 13 shows a combinational block A that implements 

n-input, single-output Boolean function precomputation logic for 

the complete input-disabling architecture. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: A precomputation logic realization of the pipeline 

stage (subset-input disabling architecture) 

f, with registers R1 and R2 connected to its inputs and output 

pins, respectively. A precomputation architecture realization of 

this same logic block placed between register sets R1 and R2 is 

depicted in Figure 14. The key elements of the precomputation 

architecture are two n-input, single-output predictor functions g1 

and g2, which satisfy the following constraints: 

 
If, at the present clock cycle, g1 or g2 evaluate to one, then 

the load enables signal, LE, goes to zero, and the inputs to block 

A at the next clock cycle are forced to retain the current values. 

Hence, no gate output transitions inside block A occur, while the 

correct output value for the next time frame is provided by the 

two registers located on the outputs of g1 and g2. Note that the 

precomputation logic is a function of a subset of the input 

variables; hence, it is called a “subset input-disabling 

architecture [14].” The synthesis algorithm suffers from the 

limitation that if a logic function is dependent on the values of 

several inputs for a large fraction of the applied input 

combinations, then no reduction in switching activity can be 

obtained. In, the authors focus on a particular sequential 

precomputation architecture in which the logic is a function of 

all of the input variables. The authors call this architecture the 

“complete input-disabling architecture.” This complete input 

disabling architecture can reduce power dissipation for a larger 

class of sequential circuit‟s compared to the subset input-

disabling architecture. The authors present an algorithm to 

synthesize  

Clock Gating:  

An approach to RT and gate-level dynamic power 

management, known as gated clocks [14] selectively stop the 

clock, and thus, force the original circuit to make no transition, 

whenever the computation that is to be carried out at the next 

clock cycle is redundant. In other words, the clock signal is 

disabled according to the idle conditions of the logic network. 

For reactive circuits, the number of clock cycles in which the 

design is idle in some wait states is usually large. Therefore, 

avoiding the power waste corresponding to such states may be 

significant. The logic for the clock management is automatically 

synthesized from the Boolean function that represents the idle 

conditions of the circuit (Figure 15.) It may well be the case that 

considering all such conditions results in additional circuitry that 

is too large and too power consuming. It may then be necessary 

to synthesize a simplified function, which dissipates the 

minimum possible power and stops the clock with maximum 

efficiency.  

 
 

 

 

 
Figure 15: Clock gating logic for ALU in a typical processor 

micro architecture 

With negative-edge triggered flip-flops 

The use of gated clocks has the drawback that the logic 

implementing the clock-gating mechanism is functionally 

redundant, and this may create major difficulties in testing and 

verification. The design of highly testable-gated clock circuits 

are discussed in [15].  
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Proposed method:  

The most frequently used RTL data-path components are 

arithmetic components (adders, subs tractors, multipliers), 

multiplexers, comparators, registers, multiply accumulate units, 

and ALUs. Their architecture includes a uniformly repeated 

primitive cell, e.g. 1-bit full adder, flip-flop, and are 

characterized by regularity, symmetry, and frequently by 

separability. Exploiting these properties, which have not 

properly been considered in previously reported models, an 

accurate and low-complexity power model for each component 

with N inputs and K primitive cells can be developed. It is 

assumed that the input vectors are applied on an RTL 

component in parallel and the component is stabilized before the 

loading of the next input vector [11]. The RTL power estimation 

is performed using a set of small LUTs instead of constructing 

one large LUT for the whole component. For each component 

two types of LUTs are used, the primary, and the secondary UT. 

Based on the principles of superposition and „divide and 

conquer‟, and considering the architecture and functionality of 

each component, the component is partitioned into 

subcomponents to reduce the size of the primary LUT. In 

particular, the primary LUT corresponds to the power 

dissipation of a block of L (1≤ L ≤ K) primitive cells. It contains 

the power dissipation values for any input vector pair as well as 

any additional useful information such as the transition number 

of the interconnecting signals among the component blocks, the 

steady values of the component output, etc. However, in many 

cases there is the data transmission into the interior of the 

component has been partitioned, an extra computation must be 

performed to consider this data transmission in terms of power 

dissipation estimation [32] [33].  

The power values of the LUTs may be derived either by a real 

gate-delay simulator or by a circuit- or transistor-level simulator. 

Using values derived by a circuit-level simulator, issues such as 

slopes, wire capacitance and timing information could be 

considered making the model more accurate. However the 

complexity of the model in terms of time and memory will be 

increased. Additional information has also to be stored to 

consider circuit-level characteristics, while an extra 

computational cot will be paid to manipulate this information, 

considering the component‟s behavior at the circuit-level.Since 

the power values of the LUTs are calculated by a real delay 

gate-level estimator and the glitches from one blocks to the next 

are captured by performing functional simulation, the accuracy  

of the proposed model is identical to the accuracy of a power 

estimation based on a gate-level simulator. Moreover the model 

is not sensitive to the training set, since the primary LUT 

contains the power dissipation values that correspond to all 

possible input combinations. Finally, there is a trade-off between 

the computational time and the size of the LUTs, depending on 

the length L of the block used. It must be stressed that an 

RTL design is characterized by the instantiation of fixed pre 

design components, where the power consumption can be 

evaluated by summing the power dissipation of each component. 

