
R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12005

Introduction

Power estimation:

Power estimation is defined as the process of calculating

power and energy dissipated with a considerable accuracy at

different phases of the design process. Power estimation also

refers to the estimation of the average power dissipation of a

digital circuit, which is different from worst case instantaneous

power estimation, often referred as the voltage drop problem.

Chip heating and temperature are related to the average power.

Power estimation can be performed with various models of a

design: low-level analytical models, C-based architectural

models, and structural RTL (Register Transfer Level) models,

gate-level models with and without layout data and circuit-level

models. Estimating power using each of these models has its

own advantages and disadvantages [1].

Need for Low Power Design:

In the early 1970s high speed digital circuit design

reduction in area is the main design challenge. Most of the EDA

tools were designed specifically to meet these criteria. Power

consumption estimation was also a major part of the design

process but not very obvious. The reduction of area of digital

circuits is simplified today with new IC production techniques

capable of fabricating millions of transistors in a single IC.

Shrinking sizes of circuits have resulted in reduced power

consumption leading to extended battery life. Also in submicron

technologies, proper functioning of circuits is limited by the heat

generated by power dissipation. The market demands low power

devices to have a better lifetime and also should be reliable,

portable, should provide better performance, reduced cost and a

better time to market. This is true in the field of personal

computing devices, wireless communications systems, home

entertainment systems, which are becoming very popular now-a-

days. High-performance computing devices need to dissipate

less power to function for an extended period of time [3].

Keeping these in mind, low power designs have become one of

the most important design parameters for VLSI (Very Large

Scale Integration) systems.

Design Flow with and without Power:

Figure 1 illustrates a top-down ordinary VLSI design

approach. The figure summarizes the flow of steps that are

required to follow from a system-level specification to the

physical design .The approach was aimed at performance

optimization and area minimization. However, introducing the

third parameter of power dissipation made the designers to

change the flow as shown in the right-hand side of the Figure 1.

In each of the design levels, there are two important power

factors, namely power optimization and power estimation.

Power optimization is defined as the process of obtaining the

best design knowing the design constraints without violating

design specifications. In order to meet design and required goals,

a suitable power optimization technique should be employed.

Power estimation is defined as the process of calculating power

and energy dissipated with a considerable percentage of

accuracy and at different phases of the design process. Power

estimation techniques evaluate the effect of various

optimizations and design modifications on power at different

abstraction levels.

Generally, a design performs a power optimization step

followed by a power estimation step, but at a certain design

level, there is no specific design procedure. Each design level

includes a large collection of low power techniques. Each may

result in a significant power dissipation reduction. However, a

certain combination of low power techniques may lead to better

results than another series of techniques. Generally, power is

consumed by the capacitors in the circuits during their charging

and discharging due to switching activities. This power

dissipation is conserved by shutting down portions of the system

when they are not needed which reduces the switching activity.

Tele:

E-mail addresses: prabakaran3787@gmail.com

 © 2012 Elixir All rights reserved

Power estimation techniques for embedded and VLSI system: A survey
R.Prabakaran

1
, S. Arivazhagan

2
 and S.Prabakaran

3

1
Department of Electrical and Electronics Engineering, Anna University of Technology, Tiruchirappalli.
2
Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi

3
Pervaisve Comouting Technology, Anna University of Technology, Tiruchirappalli.

ABSTRACT

Advancement in the field of embedded system and VLSI has induced the researcher in

designing low power embedded systems and VLSI circuit design. The embedded systems

are mostly batteries operated in nature. The power loss during static, dynamic and switching

characteristics are tabulated. The switching nature in cmos constitutes a large value of

power loss during the switching condition. Many research papers have been proposed in

reducing the switching loss, and low power estimation, this paper clearly demonstrates

the comparison of them. The main features of the dominated design techniques and

methodologies of transistor level, gate level, RTL level, behavior level and system level are

reviewed. The corresponding advantages and drawbacks, as well as comparisons between

the techniques and the methodologies are also presented. The low-power design process

such as transistor level, gate level, RTL level, behavior level and system-level models are

explained.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 12 March 2012;

Received in revised form:

7 December 2012;

Accepted: 11 December 2012;

Keywords

Transistor level,

Gate level,

RTL level,

Behavior level,

System level.

Elixir Elec. Engg. 53 (2012) 12005-12022

Electrical Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12006

Large VLSI circuits contain different components like a

processor, a functional unit and controllers. The idea of power

reduction is to stop the processor components when they are idle

so that power dissipation will be reduced when the processor is

operating [3].

Figure 1 VLSI Design Flow

Relationship between Different Abstraction Levels:

Figure 2. Illustrates the relationship between design

abstraction level and power estimation. The power estimation at

the higher level is much faster, but the accuracy will be reduced

due to the limited design information A number of CAD

techniques for power estimation at lower levels of abstraction,

such as transistor-level [3] or gate-level, have been proposed.

Figure 2 Relationship between different abstraction level &

Power estimation techniques

Generally speaking, they can provide more accurate

estimation results. However, they may become unpractical for

complex designs due to the whole system simulation requires

too many computation resources in such as low abstract levels.

In addition, when the design has been specified down to gate

level or lower, it is too expensive to shift back in fixing high-

power problems. Most importantly, IP vendors may not expose

such a low-level description to protect their knowledge.

Basic Concepts for Power:

The power dissipation of digital CMOS circuits can be

described by

Pavg = P dynamic + P short-circuit + P leakage + P static

Pavg is the average power dissipation; P dynamic is the dynamic

power dissipation due to switching of transistors; P short-circuit is

the short-circuit current power dissipation when there is a direct

current path from the power supply down to be ground , P leakage

is the power dissipation due to leakage currents, P static and is the

static power dissipation [3].

Static Power:

Static power is defined as the power dissipated by a gate

when it is inactive or static. Ideally, CMOS (Complementary

Metal Oxide Semiconductor) circuits dissipate no static (DC)

power since in the steady state; there is no direct path from Vdd

to be ground. This scenario can never be realized in practice,

because in reality, the MOS transistor is not a perfect switch.

There will always be leakage currents, sub threshold currents,

and substrate injection currents, which dissipate certain amounts

of power. The largest percentage of static power results from

source-to-drain sub threshold voltage, which is caused by

turning of the gate by reducing threshold voltages [3].

Dynamic Power:

Dynamic power (Pswitching) is the power consumed during

switching events in the core or I/O of an FPGA. Toggle rate is a

function of voltage, frequency, and capacitance. The toggles

may be in internal logic modules, conducting wire of

interconnect, or external package pins [2]. In the deep sub-

micron meter process, dynamic power can be reduced with

smaller transistors but static power is increasing because a

leakage current in smaller transistors becomes bigger. Therefore,

the proportion of static power in the overall FPGA power

consumption is growing. It is important to understand both

power types and their variation under different operating

conditions so that they can be properly optimized to meet the

power budget. For dynamic power calculation, the essential

quantities are a toggle count of transistors and traces,

capacitance, and toggling rate. Transistors are used for logic,

and programmable interconnects between metal traces in the

FPGA. The capacitance consists of a transistor parasitic

capacitance and metal interconnect capacitance. In CMOS

circuits, dynamic power consumption is related to charging and

discharging parasitic capacitances on gates and metal traces,

which accounts for the overall power consumption of the chip.

According to the way of reducing dynamic power includes the

reduction of capacitance, operating voltage, frequency and

toggles. [2].

Short-Circuit Power:

The last power component is called static power, because it

is not related to the signal transition. This component appears as

long as the circuit is powered. Comparing to dynamic power,

this component dissipates less total power which makes this

component negligible in some designs. Static power highly

depends on technology and design. In current technologies, the

transistor sizes are reduced and this increases leakage currents in

the circuit which increases the amount of static power in the

circuit. In order to have a better performance, alternative design

methods such as pseudo logic, domino logic, etc can be used that

affects the amount of static power.

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12007

Above Fig illustrates the pseudo NMOS logic as an

example to show the design of a circuit that can affect the static

power. In this circuit, the single NMOS transistor is always on

since its gate is connected to the VDD. As long as the output is

zero, there is a path in the pull dawn network to connect VDD to

the ground. This path carries the current from VDD to be ground

and cause the static power dissipation. [10][28].

Leakage Power: The PMOS and NMOS transistors in a

CMOS logic circuit usually have non-zero reverse leakage and

sub-threshold currents. These currents can contribute to the total

power dissipation even when the transistors are not carrying out

a switching action. The leakage power dissipation, P leakage is

caused by two types of leakage currents [3]. Advancement in the

field of embedded system and VLSI has forced the researchers

in the low power embedded system and VLSI circuit design.

Most of the embedded systems are battery operated. The power

loss during static, dynamic and switching characteristics are

tabulated. The switching nature in cmos incorporates large

power loss. Many research papers have been proposed on

reduce switching loss and low power estimation. This paper

clearly demonstrates the comparison among them. The main

features of the dominated design techniques are methodologies

of transistor level, gate level, RTL level, behavior level and

system level are reviewed. The corresponding advantages and

drawbacks, as well as comparisons between the techniques and

the methodologies are also presented. The low power design

process such as transistor level, gate level, RTL level, behavior

level and system level models are explained [7].

The leakage power dissipation, P leakage is caused by two

types of leakage currents

a) Reverse-bias diode leakage current

b) Sub threshold current through a turned-off transistor channel

Low Levels of power estimation: The level of detail in the

modeling performed by the power simulator influences both the

accuracy of estimation as well as the speed of the simulator. In

this section we survey the models frequently used at low level as

these power consumption estimation techniques cover a range of

abstractions such as the circuit/transistor level, logic gate level,

RT level, and architectural level.

 Transistor level Gate level RTL level Behavior level Software level

Transistor level power estimation:

Introduction:

A transistor-level programmable technology is composed of

two key mechanisms. One is that a MOS transistor is divided

into parallel connected sub-transistors, so that the transistor

possesses various characteristics by switching the parallel

connection. The other mechanical changes Vth and GM of the

transistor by adjusting the bulk potential based on body effect. In

the post-layout simulation, the results indicated that our

mechanisms could tune the circuit performance such as the gain

continuously as well as over a wide range [5][6]. Up to now

several logic-level power estimation, techniques have been

described. In some cases, these techniques may suffer from the

problem of inaccuracy, since they ignore short-circuit currents

and the glitching power consumption is strongly dependent on

the delay model incorporated. However, the power estimation

methods, based on transistor-level power simulation, have been

providing more accurate results. Running such a simulator with

a given set of simulation vectors, provides efficient estimation of

the power dissipated in digital circuits, since glitches and short-

circuit currents also take into consideration. While such

techniques are more effective than some logic-level estimation

techniques, they consume excessive CPU time, hence they are

not suitable in large circuits estimation [8]. We call V the

original vector set and S and NS the transistor-level simulated

and non-simulated vector sets, respectively. Running a logic

simulation for each set computes the switching activity Esw for

each internal node, providing thus a transition measure Ф, which

in fact is the total effective capacitance of the circuit, that is:

On the other hand, the application of transistor-level

simulation to set S results in the accurate calculation of its power

dissipation. The next step is to compare this result with the

transitional measure found by logic simulation. Therefore, a

relationship factor R (S) is extracted from the simulation process

for set S, which is the ratio of power dissipation of transition

measure:

R(S) = P(S) / Ф(S)

According to the authors this factor can then be used in

order to estimate the power dissipation of the non simulated

setting, as follows:

Pestimated (NS) = R(S) * Ф (NS)

until the approximation error becomes minimum (stopping

criterion).

Fig 3. The mixed-level power estimation process

Which is the power estimated over all the original vectors. The

whole process, step by step, is shown in Figure 4. After simple

algebraic manipulations, this is equivalent to compute

Pestimated (V) = R(S) * Ф (V)

Consider the extreme case that power simulation (we mean

transistor-level simulation) has been done on the entire set of

original vectors, (i.e. S=V), so the estimated power is equal to

the total power dissipation of the circuit. But, as we mentioned

earlier,this process would require very large CPU time. In our

case study, when only a subset of vectors is used for power

simulation, a certain degree of error will be introduced by this

approximation. The approximation error is:

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12008

And converges zero very fast as the number of vectors increases.

Sometimes it is not possible to predict the number of input

vectors that must be simulated in order to achieve a possible

accurate result. Therefore, an alternative process which consists

of dividing the original set of input vectors into a large number

of packets (each packet consists of a fixed number of vectors)

and then simulating sequenced these packets,

Transistor Level Simulation:

1. Circuit level

2. Switch level

1. Circuit level: Circuit level simulators are responsible for

estimating power. This is done by calculating the average

current (I) that flow from the circuit power source and then the

average power can be obtained.

SPICE is an example of an accurate circuit level simulator.

P = IavgVDD

Iavg =∫Idt/T

At this level there are accurate models for circuit devices

such as transistors. Capacitances and resistors have values close

to the reality so the output of estimation is accurate and testable.

Estimation in the case of large circuits is complex and time

consuming. The first limitation is that we have to solve complex

systems of equations. This is only feasible for fairly small

circuits. SPICE solves an equation for each node of the circuit

and a growth in the circuit size will dramatically increase the

complexity of the problem. The other limitation is the length of

the input vectors must be short; otherwise the simulation would

be time consuming. R. Marculescu and C. Ababei has proposed

a technique to reduce the length of this sequence “by an order of

magnitude” without losing accuracy (around %5 lost). This can

be done by obtaining a” compact representation” of input

vectors with an acceptable approximation [10]. Because of these

limitations power estimation at the circuit level with high

accuracy using realistic models is only performed for small

circuits. A simpler power estimation method is to use simple

models for transistors instead of complex ones. Each transistor

can be modeled as a switch that is either conducting or not in a

switch level simulation. As this method simplifies transistor

models, it can estimate larger circuits and use more input

vectors. Although the data obtained from the power estimation is

not as accurate as the previous method especially in the

estimation of static power consumption, dynamic and short

circuit Power estimation can be done by these techniques and

then the static power should be estimated based on its specific

techniques.

2. Switch level:

Switch level simulators like MOSSIM and IRSIM view

transistors as bidirectional switches and circuit nodes as charge

storage nodes. When a transistor is in an ON state, the switch

closes creating a conduction path between the drain and source

nodes of a transistor. In this model, simulation can be performed

with an approximate RC calculation, thus making it faster than

the normal transistor level analysis. Switch level simulators can

be extended for power analysis by calculating the approximate

switching capacitance for dynamic power estimation. Though

other components like leakage and short circuit power can be

estimated, these are not very accurate compared to transistor

level analysis. For example, short circuit power must be

accounted for by examining the time in which the switches form

a path from power to ground. A switch level simulator does not

accurately model timing. Besides, the modeling does not

consider the output load capacitance which leads to further

inaccuracies.

Transistor-Level Programmable:

We propose a transistor-level programmable technology in

analog circuits by introducing two mechanisms for pseudo

sizing of MOS transistors as follows [9].

1) A MOS transistor is divided into two or more parallel

connected sub-transistors. The number of active sub-transistors

can be switched using the transfer gates.

2) A MOS transistor has an independent well area, and the

threshold voltage and gm can be adjusted by changing the bulk

potential (i.e. body biasing).

Each mechanism can adjust the transistor characteristic after

manufacturing the chip. The former is associated with the tuning

of channel-width (W) in a usual MOS analog circuit design. This

serves the tuning over a wide range but discrete. Meanwhile, the

latter is associated with the tuning of channel-length (L), and the

tunable range is narrow but continuous. To check the feasibility

of our ideas, we embed these programmable mechanisms into a

common-source-amp part of an op amp, and evaluate the

programmability of the circuit performance. In the post-layout

simulation with considering the parasite, it was shown that our

programmable mechanism combining the sub-transistor

switching and the body biasing could adjust the gain

continuously as well as over the widest range. To the best of our

knowledge, this is the first work of transistor-level

programmable technology with body biasing.