The power value will be different after logic synthesis, as it will 

be after placement and routing too. However at a high level such 

as RTL, we need a power estimation to select different designs 

in terms of power. It is expected that the relative power 

difference, which has been detected at the RTL, will remain 

after logic synthesis when the same synthesis flow and tools are 

used. Additionally, by using fixed RTL modules, the 

requirements of a design project not strongly dependent on time 

can be met, as possible only buffers will be added at the 

synthesis step and a few logic optimizations made [11]. 

Power estimation from LUT: 

The table reference method in the table look-up step is also 

important for accurate power estimation. This section explains 

important metric distance to find out the proximal entry from a 

LUT. This section describes one of the effective distance 

calculation proposed in our previous work [12]. Let np, p
i
in, and 

p
i
LUT be the number of parameter types, i-th parameter extracted 

from input data, and i-th parameter in one entry in the LUT, 

respectively. The distance dist is calculated as follows: 

 
Where dpi is a ratio for i-th parameter, and defined as follows: 

 
The distance is defined with a ratio in each parameter and 

RMS to define the dist. In the table look-up step, the entry in the 

LUT which has the shortest distance with the extracted 

parameters is selected, and the corresponding power value is 

output as the estimated power [12]. 

RTL power estimation flow:  

Depicts the typical estimated flow at the RTL and gate 

level. The starting point of the two flows is a design written in 

some HDL. After analysis and elaboration by the HDL compiler, 

the design translates into a technology-independent internal 

format that contains the four types of components mentioned in 

above: RTL modules (macros), gates, memory elements and 

MUXes [13]. The two flows start differentiating starting from 

this internal description. In true RTL estimation (Fig. 16), a 

forward annotation file is produced that contains the list of nets 

to be monitored during (RTL) simulation. RTL simulation takes 

this file, the HDL description and a test bench, to produce a 

backward annotation file, consisting of all the nets specified in 

the forward annotation file, this time annotated with switching 

activity and static probability values. An RTL power estimator 

takes the internal database produced in the first step and this 

activity information, and calculates a power estimate. This 

estimate is basically obtained by exercising specific power 

models for the objects of the internal database with the activity 

values derived from simulation [35] [40]. 

 
Fig 16: RTL power estimation flows 
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Behavioral level power estimation 

Introduction:  

Algorithmic level also known as behavioral level, describes 

the behavioral of the domain in terms of algorithms, flowcharts, 

processes and structures. The hardware modules that are used to 

represent the Behavioral domain, such as the control path and 

data path, are specified in the Structural domain. Clustering or 

partitioning of similar operations that might be described in the 

structural domain is described in the Physical domain. At the 

behavior level, not much information is available about the gate-

level structure. Hence, abstract notions of physical capacitance 

and switching activity are used to predict power dissipation. 

These techniques can be classified into three broad categories: 

information theory based, complexity based, and synthesis based 

approaches [23]. 

Information theory based approaches: 

Information theory based approach depends on information 

theoretic measures of activity (i.e., entropy) to estimate power 

dissipation. Entropy characterizes the randomness of a sequence 

of vector and hence is related to the switching activity. It shows 

in that, under the temporal independence assumption, switching 

activity of a bit is upper bounded by 1/2 of its entropy. The 

power dissipation in the circuit can be expressed as Power = 

1/2V 
2
fCtotEavg, where Ctot is the total capacitance of the logic 

module and Eavg is the average of line activities, which is in turn 

approximated by 1/2 of the average entropy havg. The average 

line entropy havg is calculated by a closed-form expression 

parameterized by average bit-level entropies of circuit 

inputs/outputs (and number of inputs, outputs).  Average input 

entropy can be derived from input sequences. Average output 

entropy is derived either by using an effective information 

scaling factor and number of logic level in the circuit if gate-

level structure is given; or by a compositional technique based 

on pre characterization of library modules in terms of their 

entropy transmission coefficient if only functional/data-flow 

information is given. In, word-level entropy is used instead of 

bit-level entropy. A similar closed-form expression for havg is 

proposed using sectional (word-level) input/output entropy. The 

sectional entropies of circuit inputs and outputs may be obtained 

by monitoring input output signal values during a high-level 

simulation of the circuit. In practice, they are approximated as 

the summation of individual bit-level entropies. The total 

module capacitance can be calculated by summing up the entire 

gate loading and wire capacitance if gate-level structure is given. 