Transistor Sizing and Body Biasing:

We propose a mechanism for tuning analog circuit

performance continuously by adjusting the bulk potential of

MOS transistors. This makes use of body effect of MOS

transistor. Plus, we are aiming to associate the adjustment of the

bulk potential with the channel-length (L) sizing of the MOS

transistor, because L sizing is used for optimizing an analog

circuit in a usual design [9].

Body Effect:

A MOS transistor is regarded as a device with four

terminals; gate, source, drain and bulk. In general, the transistor

is used so that the potential between the bulk and the source is

the same (i.e. Vsb=0V). Plus, the threshold voltage Vth of the

transistor is dependent on Vsb. This dependency is called body

effect, and formulated as Eq. (1) [9].

Where ФF is the surface potential of the channel, and γ is the

body effect coefficient. The drain-to-source current Ids are

dependent on Vth as described in Eq. (2).

In nmos transistor, as the potential of the bulk is becoming

lower than that of the source, Vth is growing up and Ids is

decreasing. Furthermore, changing of Ids influences the trans-

conductance gm of the transistor as shown in Eq. (3).

As is well known, gm is an important parameter for

describing the circuit of analog circuit. This means that the bulk

potential is an available parameter for tuning the analog circuit

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12009

performance. Methodologies that deal with the transistor-level

implementation of a gate are mainly directed towards

minimizing the total number of transistors with indirect gains in

other performance criteria. That is, the power minimization is

implicit in these methodologies. Two main approaches exist:

factorization methods and graph-oriented methods. All these

methodologies try to minimize the total number of transistors

but they do not take into account about certain inputs that are

more critical (i.e., Have a higher switching activity) than others.

Some rules for transistor-level design styles with respect to low

voltage, low power, and power-delay products have been given

in [27]. Some other existing transistor-level approaches deal

with specific design styles such as pass transistor logic. For

achieving low power consumption, a solution should minimize

the number of transistors driven by “critical” inputs (the ones

with high activity) at the expense perhaps of the number of

transistors driven by non-critical inputs. In the proposed

methodology we explicitly address this issue by considering the

switching activity of each particular input, and obtain a

transistor-level implementation that has low power consumption

and, secondarily, minimizes the number of transistors required

for the implementation [4].

The synthesis technique:

In order to demonstrate the effect of proper transistor level

synthesis for CMOS gates the function F =AB + AC + AD + CE

is examined. Two implementations for the n-MOS part of

function F are shown in Fig5. Assuming that all transistors are

the same size then an approximation of the power can be given

by the equation (ζAαA+ ζBαB+ ζCαC+ ζDαD+ ζEαE) * f * C * V
2
,

where ζX is the number of transistors driven by input X and αX is

the switching activity of input X. With P =f * C* V
2
, the power

for the implementation of Fig. 5a will be P1 = (2αA+ αB+ αC+

αD+ αE) * P, and for Fig.5b, P2 = (αA+ αB+ 2αC+ αD+ αE) * P.

Different profiles of the input switching activities can determine

which implementation has the lowest power consumption. For

example, with a profile of switching activities αC= 0.5 and

αA=αB=αD=αE= 0.1, P1 = 1*Pand P2 = 1.4 *P and thus the

design of Fig. 5b has 40%more power consumption than that of

Fig. 5a. However, for a profile of αA= 0.5 and αB = αC = αD =

αE = 0.1,P1 = 1.4 *P and P2 = 1 *P and thus now the design of

Fig.5a has 40% more power consumption. It is explicitly clear

that the selection of an appropriate transistor-level design for a

gate with a known switching activity profile at the inputs can

result in reduction of the overall power consumption. In this

paper a transistor-level synthesis algorithm that takes into

account these profiles in order to give a low power design is

given. We assume that the vector of the switching activity values

for the inputs of the super gate has been given. Namely, if the

super gate has n inputs, the switching activities will be denoted

by α1, α2... αn. For our comparative purposes, the quantity that

represents the power consumption of a given candidate

implementation for the gate is taken to be S= ∑
 n

 i=1ζiαi, where ζi

is the total number of transistors (assumed all to be of the same

minimum size) in the candidate implementation driven by input i

or its complement. (The power consumption is proportional to

S.). The fundamental part of the proposed methodology is, given

a partial transistor diagram D (i.e., a diagram implementing a

subset of the given product terms) and a product term τ

(represented as a set of literals (transistors)) to be placed next, to

find the most power-efficient placement of τ in D without

creating any escape paths. The placement is done by considering

three alternatives (“parallel,”“splice,” and “bridge”) as was done

in [4]. This part is described below as procedure PLACE (D, τ).

(The terminals of the network are referred to as “VDD” and

“GND” for ease of reference (in reality only one of them will be

VDD or GND)).

Fig 4: The effect of switching activities on transistor-level

implementations
Logic function F= AB + AC + AD + CE. With switching

activity vector [αA= 0.1, αB= 0.1, αC=0.5, αD= 0.1, αE= 0.1], the

network in (a) is better than (b). With switching activity vector

[αA= 0.5, αB= 0.1, αC=0.1, αD= 0.1, αE= 0.1, the network in (b) is

better than (a).

Transistor Folding:

Transistor sizing is essential to produce high performance

circuits. Many tools are able to perform individual transistor

sizing to optimize timing and power consumption [5]. Layouts

produced in the 1D layout style with different sized transistors

tend to waste area since the height of each diffusion row is

adjusted accordingly to its tallest transistor.

Fig 5. Transistor folding in a large transistor

To solve this problem, one of the most used methods is the

transistor folding as illustrated in the Figure 6. It consists of

breaking bigger transistors into smaller ones connected in

parallel to keep short the cell height, at the expense of a little

increase in the cell width. According to [5], the folding problem

can be classified as static/dynamic placement with

static/dynamic folding. Our approach addresses the dynamic

placement with the static folding problem. Given the diffusion

row limits, we fold the transistors by directly modifying the cell

netlist. Creating new transistors in parallel, before the execution

of the placement step. This approach s gives more freedom to

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12010

the placement algorithm so that it can achieve better results than

the folding executed after the placement as in.

Logic-level power estimation:

Introduction:

Since power consumption has become one of the most

important concerns in digital VLSI design, with special

emphasis on portable applications, designers must follow a

variety of power optimization techniques in order to reduce the

total cost and improve the performance of such systems. The

power management of a particular design adds to a list of

problems that VLSI designers and design managers have to

contend with. Computer Aided Design (CAD) tools are essential

for power management tasks. Specifically CAD tools should be

enhanced to estimate power dissipation during the design phase

in order to meet the power specifications without a costly

redesign process [2][6].

Power estimation techniques:

Power consumption of a gate for each transition is

calculated by Ec= 1/2CoutV
2

DD.In this equation, Cout can be

calculated using “parasitic gate and wire capacitance models”

and then obtaining each gate‟s switching activity will enable us

to estimate the dynamic power . Although switching level

techniques are as accurate as circuit level estimation techniques

they are faster in the order of magnitude. An approach to obtain

power dissipation is to calculate dynamic power by switching

level techniques and static power dissipation using

aforementioned methods [10][29].The power estimation

techniques at the gate level and lower levels of abstraction can

be broadly classified into:

1. Simulation based techniques

2. Probabilistic techniques and

3. Statistical techniques

Simulation-Based Techniques:

In the earliest proposed simulation based techniques, the

average power is calculated by monitoring both the supply

voltage and current waveforms. These are too slow to handle

very large circuits. Other simulation based techniques assume

that the power supply and ground voltages are constant,

estimating only the supply current waveform. Although these are

efficient in handling very large circuits, the estimation is

strongly dependent on the set of input vectors. Using a logic

simulator the design is fed with test vectors to obtain the

switching activity at each gate. There are two factors of

consideration in this approach: The number of test vectors and

the delay model.

1) Number of Test Vectors: It is important to take into

consideration, the minimum number of test vectors needed for

power estimation. R. Burch and F. N. Najm discussed some

suggestions to calculate it. However, a small number of test

vectors have been usually enough to estimate the power with a

fair level of accuracy [10].