Otherwise, Ctot is estimated by a quick mapping (e.g., mapping 

onto universal gates) or by information theoretic models that 

relate the total capacitance to input and output entropies [23]. 

Complexity-based approaches:  

Complexity-based models relate the circuit power to the 

circuit complexity. Most of the proposed complexity-based 

models rely on the assumption that circuit complexity can be 

represented by the number of “equivalent gates”. Muller-Glaser 

et al. Proposed a chip estimation system that computes the 

average power of a logic module as Power =fN (Energygate+0: 

5V 2Cload) Egate. Here, f is the clock frequency, N is the 

equivalent gate count for this module, Energygate is the average 

internal energy dissipation for an equivalent gate, Cload  is 

estimated capacitance based on the average fan-out in the circuit 

and the wire load model, and Egate is an average output activity 

per clock cycle for an equivalent gate. Egate is dependent on the 

functionality of the module. These data are pre-calculated and 

stored in a library and are independent of the implementation 

style and the circuit environment. In Nemani et al. presented a 

high-level estimation model for predicting the area of an 

optimized single-output Boolean function. The model is based 

on the assumption that the area complexity of a Boolean 

function is related to the distributions of the sizes of the onset 

and offset of the function. Area measure is used for total 

capacitance estimation and hence the high-level power 

estimation. This work has been extended to area estimation of 

multiple output functions [24]. Complexity-based power 

prediction for controller circuitry was proposed by Landman and 

Rabaey. Based on the knowledge of its target implementation 

style (i.e., precharged pseudo-NMOS or dynamic PLA), the 

number of inputs, outputs, input/output activities, etc., This 

technique can give a quick power estimation. The accuracy of 

the estimates depends on the empirical parameters (regression 

coefficients), which are derived from curve-fitting and least-

square fit error analysis of low-level simulation of previous 

design. 

Synthesis-based approaches:  

Synthesis-based models assume an RT-level template and 

produce estimates based on that assumption. It requires the 

development of a quick synthesis capability that makes the 

relevant behavioral choices. Important behaviour choices 

include type of I/O, memory organization, pipeline issues, 

synchronization scheme, bus architecture, and controller design. 

After the RT-level structure is obtained, power consumption can 

be estimated by either simulation or static analysis of the circuit 

structure/functionality [24].In order to address the two questions, 

a comparison is made between the behaviour of gibbons in 

disturbed and undisturbed situations and the subsequent 

implications for monitoring are assessed. The behavioural 

changes can both affect the parameters needed for density 

estimation and violate the (critical) assumptions of the methods 

employed. 

Material and methods:  

Gibbons are territorial and live in monogamous family 

groups consisting of an adult pair within one to four offspring. 

Gibbons are completely arboreal, and are largely frugivorous. 

Paired groups give loud morning calls, which can be heard over 

several kilometres, whereas single individuals rarely call. The 

present study concerns data collected on Bornean gibbon H. 

muelleri in East Kalimantan (KayanMentarang National Park 

and adjacent areas in 1996 [115°51E, 2°50‟N]) and Javan 

gibbon H. moloch on Java (Gede-Pangrango National Park and 

adjacent areas in 1994-1999 [107°00‟E, 6°45‟S], and 

Diengmountains proposed National Park and adjacent areas in 

1995-1999 [109°35‟E, 7°06‟S]).Undisturbed and disturbed study 

sites were selected either in close proximity and were similar in 

climate, original vegetation type, altitude and topography (Gede-

Pangrango and Kayan Mentarang), or a forest area was sampled 

before and during logging during the same months of the year. 

Given the close proximity and similarity of the forest areas, it is 

anticipated that the behaviour of the gibbons prior to the 

commencement of disturbance did not differ significantly. Sets 

of disturbed and undisturbed areas had mean densities differing 

less than 10%, which was established by a number of techniques 

(line-transects, range mapping, fixed point counts). For the 

present study, disturbance is taken in a rather broad term and 

may include hunting, encroachment, small scale logging, 

commercially (selective) logging, or a combination. Behavioural 

measurements were collected along line transects, on vantage 

points during fixed point counts, and ad libitum while surveying 
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in the forest. Singing behaviour of at least eleven 

H.molochgroups was monitored in Dieng for 35 days in Sept-

Oct 1998 (pre-logging) and for 25days in Sept-Oct 1999 (during 

logging). Some additional data on singing behaviour of Siamang 

H.syndactylus was collected in Way Kambas National Park, 

Sumatra [105°36‟E, 4°50‟S].For all analyses non-parametric 

statistics were used and Yates‟s correction for continuity was 

applied in the Chi-sq. tests where appropriate. 