2) Delay Model: If we do not take the gate‟s delay into account,

a change in the test vector will result in at most one transition

per each gate, and all gate‟s transitions happen at the same time.

This approach is fast and simple but ignores spurious activities

of the signals in reality that causes underestimation of the

dynamic power estimation. Then on-zero delay models propose

that each gate has a delay and propagation of a signal through

the circuit takes time. Applying this model will result in power

estimation with a higher level of precision.

Fig. 6: A combinational circuits with two inputs

In Fig. 6 ‟x‟ is ‟0‟ and ‟y‟ is ‟1‟ so at the beginning ‟w‟ is

‟0‟ and ‟z‟ is ‟0‟. Then ‟y‟ goes from ‟1‟ to ‟0‟. The input to ‟w‟

and ‟z‟ change so ‟z‟ and ‟w‟ go high. Changing the ‟w‟ has

affected on ‟z‟ and it switches back to 0[9].

Probabilistic Techniques:

In probabilistic techniques, user-supplied input signal

probabilities are propagated into the circuit. To achieve this,

special models for the components have to be developed and

stored in the module library. Cirit first proposed power

estimation based on the probabilities. Based on this,

probabilistic simulation was proposed which accepts the

specification of probability waveforms. It was further enhanced

for more accuracy by Stamoulis et al., and Tsui et al. Other

probabilistic approaches based on transition density and on

Binary Decision Diagrams (BDDs) are proposed. All the above

approaches are applicable only for combinational circuits. For

sequential circuits various approaches have been proposed

which assume that the future of the FSM is dependent only on

its present state and independent of its past state. These

techniques are based on propagating the statistics of input

vectors through the circuit to calculate the internal switching

probability [34].

Fig. 7: A 2-input AND gate

Fig. 7 shows an AND gate with an input probability of P
1
x

and P
1
y (P

1
x is the probability of high state for x) then for the

output probability we have:

P
1
x P

1
y= P

1
z

The three major issues to be considered are Delay model, spatial

correlation, and temporal correlation.

1) Delay Model: Using the non-zero model in Fig. 4 , if the delay

of gates is ∆1 and ∆2 from left to right, signal z may have a

transition at ∆2 and another at ‟ ∆1 + ∆2‟, the probability of

transition of z is obtained by adding these two probabilities .

2) Spatial Correlation: Before calculating a gates probability we

have to consider whether it has independent inputs or not, that is

not having common inputs. In Fig. 7, Px = Py=0.5 so to calculate

Pw we have

Pw = (1− Px).(1 – Py)

 = 1− Px – Py+ PxPy

 = 1− 0.5 − 0.5 + 0.25 = 0.25

This type of calculation does not hold for ‟z‟ because its inputs

are not independent. Therefore the following is a wrong

calculation.

Pw = (1− Pw).(1 –Py)

 = 1− Pw–Py + PwPy

 = 1− 0.50.25 + 0.125 = 0.375

To calculate z‟s probability:

 Pz = (1− Pw).(1 – Py) = 1 − Pw – Py + PwPy

 = 1− [1 –Px–Py +PxPy] –Py + Py[1 − Px–Py +PxPy]

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12011

 = 1− 1 + Px +Py −PxPy– Py +Py– PyPx– PyPy+PxPyPy

 = Px− PxPy +Py–PyPx −Py +PxPy = Px– PyPx

 = 0.5 − 0.25 = 0.25

In this equation PyPy is the probability of Py when Py holds, so

the second Py is equal to ‟1‟ and PyPy= Py.

Temporal Correlation: As the following truth table depicts that

the probability of all three bits is the same and is equal to 0.5.

However it can be seen that ‟x‟ has a transition activity of

αx=Px
01

+ Px
10

 =0.125 while the activity for ‟z‟ is αz= Pz
01

+

Pz=0.5+0.5=1. Transition activity is a major power dissipation

factor and should be considered [10].

 Figure 8 probabilistic techniques are about the input stream

to estimate the internal switching activity of the circuit. These

techniques are very efficient, but they cannot accurately capture

factors like glitch generation, propagation etc. While in

statistical techniques the circuit is simulated under randomly

generated input patterns and monitoring the power dissipation

using a Simulator. For accurate power estimation, we need to

produce a record number of simulated vectors, which is usually

high and cause run time problem. To handle this problem, a

Monte Carlo simulation technique was superscalar RISC

processor based on 64-bit MIPS instruction set. The highest

frequency of the chip is 1.0GHz and the power dissipation

ranges from 4.0 to 7.0 watts depending on the applications. We

use

Fig 8: An alternative flow for power estimation

Presented in. This technique uses input vectors that are

randomly generated and the power sample is computed [30].

Statistical techniques:

As opposed to simulation based techniques, statistical

techniques do not require any specialized models for the

components. The idea is to simulate the circuit with randomly

generated input vectors until power converges to the average

power. The convergence is tested by statistical mean estimation

techniques.

Gate-level netlist based power analysis:

Figure 10 describes the typical gate-level simulation and

power estimation flow. First, the gate level simulation gets

design netlist, the Verilog simulation library and test bench, the

simulation tool records all switching activities of inputs and

outputs as well as all internal states of given circuits. The

statistical results of switching activities can be recorded in the

form of dynamic preservation, such as VCD (Value Change

Dump) file, and also recorded in the form of the average

statistics preservation, such as SAIF (Switching Activity

Interchange Format) file. The gate level power calculation tool

receives these switching activity files, power

models for each cell type, wire parasitic file (SPEF), clock

constraints, etc. To calculate the actual power consumptions of

giving netlist circuit and benchmark. We have applied the flow

mentioned above to the gate-level power analysis of a high-

performance 64-bit general-purpose processor - Godson 2E [4].

The Godson series microprocessors are the first attempt to

design general-purpose microprocessor in China [5]. The latest

Godson-2E processor is a four-issue Cadence Nc-verilog to

simulate the processor‟s netlist and Synospsy Prime Power to

calculate the power. Figure 10 shows the average power

consumption for each circuit type of Godson-2E processor [15].

Fig 9. Average Power for Each Circuit Type of Godson-2E

processor

Proposed speedup method for gate level power Simulation:

From the flow described above, the gate-level netlist based

power analysis method focuses on accurate records of switching

activities in all cells of a given circuit. However large records

are needed for large circuits which has a large amount of cells

when program is running dynamically. It slows down the

simulation speed. This paper presents a methodology to

accelerate the gate-level simulation and power estimation

[15].Different from all previous gate-level power simulation

methods, we utilize static probability propagation scheme and

apply it in conventional

Figure 10. Gate-level Simulation and Power Analysis Flow

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12012

Figure 11 Gate power estimation flow

The comparison of the two flows exposes the sources of

inaccuracy of RTL against gate-level estimation. First, the use of

the internal database as a working description; the RTL

description is structural, but has little to do with the synthesized

gate-level netlist (but the functionality, of course).Secondly, the

granularity of simulation; RTL simulation will annotate only a

subset of the nets annotated in the gate-level flow. These two

differences are also the sources of the speedup of RTL against

gate-level estimation.
Architecture level/rt level power estimation

Introduction:

The architectural level is the design entry point for the large

majority of digital designs. The design decisions at this level can

have a dramatic impact on the power budget design. Once the

architecture is defined and specified, using a functional or

register- transfer level (RTL) description, a more refined power

profile can be constructed which paves the way for more

detailed optimizations. The functional blocks may be adders,

multipliers, controllers, register files and memories [6]. Since

the detailed information of each block is not available, generally

speaking, RTL power estimation is less accurate than gate- or

circuit-level power estimation. However, the increased

complexity (i.e. millions of transistors) has become RTL power

estimation and optimization a very critical step in the design

procedure, since the existing CAD tools are mature for handling

automatically the lower design levels [8][31].A register-transfer-

level (RTL) data path is characterized by the use of predesigned

components such as arithmetic components, register, ALUs, etc.

(control units, buses, memories, and clock trees are excluded

from this category). Expanding the RTL data path to a lower-

description level, for instance gate level, where an accurate

measurement can be performed, the power dissipation can be

estimated with high accuracy.