Behavioral-Level Power Estimation:  

Typical approaches at the algorithmic- or behavioral-level 

assume to adopt some architectural styles or templates in order 

to obtain power estimates based on the exploration of a limited 

set of design solutions. Essentially, the behavioral approaches 

differ on the strategy adopted for the activity prediction: the 

behavioral methods can be classified as static and dynamic 

activity prediction techniques. The goal of the former techniques 

is the estimation of the access frequency of different HW 

resources, by statically analyzing the behavioral description of 

the functions to be implemented. The latter techniques are based 

on a dynamic profiling to determine the activation frequencies of 

various resources and the memory accesses. Developed a power 

estimation strategy based on a static profiling of the Control 

Data Flow Graph (CDFG) representing the design behavior. The 

analysis has been carried out in the context of the HYPER-LP 

high-level synthesis system targeting DSP-oriented applications. 

The power dissipated by some HW resources, such as data-path 

modules, has been analytically estimated from the CDFG. 

Conversely, for other modules, such as interconnects and 

controllers, for which the power information available at the 

behavioral-level is not sufficient, statistical models were built to 

estimate power based on a stochastic study on several ASICs. 

Basically, the power associated with a generic hardware 

resource has been estimated as [25]: 

P = 1 / 2 Na CaV2dd fs 

Where Na is the number of resource accesses over the 

computational period, Ca the average capacitance switched per 

access and fs the sampling frequency. The capacitance estimates 

have been obtained by the empirical characterization of fixed-

activity models of the different HW resources. The numbers of 

resource accesses have been analytically calculated from the 

algorithm for the execution units, the registers and the 

memories, while they have been determined statistically from 

benchmarks for the interconnections and the control logic. Then, 

the estimation models have been included into an exploration 

tool that, given the CDFG description of an algorithm and a 

library of hardware modules, explores the space of the available 

solutions for different values of clock periods and supply 

voltages. The results have been compared with an architectural-

level power estimator, called Stochastical Power Analysis (SPA) 

, on 23 different chips, showing an average error of 

approximately 20%. Dynamic activity prediction of the 

behavioral-level is based on a dynamic profiling to determine 

the activation frequencies of various resources. During the 

simulation of a user supplied set of input patterns, the activities 

related to the frequency of various types of operations and 

memories accesses are gathered. These access frequencies are 

then plugged into a model similar to those used in the static 

approach. Examples of the dynamic approaches are the Profile-

Driven Synthesis System (PDSS), that receives as input a 

behavioral subset of VHDL, and the Power-Profiler approach 

described in. The main advantage of dynamic versus static 

approaches are a higher accuracy, since data dependencies are 

taken into account, whereas the main disadvantages are related 

to the slower efficiency in terms of speed and the need of a set 

of user-supplied typical input patterns. 

Proposed technique:  

The proposed behavioral-level power management technique for 

digital receivers is described. For clarity reasons, some 

definitions are given first: 

 Consider a behavioral level description partitioned to a 

number of behavioral clusters. We denote the behavioral 

clusters‟ set as C= {ci|i=0,1,., m-1, m €N}, where N is the set of 

the physical numbers and m=||C|| is the total number of the 

behavioral clusters, where ||•|| denotes the cardinality of a set. 

 The event is defined as an executing behavioral cluster. 

 System period, TSYSTEM, is the minimum fraction of time 

during which a sequence of events is not repeated. 

  Event window, EWi, j, is the fraction of system period that 

lies between the events ei and ej. 

The proposed event-driven power-management technique is 

based on the fact that the unobservability of a circuit node at the 

behavioral level is introduced after the occurrence of an event. A 

system behavior is a result of a collection of interrelated 

functions. For instance, MPEG2 application requires, among 

others, the execution of vector quantization and Huffman coding 

functions. Their basic functions can be considered as behavioral 

clusters. Similarly, for the considered receiver‟s application, a 

behavioral cluster, for instance, can be a function that performs 

receiver‟s synchronization or a receiving symbol correction [46]. 

In almost all behavioral descriptions of a DECT receiver, there 

are behavioral clusters that their goal is to check whether an 

event occurs or not without modifying the output variables 

between the occurrences of two events. Such clusters are 

characterized by the unobservability for one or several event 

windows and their shutdown can lead to significant power 

savings. For example, a behavioral cluster responsible for 

synchronization does not change its outputs for a while, after the 

synchronization is achieved.  

 
Fig 17: algorithmic description of the proposed power 

management technique 



R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022 
 

12017 

The granularity of a behavioral cluster complexity is user 

specified. Depending on the features of an application, the 

designer can specify behavioral clusters with finer or coarser 

granularity of complexity. It is not always clear in an abstract 

behavioral description (e.g. CDFG) whether a cluster performs 

useful computations are not. Thus, a behavioral analysis is 

required to identify the clusters that can be shutdown and also 

the events that enable and disable these clusters. The 

fundamental steps of the proposed behavioral level event-driven 

management technique is described in Fig 17.  

Behavioral analysis:  

Behavioral analysis indicates the candidate clusters at the 

behavioral level for power management. This also involves the 

identification of the events that can trigger the shutdown of the 

behavioral clusters. 

Definition 1. We define as events‟ set the ordered set E0= 

{ei|i=0,1,., n-1, n€N}, where ei is an event that either introduces 

or ceases unobservability for a certain behavioral cluster, and 

n=||Eo || is the number of such events (||• ||denotes the 

cardinality of the set •). The set E0 is ordered according to the 

time occurrence of the events ei. Using mathematical notations, 

the behavioral analysis aims at defining the following set: 

S0 ={(j,k,l)|(Cj€C ) ^ (ek,el € E0) 

                     ^ (ek introduces unobservability for cj) 

            ^ el caeses unobservability for cj) 

The simplest way to perform behavioral analysis is 

simulation. Concerning that the design of a wireless system 

starts with a behavioral level description, using robust and 

mature automated tools, for instance Mat lab, the required 

behavioral analysis can be performed in an easy and accurate 

manner. Furthermore, in many cases the simulation is not always 

needed, since the behavioral analysis can also be performed 

manually by any designer familiar with the behavioral 

description of the design. In any case, the behavioral analysis 

can be visualized by the use of an event graph. 

Behavioral Level of Macro Modeling:  

The estimation of power at the behavioral level of design is 

much more complex as compared to the estimation of power at 

the RT level. First, the behavioral description is not HW 

oriented and looks much the same as any software program. Its 

mapping to the HW architecture may be ambiguous, different 

implementation strategies can be used. Second, here we cannot 

rely on the specific technological library components. At the 

behavioral level, computation of power must be approximated in 

order to account for the limited knowledge of the circuit. 

Therefore, a number of the high-level analysis techniques such 

as statistical analysis [36, stochastic methods, and macro 

modeling [37] are used. These techniques are usually based on 

the development of abstract power models, which are used for 

design space exploration to evaluate the relative impact of 

design decisions on the quality and characteristics of the final 

design. The estimated power consumption values provided by 

such models are neither absolute nor physically accurate, 

because at the highest level of abstraction the limited knowledge 

of the physical structure of the design does not allow to compute 

meaningful power estimates [38]. Such models can be built 

analytically by deriving a formula for each behavioral operation, 

which depends on a number of physical parameters such as 

switching or capacitance. Another way is to develop an 

empirical model or macro model, which is based on the 

approximation of the actual measured power dissipation values. 

The basic idea behind power macro modeling is to generate a 

mapping between the power dissipation of a circuit and certain 

statistics of its input signals. Such macro models can be used 

during modeling instead of detailed hardware models resulting 

in modeling speedup 

SYSTEM-LEVEL ESTIMATION: 

Introduction: This chapter presents a survey of the most 

important methodologies for system level estimation and design 

found in the literature, and compares them to Fun time. Three 

categories of tools are identified: simulation-based tools, 

analytical tools and tools that are a combination of multiple 

approaches. Due to their importance and to the lack of a 

standard approach, both system level estimation and system-

level design in general are a hot research topic today and the 

focus of a high number of research groups. The most significant 

estimation tools for SLD/SLE found in the literature. In doing 

so, the surveys presented in [17] and [18] are partially taken as a 

reference and adapted to the purposes of this work. At the same 

time, a comparison is presented between these approaches and 

Funtime, which emphasizes key similarities and differences. 

System-level estimation tools can roughly be classified into 

three broad categories: simulation-based tools, analytical tools, 

and tools that are a combination of different approaches. 

Although the following subsections review each category, a 

large space is dedicated to the simulation-based approaches and, 

in particular, to describing System C and Transaction Level 

Modeling (TLM). The reason is that this simulation-based 

approach has lately gained consensus and has become quite 

popular in both the industrial and academic community. This is 

why SystemC/TLMis also used in this work as the reference 

system-level approach when validating Funtime for estimation 

speed [23]. 

System-Level Estimation: 

There have been many attempts to estimate the energy used 

in a particular system design at all levels of abstraction. At the 

lowest levels the estimates are quite accurate, but these methods 

can be used only when a design is complete and the application 

is well documented. At the gate level of abstraction, each gate is 

precharacterized for power and the total power is then calculated 

on the basis of switching activity of nodes in the design, which 

is obtained by simulation or in a probabilistic manner. Power 

estimation at the register transfer level is similar to that used at 

the gate level; the primary difference is the complexity of pre-

characterizing each component for power. Several methods have 

been tried, including characterization through extensive 

simulation and the use of lookup tables or analytical functions to 

summarize results [44]. Recent years have seen significant 

research interest in system-level power estimation. Most of this 

research has focused on power modeling techniques for 

individual system components (e.g., processors, memories, on-

chip buses, peripherals, user-defined logic, etc.). These power 

models can be integrated into system-level simulation 

frameworks to provide power estimation capabilities. Power 

models within a system-level simulation environment to achieve 

a superior trade-off between overall power estimation accuracy 

and efficiency. A power estimation framework that integrates 

heterogeneous component power models using a network of 

“power monitors”. The monitor-based framework provides an 

intelligent interface, facilitating the seamless integration of 

component simulation models on one hand, and a variety of 

heterogeneous power models on the other. Power monitors 

enable each component model to be associated with multiple 

(distinct) power models of differing accuracy and efficiency, or 
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with configurable power models that can be tuned to different 

accuracy/efficiency levels. The power monitor exercises fine-

grained control over the different power models through 

dynamic selection and configuration of power models based on 

information gathered during simulation [39]. 
 