Fig 12: Power Estimation Levels

There are basically two advantages of doing this analysis:

 If the design is not going to meet the project‟s objectives for

power and/or performance, the designers will know it at the

initial stage. Moreover, different architectural option can be

tested in power before the logic design stage.

 The biggest effects on power and/or performance can be

achieved at the RTL and without architecture level analysis, the

effects of proposed changes will neither be found out early nor

determined

Activity Estimation for Correlated Inputs:

Activity estimator, we will refer to [41] for the definitions

of spatial and temporal correlations.

Temporal correlation:

A signal x is said to be temporally correlated if an event

(occurrence of certain logic state) at a given time is correlated to

an event at some past time. In this work, we will concentrate

only on correlations across one clock edge. For temporally

correlated primary inputs, the temporal correlation parameter for

the it input, TCi, is defined as

Where t−1 and t are consecutive clock cycles and where P{・}

denotes probability. Temporal correlation coefficient (γi) for

youth input is defined as

Where P(xi) is the probability at an input node xi, and the only

quantity which is unknown in is P{x
t
i ^ xi

t−1
=1}. Therefore it is

possible to estimate γi if TCi can be determined. In [41], the

authors show that TCi can actually be determined from the

knowledge of P (xi) and D (xi), and hence temporal correlation

of the primary inputs is taken care by P (xi) and D (xi) without a

need to introduce an additional parameter to represent it. The

relationship between TCi, P (xi) and D (xi) is given by

Spatial correlation:

A signal x is said to be spatially correlated to another signal

y if their events are correlated. In this work, we will concentrate

only on pairwise correlations. Once again, referring to [41], we

can define SCij , the spatial correlation between the ith and jth

inputs as [43]

i.e., The probability of the inputs being high simultaneously.

This definition of SCij as a measure of spatial correlation follows

from the definition of the correlation coefficient as Introduced in

[42]

From the definition given in, it is clear that SCij is sufficient to

capture ρij .

Instead of considering all the pairwise correlation coefficients, it

is possible to define SCin (average spatial correlation

coefficient, i.e., average of all SCij terms). This parameter can be

calculated as

where n is the number of primary inputs. In [41], the authors go

on to find upper and lower bounds for scene as

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12013

Where Pin is the average signal probability for primary inputs.

In our work, we will use a parameterized measure of spatial

correlation instead of directly using SCin

RT-level Power Management:

Digital circuits usually contain portions that are not

performing useful computations at each clock cycle. Power

reductions can then be achieved by shutting down the circuitry

when it is idle.

Precomputation Logic:

Precomputation logic presented in [14], which explains the

idea of duplicating part of the logic and computing the next

circuit output values one clock cycle before they are required,

and then uses these values to reduce the total amount of

switching during the next clock cycle. In fact, knowing the

output values one clock cycle in advance allows the original

logic to be turned off during the next time frame, thus

eliminating any charging and discharging of the internal

capacitances. Obviously, the size of the logic that pre-calculates

the output values must be kept under control since its

contribution to the total power balance may offset the savings

achieved by blocking the switching inside the original circuit.

Several variants to the basic architecture can then be devised to

address this issue. In particular, sometimes it may be convenient

to resort to partial, rather than global, shutdown, i.e., To select

for power management only a (possibly small) subset of the

circuit inputs.

Figure 13: A pipeline stage of a data path

Figure 13 shows a combinational block A that implements

n-input, single-output Boolean function precomputation logic for

the complete input-disabling architecture.

Figure 14: A precomputation logic realization of the pipeline

stage (subset-input disabling architecture)

f, with registers R1 and R2 connected to its inputs and output

pins, respectively. A precomputation architecture realization of

this same logic block placed between register sets R1 and R2 is

depicted in Figure 14. The key elements of the precomputation

architecture are two n-input, single-output predictor functions g1

and g2, which satisfy the following constraints:

If, at the present clock cycle, g1 or g2 evaluate to one, then

the load enables signal, LE, goes to zero, and the inputs to block

A at the next clock cycle are forced to retain the current values.

Hence, no gate output transitions inside block A occur, while the

correct output value for the next time frame is provided by the

two registers located on the outputs of g1 and g2. Note that the

precomputation logic is a function of a subset of the input

variables; hence, it is called a “subset input-disabling

architecture [14].” The synthesis algorithm suffers from the

limitation that if a logic function is dependent on the values of

several inputs for a large fraction of the applied input

combinations, then no reduction in switching activity can be

obtained. In, the authors focus on a particular sequential

precomputation architecture in which the logic is a function of

all of the input variables. The authors call this architecture the

“complete input-disabling architecture.” This complete input

disabling architecture can reduce power dissipation for a larger

class of sequential circuit‟s compared to the subset input-

disabling architecture. The authors present an algorithm to

synthesize

Clock Gating:

An approach to RT and gate-level dynamic power

management, known as gated clocks [14] selectively stop the

clock, and thus, force the original circuit to make no transition,

whenever the computation that is to be carried out at the next

clock cycle is redundant. In other words, the clock signal is

disabled according to the idle conditions of the logic network.

For reactive circuits, the number of clock cycles in which the

design is idle in some wait states is usually large. Therefore,

avoiding the power waste corresponding to such states may be

significant. The logic for the clock management is automatically

synthesized from the Boolean function that represents the idle

conditions of the circuit (Figure 15.) It may well be the case that

considering all such conditions results in additional circuitry that

is too large and too power consuming. It may then be necessary

to synthesize a simplified function, which dissipates the

minimum possible power and stops the clock with maximum

efficiency.

Figure 15: Clock gating logic for ALU in a typical processor

micro architecture

With negative-edge triggered flip-flops

The use of gated clocks has the drawback that the logic

implementing the clock-gating mechanism is functionally

redundant, and this may create major difficulties in testing and

verification. The design of highly testable-gated clock circuits

are discussed in [15].

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12014

Proposed method:

The most frequently used RTL data-path components are

arithmetic components (adders, subs tractors, multipliers),

multiplexers, comparators, registers, multiply accumulate units,

and ALUs. Their architecture includes a uniformly repeated

primitive cell, e.g. 1-bit full adder, flip-flop, and are

characterized by regularity, symmetry, and frequently by

separability. Exploiting these properties, which have not

properly been considered in previously reported models, an

accurate and low-complexity power model for each component

with N inputs and K primitive cells can be developed. It is

assumed that the input vectors are applied on an RTL

component in parallel and the component is stabilized before the

loading of the next input vector [11]. The RTL power estimation

is performed using a set of small LUTs instead of constructing

one large LUT for the whole component. For each component

two types of LUTs are used, the primary, and the secondary UT.

Based on the principles of superposition and „divide and

conquer‟, and considering the architecture and functionality of

each component, the component is partitioned into

subcomponents to reduce the size of the primary LUT. In

particular, the primary LUT corresponds to the power

dissipation of a block of L (1≤ L ≤ K) primitive cells. It contains

the power dissipation values for any input vector pair as well as

any additional useful information such as the transition number

of the interconnecting signals among the component blocks, the

steady values of the component output, etc. However, in many

cases there is the data transmission into the interior of the

component has been partitioned, an extra computation must be

performed to consider this data transmission in terms of power

dissipation estimation [32] [33].

The power values of the LUTs may be derived either by a real

gate-delay simulator or by a circuit- or transistor-level simulator.

Using values derived by a circuit-level simulator, issues such as

slopes, wire capacitance and timing information could be

considered making the model more accurate. However the

complexity of the model in terms of time and memory will be

increased. Additional information has also to be stored to

consider circuit-level characteristics, while an extra

computational cot will be paid to manipulate this information,

considering the component‟s behavior at the circuit-level.Since

the power values of the LUTs are calculated by a real delay

gate-level estimator and the glitches from one blocks to the next

are captured by performing functional simulation, the accuracy

of the proposed model is identical to the accuracy of a power

estimation based on a gate-level simulator. Moreover the model

is not sensitive to the training set, since the primary LUT

contains the power dissipation values that correspond to all

possible input combinations. Finally, there is a trade-off between

the computational time and the size of the LUTs, depending on

the length L of the block used. It must be stressed that an

RTL design is characterized by the instantiation of fixed pre

design components, where the power consumption can be

evaluated by summing the power dissipation of each component.