Application 
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Fig 18: System-level design challenge: the mapping phase 

Shifting towards higher levels of abstraction has proved to 

be a winning strategy for dealing with increasing complexity. 

Indeed, by abstracting away the low-level details, 

implementation is faster, which means lower engineering effort, 

lower cost and lower time to market, as well as higher 

productivity. Decisions made at the system level have a very 

strong impact on the quality of the final product, since the 

degree of achievable optimization is normally proportional to 

the abstraction level and, indirectly, to the point in the design 

flow where decisions are taken: the earlier the better. At the 

system level, the question that system architects have to answer 

to is the following: given a set of applications and a set of 

possible architectures, what is the best architecture on which to 

map this set of applications. The expression best architecture 

refers to the properties of architecture in terms of metrics like 

performance, power consumption and silicon area, for a given 

set of applications. For example, what is the power and the 

performance impact of using a voltage-frequency scaling 

scheme rather than a fixed frequency? What is the power and the 

performance impact of varying the number of levels in the 

memory hierarchy? What is the best interconnect to use: a bus or 

a NoC? What is the advantage/disadvantage of implementing 

part or the whole set of applications in hardware rather than 

software? These are just examples of the hardest choices a 

designer has to make. Since they are so important, taking the 

right system-level decisions from the beginning is crucial, 

especially when complexity grows: any error at this early stage 

would lead to annoying design reiterations, as shown in Figure 

17, with a consequent high loss of time, money and, probably, a 

sub-optimal final implementation [19].However, although very 

important, decisions at system level are very hard to take and 

this is for two main reasons: the first is that, at the system level, 

the design space to consider is extremely broad as a 

consequence of the limited amount of implementation details 

available.  

Figure 19 shows the relation between the design space 

width and abstraction level. The second reason is that the impact 

of the decisions taken at system level is not known until a very 

late stage of the design process, which can take months of work. 

From the second reason mentioned above, it can be concluded 

that the lack of a quick and accurate System-Level Estimation 

(SLE) approach is one of the main obstacles for successful 

system-level design today. In fact, if an efficient system-level 

methodology for energy and performance estimation was 

available, it would be possible to carry out a reasonably 

comprehensive Design Space Exploration (DSE), and thus judge 

from the beginning of the design flow which architecture is the 

most suitable for a certain application domain, in terms of 

performance and power consumption. In addition, estimation at 

any abstraction level is a requirement for the implementation of 

automatic synthesis tools, since it is only after estimation that 

the tool can judge what the best solution is. Efficient estimation 

of lower abstraction levels has allowed us to have quite mature 

automatic synthesis tools today. Estimation at the physical level 

requires accounting for the individual capacitance and resistance 

contributions coming from each transistor and interconnecting 

wire. Estimation at this level is extremely accurate, but also very 

slow. Simulation at the physical level is also very slow and is 

thus feasible for only very small designs and for a very short 

design execution time. At the gate level, estimation is simplified 

by the fact that standard cells are used, whose physical 

properties are pre-characterized. Only the impact of cell-to-cell 

connecting wires has to be estimated separately, which is done 

using so called wire load models. Estimation at this level is less 

accurate, although faster, and bigger design sizes can be 

simulated. At the RT level, Hardware Description Language 

(HDL) languages is used to describe in words what RTL 

synthesis translates into logic gates. The simulation is very 

common at RT level and reasonably fast for medium size 

designs running very short chunks of application. However, 

estimation made at this level loses accuracy due to the lack of 

enough physical details. In general, the increase of the 

abstraction level is directly proportional to an increase of the 

estimated speed and inversely proportional to the estimation 

accuracy [23] [45]. When it comes to system level, the lack of 

an efficient estimation methodology has been an obstacle to 

having mature automatic system-level synthesis tools available 

today. In fact, the operation of mapping the system-level 

functional description of the actual architecture is still largely 

done manually. The decision-making approach used by system 

designers has been mostly relying on their acquired experience, 

on the comparison with previous designs and on rules of thumb. 