The power value will be different after logic synthesis, as it will

be after placement and routing too. However at a high level such

as RTL, we need a power estimation to select different designs

in terms of power. It is expected that the relative power

difference, which has been detected at the RTL, will remain

after logic synthesis when the same synthesis flow and tools are

used. Additionally, by using fixed RTL modules, the

requirements of a design project not strongly dependent on time

can be met, as possible only buffers will be added at the

synthesis step and a few logic optimizations made [11].

Power estimation from LUT:

The table reference method in the table look-up step is also

important for accurate power estimation. This section explains

important metric distance to find out the proximal entry from a

LUT. This section describes one of the effective distance

calculation proposed in our previous work [12]. Let np, p
i
in, and

p
i
LUT be the number of parameter types, i-th parameter extracted

from input data, and i-th parameter in one entry in the LUT,

respectively. The distance dist is calculated as follows:

Where dpi is a ratio for i-th parameter, and defined as follows:

The distance is defined with a ratio in each parameter and

RMS to define the dist. In the table look-up step, the entry in the

LUT which has the shortest distance with the extracted

parameters is selected, and the corresponding power value is

output as the estimated power [12].

RTL power estimation flow:

Depicts the typical estimated flow at the RTL and gate

level. The starting point of the two flows is a design written in

some HDL. After analysis and elaboration by the HDL compiler,

the design translates into a technology-independent internal

format that contains the four types of components mentioned in

above: RTL modules (macros), gates, memory elements and

MUXes [13]. The two flows start differentiating starting from

this internal description. In true RTL estimation (Fig. 16), a

forward annotation file is produced that contains the list of nets

to be monitored during (RTL) simulation. RTL simulation takes

this file, the HDL description and a test bench, to produce a

backward annotation file, consisting of all the nets specified in

the forward annotation file, this time annotated with switching

activity and static probability values. An RTL power estimator

takes the internal database produced in the first step and this

activity information, and calculates a power estimate. This

estimate is basically obtained by exercising specific power

models for the objects of the internal database with the activity

values derived from simulation [35] [40].

Fig 16: RTL power estimation flows

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12015

Behavioral level power estimation

Introduction:

Algorithmic level also known as behavioral level, describes

the behavioral of the domain in terms of algorithms, flowcharts,

processes and structures. The hardware modules that are used to

represent the Behavioral domain, such as the control path and

data path, are specified in the Structural domain. Clustering or

partitioning of similar operations that might be described in the

structural domain is described in the Physical domain. At the

behavior level, not much information is available about the gate-

level structure. Hence, abstract notions of physical capacitance

and switching activity are used to predict power dissipation.

These techniques can be classified into three broad categories:

information theory based, complexity based, and synthesis based

approaches [23].

Information theory based approaches:

Information theory based approach depends on information

theoretic measures of activity (i.e., entropy) to estimate power

dissipation. Entropy characterizes the randomness of a sequence

of vector and hence is related to the switching activity. It shows

in that, under the temporal independence assumption, switching

activity of a bit is upper bounded by 1/2 of its entropy. The

power dissipation in the circuit can be expressed as Power =

1/2V
2
fCtotEavg, where Ctot is the total capacitance of the logic

module and Eavg is the average of line activities, which is in turn

approximated by 1/2 of the average entropy havg. The average

line entropy havg is calculated by a closed-form expression

parameterized by average bit-level entropies of circuit

inputs/outputs (and number of inputs, outputs). Average input

entropy can be derived from input sequences. Average output

entropy is derived either by using an effective information

scaling factor and number of logic level in the circuit if gate-

level structure is given; or by a compositional technique based

on pre characterization of library modules in terms of their

entropy transmission coefficient if only functional/data-flow

information is given. In, word-level entropy is used instead of

bit-level entropy. A similar closed-form expression for havg is

proposed using sectional (word-level) input/output entropy. The

sectional entropies of circuit inputs and outputs may be obtained

by monitoring input output signal values during a high-level

simulation of the circuit. In practice, they are approximated as

the summation of individual bit-level entropies. The total

module capacitance can be calculated by summing up the entire

gate loading and wire capacitance if gate-level structure is given.

Otherwise, Ctot is estimated by a quick mapping (e.g., mapping

onto universal gates) or by information theoretic models that

relate the total capacitance to input and output entropies [23].

Complexity-based approaches:

Complexity-based models relate the circuit power to the

circuit complexity. Most of the proposed complexity-based

models rely on the assumption that circuit complexity can be

represented by the number of “equivalent gates”. Muller-Glaser

et al. Proposed a chip estimation system that computes the

average power of a logic module as Power =fN (Energygate+0:

5V 2Cload) Egate. Here, f is the clock frequency, N is the

equivalent gate count for this module, Energygate is the average

internal energy dissipation for an equivalent gate, Cload is

estimated capacitance based on the average fan-out in the circuit

and the wire load model, and Egate is an average output activity

per clock cycle for an equivalent gate. Egate is dependent on the

functionality of the module. These data are pre-calculated and

stored in a library and are independent of the implementation

style and the circuit environment. In Nemani et al. presented a

high-level estimation model for predicting the area of an

optimized single-output Boolean function. The model is based

on the assumption that the area complexity of a Boolean

function is related to the distributions of the sizes of the onset

and offset of the function. Area measure is used for total

capacitance estimation and hence the high-level power

estimation. This work has been extended to area estimation of

multiple output functions [24]. Complexity-based power

prediction for controller circuitry was proposed by Landman and

Rabaey. Based on the knowledge of its target implementation

style (i.e., precharged pseudo-NMOS or dynamic PLA), the

number of inputs, outputs, input/output activities, etc., This

technique can give a quick power estimation. The accuracy of

the estimates depends on the empirical parameters (regression

coefficients), which are derived from curve-fitting and least-

square fit error analysis of low-level simulation of previous

design.

Synthesis-based approaches:

Synthesis-based models assume an RT-level template and

produce estimates based on that assumption. It requires the

development of a quick synthesis capability that makes the

relevant behavioral choices. Important behaviour choices

include type of I/O, memory organization, pipeline issues,

synchronization scheme, bus architecture, and controller design.

After the RT-level structure is obtained, power consumption can

be estimated by either simulation or static analysis of the circuit

structure/functionality [24].In order to address the two questions,

a comparison is made between the behaviour of gibbons in

disturbed and undisturbed situations and the subsequent

implications for monitoring are assessed. The behavioural

changes can both affect the parameters needed for density

estimation and violate the (critical) assumptions of the methods

employed.

Material and methods:

Gibbons are territorial and live in monogamous family

groups consisting of an adult pair within one to four offspring.

Gibbons are completely arboreal, and are largely frugivorous.

Paired groups give loud morning calls, which can be heard over

several kilometres, whereas single individuals rarely call. The

present study concerns data collected on Bornean gibbon H.

muelleri in East Kalimantan (KayanMentarang National Park

and adjacent areas in 1996 [115°51E, 2°50‟N]) and Javan

gibbon H. moloch on Java (Gede-Pangrango National Park and

adjacent areas in 1994-1999 [107°00‟E, 6°45‟S], and

Diengmountains proposed National Park and adjacent areas in

1995-1999 [109°35‟E, 7°06‟S]).Undisturbed and disturbed study

sites were selected either in close proximity and were similar in

climate, original vegetation type, altitude and topography (Gede-

Pangrango and Kayan Mentarang), or a forest area was sampled

before and during logging during the same months of the year.

Given the close proximity and similarity of the forest areas, it is

anticipated that the behaviour of the gibbons prior to the

commencement of disturbance did not differ significantly. Sets

of disturbed and undisturbed areas had mean densities differing

less than 10%, which was established by a number of techniques

(line-transects, range mapping, fixed point counts). For the

present study, disturbance is taken in a rather broad term and

may include hunting, encroachment, small scale logging,

commercially (selective) logging, or a combination. Behavioural

measurements were collected along line transects, on vantage

points during fixed point counts, and ad libitum while surveying

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12016

in the forest. Singing behaviour of at least eleven

H.molochgroups was monitored in Dieng for 35 days in Sept-

Oct 1998 (pre-logging) and for 25days in Sept-Oct 1999 (during

logging). Some additional data on singing behaviour of Siamang

H.syndactylus was collected in Way Kambas National Park,

Sumatra [105°36‟E, 4°50‟S].For all analyses non-parametric

statistics were used and Yates‟s correction for continuity was

applied in the Chi-sq. tests where appropriate.

Behavioral-Level Power Estimation:

Typical approaches at the algorithmic- or behavioral-level

assume to adopt some architectural styles or templates in order

to obtain power estimates based on the exploration of a limited

set of design solutions. Essentially, the behavioral approaches

differ on the strategy adopted for the activity prediction: the

behavioral methods can be classified as static and dynamic

activity prediction techniques. The goal of the former techniques

is the estimation of the access frequency of different HW

resources, by statically analyzing the behavioral description of

the functions to be implemented. The latter techniques are based

on a dynamic profiling to determine the activation frequencies of

various resources and the memory accesses. Developed a power

estimation strategy based on a static profiling of the Control

Data Flow Graph (CDFG) representing the design behavior. The

analysis has been carried out in the context of the HYPER-LP

high-level synthesis system targeting DSP-oriented applications.

The power dissipated by some HW resources, such as data-path

modules, has been analytically estimated from the CDFG.

Conversely, for other modules, such as interconnects and

controllers, for which the power information available at the

behavioral-level is not sufficient, statistical models were built to

estimate power based on a stochastic study on several ASICs.

Basically, the power associated with a generic hardware

resource has been estimated as [25]:

P = 1 / 2 Na CaV2dd fs

Where Na is the number of resource accesses over the

computational period, Ca the average capacitance switched per

access and fs the sampling frequency. The capacitance estimates

have been obtained by the empirical characterization of fixed-

activity models of the different HW resources. The numbers of

resource accesses have been analytically calculated from the

algorithm for the execution units, the registers and the

memories, while they have been determined statistically from

benchmarks for the interconnections and the control logic. Then,

the estimation models have been included into an exploration

tool that, given the CDFG description of an algorithm and a

library of hardware modules, explores the space of the available

solutions for different values of clock periods and supply

voltages. The results have been compared with an architectural-

level power estimator, called Stochastical Power Analysis (SPA)

, on 23 different chips, showing an average error of

approximately 20%. Dynamic activity prediction of the

behavioral-level is based on a dynamic profiling to determine

the activation frequencies of various resources. During the

simulation of a user supplied set of input patterns, the activities

related to the frequency of various types of operations and

memories accesses are gathered. These access frequencies are

then plugged into a model similar to those used in the static

approach. Examples of the dynamic approaches are the Profile-

Driven Synthesis System (PDSS), that receives as input a

behavioral subset of VHDL, and the Power-Profiler approach

described in. The main advantage of dynamic versus static

approaches are a higher accuracy, since data dependencies are

taken into account, whereas the main disadvantages are related

to the slower efficiency in terms of speed and the need of a set

of user-supplied typical input patterns.

Proposed technique:

The proposed behavioral-level power management technique for

digital receivers is described. For clarity reasons, some

definitions are given first:

 Consider a behavioral level description partitioned to a

number of behavioral clusters. We denote the behavioral

clusters‟ set as C= {ci|i=0,1,., m-1, m €N}, where N is the set of

the physical numbers and m=||C|| is the total number of the

behavioral clusters, where ||•|| denotes the cardinality of a set.

 The event is defined as an executing behavioral cluster.

 System period, TSYSTEM, is the minimum fraction of time

during which a sequence of events is not repeated.

 Event window, EWi, j, is the fraction of system period that

lies between the events ei and ej.

The proposed event-driven power-management technique is

based on the fact that the unobservability of a circuit node at the

behavioral level is introduced after the occurrence of an event. A

system behavior is a result of a collection of interrelated

functions. For instance, MPEG2 application requires, among

others, the execution of vector quantization and Huffman coding

functions. Their basic functions can be considered as behavioral

clusters. Similarly, for the considered receiver‟s application, a

behavioral cluster, for instance, can be a function that performs

receiver‟s synchronization or a receiving symbol correction [46].

In almost all behavioral descriptions of a DECT receiver, there

are behavioral clusters that their goal is to check whether an

event occurs or not without modifying the output variables

between the occurrences of two events. Such clusters are

characterized by the unobservability for one or several event

windows and their shutdown can lead to significant power

savings. For example, a behavioral cluster responsible for

synchronization does not change its outputs for a while, after the

synchronization is achieved.

Fig 17: algorithmic description of the proposed power

management technique

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12017

The granularity of a behavioral cluster complexity is user

specified. Depending on the features of an application, the

designer can specify behavioral clusters with finer or coarser

granularity of complexity. It is not always clear in an abstract

behavioral description (e.g. CDFG) whether a cluster performs

useful computations are not. Thus, a behavioral analysis is

required to identify the clusters that can be shutdown and also

the events that enable and disable these clusters. The

fundamental steps of the proposed behavioral level event-driven

management technique is described in Fig 17.

Behavioral analysis:

Behavioral analysis indicates the candidate clusters at the

behavioral level for power management. This also involves the

identification of the events that can trigger the shutdown of the

behavioral clusters.

Definition 1. We define as events‟ set the ordered set E0=

{ei|i=0,1,., n-1, n€N}, where ei is an event that either introduces

or ceases unobservability for a certain behavioral cluster, and

n=||Eo || is the number of such events (||• ||denotes the

cardinality of the set •). The set E0 is ordered according to the

time occurrence of the events ei. Using mathematical notations,

the behavioral analysis aims at defining the following set:

S0 ={(j,k,l)|(Cj€C) ^ (ek,el € E0)

 ^ (ek introduces unobservability for cj)

 ^ el caeses unobservability for cj)

The simplest way to perform behavioral analysis is

simulation. Concerning that the design of a wireless system

starts with a behavioral level description, using robust and

mature automated tools, for instance Mat lab, the required

behavioral analysis can be performed in an easy and accurate

manner. Furthermore, in many cases the simulation is not always

needed, since the behavioral analysis can also be performed

manually by any designer familiar with the behavioral

description of the design. In any case, the behavioral analysis

can be visualized by the use of an event graph.

Behavioral Level of Macro Modeling:

The estimation of power at the behavioral level of design is

much more complex as compared to the estimation of power at

the RT level. First, the behavioral description is not HW

oriented and looks much the same as any software program. Its

mapping to the HW architecture may be ambiguous, different

implementation strategies can be used. Second, here we cannot

rely on the specific technological library components. At the

behavioral level, computation of power must be approximated in

order to account for the limited knowledge of the circuit.

Therefore, a number of the high-level analysis techniques such

as statistical analysis [36, stochastic methods, and macro

modeling [37] are used. These techniques are usually based on

the development of abstract power models, which are used for

design space exploration to evaluate the relative impact of

design decisions on the quality and characteristics of the final

design. The estimated power consumption values provided by

such models are neither absolute nor physically accurate,

because at the highest level of abstraction the limited knowledge

of the physical structure of the design does not allow to compute

meaningful power estimates [38]. Such models can be built

analytically by deriving a formula for each behavioral operation,

which depends on a number of physical parameters such as

switching or capacitance. Another way is to develop an

empirical model or macro model, which is based on the

approximation of the actual measured power dissipation values.

The basic idea behind power macro modeling is to generate a

mapping between the power dissipation of a circuit and certain

statistics of its input signals. Such macro models can be used

during modeling instead of detailed hardware models resulting

in modeling speedup

SYSTEM-LEVEL ESTIMATION:

Introduction: This chapter presents a survey of the most

important methodologies for system level estimation and design

found in the literature, and compares them to Fun time. Three

categories of tools are identified: simulation-based tools,

analytical tools and tools that are a combination of multiple

approaches. Due to their importance and to the lack of a

standard approach, both system level estimation and system-

level design in general are a hot research topic today and the

focus of a high number of research groups. The most significant

estimation tools for SLD/SLE found in the literature. In doing

so, the surveys presented in [17] and [18] are partially taken as a

reference and adapted to the purposes of this work. At the same

time, a comparison is presented between these approaches and

Funtime, which emphasizes key similarities and differences.