However, while this approach can still work with small/medium-

size systems, its application to today‟s more and more complex 

systems has become unrealistic and the need for a more 

systematic and accurate approach has become a necessity. TLM 

has appeared at the beginning of the last decade as a simulation-

based approach raising the abstraction level above RTL and as a 

starting point for synthesis. In essence, TLM abstracts away the 

RTL details and models functionality and communication 

among the system modules. Communication is seen as an 

exchange of transactions between architectural resources.  
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Fig 19: Design space width versus abstraction level 

As a result, TLM has proved to be much faster than RTL 

[17]. In spite of that, even TLM could be too slow to allow 

proper simulation of future complex systems. In addition, the 

problem remains of how to obtain for example accurate power 

estimation at the system level, since TLM does not provide 

intrinsic support for power estimation, and waiting until 

reaching the gate-level design phase is not an option. 

The System-Level Power Model:  

The proposed power estimation model [15] is composed of 

three main cooperating sub-modules: (i) the memory hierarchy, 

(ii) the bus encoder, and (iii) the address/data stream generator, 

which have been integrated into an analysis tool, written in C++.  

System Bus Hierarchy:  

Modern system-on-a-chip embedded media systems include 

many components: a high-speed processor core, hardware 

accelerators, a rich set of peripherals, direct memory access 

(DMA), on-chip cache and off-chip memory. The system 

architecture considered in the study includes a single-core 

microprocessor, several peripherals, and off-chip SDRAM 

memory, and is similar to many current embedded platforms. 

Without losing generality, the system architecture definitions 

can then be used to conduct the majority of the experiments. For 

multimedia applications, data throughput requirements are 

increasing higher than what they were ten years ago. Today, for 

a D1 (720x480 pixel resolution) video codec (encoder/decoder) 

media node, it needs to be able to process 10 million pixels per 

second. This workload requires a multimedia-specialized 

processor for computation, peripheral devices to support high 

speed media streaming and data conversion via a parallel 

peripheral interface (PPI), and a synchronous serial port 

(SPORT) for interfacing to high speed telecom interfaces. The 

high data throughput requirements associated with this platform 

make it impossible to store all the data in an on-chip memory or 

cache. Therefore, a typical multimedia embedded system usually 

provides a high-speed system-on-a-chip microprocessor and a 

very large off-chip memory. The Analog Devices Black fin 

family processors [4], the Texas Instrument OMAP, and the 

Sigma Design EM8400 series are all examples of low-power 

embedded media chip-sets which share many similarities in 

system design and bus structure. Another key component in the 

architecture model is the system bus and external memory. 

Memory bandwidth is a great challenge for systems to process 

streaming data in real-time. To insure sufficient bandwidth, 

hardware designers usually provide multiple buses in the system, 

each having different bus speeds and different protocols. An 

external bus is used to interface to the largest off-chip memory 

system and other asynchronous memory-mapped devices. The 

external bus has a much longer physical length than other buses, 

and thus typically has much higher bus capacitance and greater 

power dissipation. The goal of the architectural model is to 

accurately model power dissipation in a complete system power 

model so that new power-efficient design. 

The bus encoder model can be inserted either on the 

interface from the processor to the first level of the memory 

hierarchy or between any adjacent levels of the hierarchy to 

evaluate the bus encoding effects on power consumption. The 

model implements the main power oriented bus encoding 

techniques, namely Gray, Bus- Invert [12], T0, T0_BI, Dual_T0 

and Dual_T0_BI. The encoding schemes can be applied to both 

data and address buses. The generator outputs are tightly 

dependent on the processor architecture. The current version of 

the stream generator model includes generic load/store RISC 

architecture. For our analysis, we considered a sub-set of a 

generic RISC instruction set, which is composed of three basic 

classes of instructions: Conditional Branch Instructions (B); 

Arithmetic-Logic or Data Processing Instructions (DP); 

Load/Store or Data Transfer Instructions (DT). The memory 

address spaces for data and instructions are separated. Basically, 

the sequence of memory addresses is generated by assigning the 

percentage of the different classes of instructions with respect to 

the total number of generating addresses. The address sequence 

is generated by the processor by varying: the format and the 

execution frequency for each instruction class; the possible 

addressing modes for each instruction and the related execution 

frequency; the frequency to satisfy a conditional branch. All 

these parameters contribute to modify the spatial and temporal 

locality of memory references [16]. The address bus from the 

processor to the memory subsystem contains a memory address 

corresponding to a datum or an instruction. The address stream 

characteristics can be assigned depending on the desired level of 

the spatial and temporal locality. The bidirectional data bus can 

carry two different types of information: instructions and data. 

The type of instruction contained at a given memory address 

depends on the parameters set for the address bus model. 

Meanwhile, the datum contained in the memory address can be 

generated either probabilistically or pseudo-random. In the first 

case, the model is based on a medium average model of the first 

order, MA (1), to take into consideration the correlation between 

two consecutive data words, responsible for the switching 

activity on the system-bus.  

The power estimation unit:  

A power estimation framework improved from is proposed. 

The power estimation framework is divided into two individual 

processes. One is the systemc simulation environment, and the 

other is the power estimation unit. These two processes can be 

operated in parallel, while communicating with each other by a 

system FIFO. Therefore, the power consumption can be 

calculated by the power estimation unit during the systemc 

simulation. There are differences between different hardware 

components, just like each power. Model in the hardware 

component. To adapt different hardware consumptions, the 

power models are built into the power estimation unit. These 

units are defined by users, which makes the power estimation 

unit more flexible. The power estimation unit will collect the 

needed information by the power models to calculate the power 

consumptions. In a systemc simulation environment, it has many 

components which are included in a common embedded SOC 

system. For instance, CPU, BUS, the main memory, and the 

Application Specific Integrated Circuit (ASIC), etc. Also each 

component in the embedded SOC system has different power 

consumption factors. The power models have to be different to 
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adapt to different hardware component. The power estimation 

unit has two different functions power information collector and 

power consumption calculator. The hardware‟s power 

consumption change when the input or the process has changed. 

The power estimation unit collects the needed information with 

the mapped power model during systemc simulation. The 

information is then transferred to the power calculation unit.  

When the power estimation units are separated with the systemc 

simulation to achieve two advantages. The simulation and power 

estimation are separated, which means that the simulation will 

not be significantly delayed while collecting the power 

information with the power estimation unit. 

Power estimation of a CPU:  

The CPU power estimator calculates ARM7TDMI power 

consumption for each instruction, based on the trace from Trace 

Converter. In the ARM7 programming model, the power 

variation is dependent on instruction-level energy-sensitive 

factors such as instruction fetch addresses, opcodes (operations), 

register encoding, data fetch addresses, immediate operands, and 

so on . 

 
 ISS 
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Fig 20: Architecture of the power estimator 

More specifically, Hamming distance between two adjacent 

instructions and the number of one‟s in the encoding of an 

instruction are the two major basis of power consumption [3]. 

Lectures deliver theoretical background of the ARM7TDMI 

power consumption model. We guide the students to implement 

the instruction-level estimator by adding the power consumption 

of each pipeline stage. The power coefficients of the energy-

sensitive factors are supplied in the course materials. All the 

coefficients are the measurable results of an ARM7TDMI test 

chip, with a cycle-accurate energy measurement technique. 

Students may also capture the coefficients of the ARM7TDMI 

by themselves using SEE. 

System-Level Power-Aware Design for Real-Time Systems:  

We assume familiarity with common concepts in real-time 

systems; for detailed information, the reader is encouraged to 

consult [20]. System-level power-aware design in real-time 

systems is a relatively new research area. Low-power had 

become an important parameter at the higher layers of system 

design by the mid - 1990‟s. Most of the new system level low-

power techniques initially targeted general-purpose computing 

systems. However, it soon became apparent that real-time 

systems present unique challenges and opportunities for system-

level low-power design as demonstrated next [26]. 

 Real-time systems are usually severely power constrained. In 

particular, space borne and multimedia systems are typically 

battery-operated and therefore have a limited energy budget. 

Real-time systems are also relatively more time-constrained 

compared to general-purpose systems. Therefore, the challenge 

is to save power while satisfying temporal guarantees. 

 Some real-time applications such as avionics, robotics and 

deep space missions require systems with small form factors, 

which in turn mandate low heat dissipation. Since heat is a 

byproduct of power dissipation, low-power system-design 

ensures a more reliable system by limiting he heat produced. 

 Real-time systems are typically over-designed to ensure that 

the temporal deadline guarantees are still met even if all tasks 

take up their worst-case execution time (WCET) to finish. Since, 

in the average case, tasks do not run until their WCET, this is 

very energy inefficient. System-level techniques can decrease 

this power dissipation through the use of power-aware task 

scheduling algorithms while preserving the temporal guarantees. 

 Real-time systems are designed to be fault-tolerant. Fault 

tolerance ensures reliability through replication of 

software/hardware resources. However, brute replication in turn, 

causes high power dissipation. System-level low power 

techniques manage replication resources judiciously to reduce 

the required power. 

System-level power-aware research in real-time systems is 

still in its infancy. While there is intense activity in the area, 

most initial research is concentrated in adding power awareness 

as a second-tier design goal which complements the more 

traditional real-time design goals. According to this approach, 

the system is first optimized subject to traditional real-time 

design constraints like timing and reliability. More often than 

not, an additional optimization step subject to power-aware 

design constraints is then piggybacked to this design. We 

believe that power-awareness should be one of the primary 

design goals for real-time systems, integrated in the design 

process at all levels, simultaneously coexisting with the 

traditional real-time design objectives. This requires a radical 

rethinking of the design methods as well as the definition of new 

metrics, a vision that is already becoming more ingrained in the 

research community [22]. 
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