System-level estimation tools can roughly be classified into

three broad categories: simulation-based tools, analytical tools,

and tools that are a combination of different approaches.

Although the following subsections review each category, a

large space is dedicated to the simulation-based approaches and,

in particular, to describing System C and Transaction Level

Modeling (TLM). The reason is that this simulation-based

approach has lately gained consensus and has become quite

popular in both the industrial and academic community. This is

why SystemC/TLMis also used in this work as the reference

system-level approach when validating Funtime for estimation

speed [23].

System-Level Estimation:

There have been many attempts to estimate the energy used

in a particular system design at all levels of abstraction. At the

lowest levels the estimates are quite accurate, but these methods

can be used only when a design is complete and the application

is well documented. At the gate level of abstraction, each gate is

precharacterized for power and the total power is then calculated

on the basis of switching activity of nodes in the design, which

is obtained by simulation or in a probabilistic manner. Power

estimation at the register transfer level is similar to that used at

the gate level; the primary difference is the complexity of pre-

characterizing each component for power. Several methods have

been tried, including characterization through extensive

simulation and the use of lookup tables or analytical functions to

summarize results [44]. Recent years have seen significant

research interest in system-level power estimation. Most of this

research has focused on power modeling techniques for

individual system components (e.g., processors, memories, on-

chip buses, peripherals, user-defined logic, etc.). These power

models can be integrated into system-level simulation

frameworks to provide power estimation capabilities. Power

models within a system-level simulation environment to achieve

a superior trade-off between overall power estimation accuracy

and efficiency. A power estimation framework that integrates

heterogeneous component power models using a network of

“power monitors”. The monitor-based framework provides an

intelligent interface, facilitating the seamless integration of

component simulation models on one hand, and a variety of

heterogeneous power models on the other. Power monitors

enable each component model to be associated with multiple

(distinct) power models of differing accuracy and efficiency, or

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12018

with configurable power models that can be tuned to different

accuracy/efficiency levels. The power monitor exercises fine-

grained control over the different power models through

dynamic selection and configuration of power models based on

information gathered during simulation [39].

Application

Domain

Architectures

Domain

mapping

System

validation

Chip

fabrication

HW/SW

development

System

prototype

Fig 18: System-level design challenge: the mapping phase

Shifting towards higher levels of abstraction has proved to

be a winning strategy for dealing with increasing complexity.

Indeed, by abstracting away the low-level details,

implementation is faster, which means lower engineering effort,

lower cost and lower time to market, as well as higher

productivity. Decisions made at the system level have a very

strong impact on the quality of the final product, since the

degree of achievable optimization is normally proportional to

the abstraction level and, indirectly, to the point in the design

flow where decisions are taken: the earlier the better. At the

system level, the question that system architects have to answer

to is the following: given a set of applications and a set of

possible architectures, what is the best architecture on which to

map this set of applications. The expression best architecture

refers to the properties of architecture in terms of metrics like

performance, power consumption and silicon area, for a given

set of applications. For example, what is the power and the

performance impact of using a voltage-frequency scaling

scheme rather than a fixed frequency? What is the power and the

performance impact of varying the number of levels in the

memory hierarchy? What is the best interconnect to use: a bus or

a NoC? What is the advantage/disadvantage of implementing

part or the whole set of applications in hardware rather than

software? These are just examples of the hardest choices a

designer has to make. Since they are so important, taking the

right system-level decisions from the beginning is crucial,

especially when complexity grows: any error at this early stage

would lead to annoying design reiterations, as shown in Figure

17, with a consequent high loss of time, money and, probably, a

sub-optimal final implementation [19].However, although very

important, decisions at system level are very hard to take and

this is for two main reasons: the first is that, at the system level,

the design space to consider is extremely broad as a

consequence of the limited amount of implementation details

available.

Figure 19 shows the relation between the design space

width and abstraction level. The second reason is that the impact

of the decisions taken at system level is not known until a very

late stage of the design process, which can take months of work.

From the second reason mentioned above, it can be concluded

that the lack of a quick and accurate System-Level Estimation

(SLE) approach is one of the main obstacles for successful

system-level design today. In fact, if an efficient system-level

methodology for energy and performance estimation was

available, it would be possible to carry out a reasonably

comprehensive Design Space Exploration (DSE), and thus judge

from the beginning of the design flow which architecture is the

most suitable for a certain application domain, in terms of

performance and power consumption. In addition, estimation at

any abstraction level is a requirement for the implementation of

automatic synthesis tools, since it is only after estimation that

the tool can judge what the best solution is. Efficient estimation

of lower abstraction levels has allowed us to have quite mature

automatic synthesis tools today. Estimation at the physical level

requires accounting for the individual capacitance and resistance

contributions coming from each transistor and interconnecting

wire. Estimation at this level is extremely accurate, but also very

slow. Simulation at the physical level is also very slow and is

thus feasible for only very small designs and for a very short

design execution time. At the gate level, estimation is simplified

by the fact that standard cells are used, whose physical

properties are pre-characterized. Only the impact of cell-to-cell

connecting wires has to be estimated separately, which is done

using so called wire load models. Estimation at this level is less

accurate, although faster, and bigger design sizes can be

simulated. At the RT level, Hardware Description Language

(HDL) languages is used to describe in words what RTL

synthesis translates into logic gates. The simulation is very

common at RT level and reasonably fast for medium size

designs running very short chunks of application. However,

estimation made at this level loses accuracy due to the lack of

enough physical details. In general, the increase of the

abstraction level is directly proportional to an increase of the

estimated speed and inversely proportional to the estimation

accuracy [23] [45]. When it comes to system level, the lack of

an efficient estimation methodology has been an obstacle to

having mature automatic system-level synthesis tools available

today. In fact, the operation of mapping the system-level

functional description of the actual architecture is still largely

done manually. The decision-making approach used by system

designers has been mostly relying on their acquired experience,

on the comparison with previous designs and on rules of thumb.

However, while this approach can still work with small/medium-

size systems, its application to today‟s more and more complex

systems has become unrealistic and the need for a more

systematic and accurate approach has become a necessity. TLM

has appeared at the beginning of the last decade as a simulation-

based approach raising the abstraction level above RTL and as a

starting point for synthesis. In essence, TLM abstracts away the

RTL details and models functionality and communication

among the system modules. Communication is seen as an

exchange of transactions between architectural resources.

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12019

Fig 19: Design space width versus abstraction level

As a result, TLM has proved to be much faster than RTL

[17]. In spite of that, even TLM could be too slow to allow

proper simulation of future complex systems. In addition, the

problem remains of how to obtain for example accurate power

estimation at the system level, since TLM does not provide

intrinsic support for power estimation, and waiting until

reaching the gate-level design phase is not an option.

The System-Level Power Model:

The proposed power estimation model [15] is composed of

three main cooperating sub-modules: (i) the memory hierarchy,

(ii) the bus encoder, and (iii) the address/data stream generator,

which have been integrated into an analysis tool, written in C++.

System Bus Hierarchy:

Modern system-on-a-chip embedded media systems include

many components: a high-speed processor core, hardware

accelerators, a rich set of peripherals, direct memory access

(DMA), on-chip cache and off-chip memory. The system

architecture considered in the study includes a single-core

microprocessor, several peripherals, and off-chip SDRAM

memory, and is similar to many current embedded platforms.

Without losing generality, the system architecture definitions

can then be used to conduct the majority of the experiments. For

multimedia applications, data throughput requirements are

increasing higher than what they were ten years ago. Today, for

a D1 (720x480 pixel resolution) video codec (encoder/decoder)

media node, it needs to be able to process 10 million pixels per

second. This workload requires a multimedia-specialized

processor for computation, peripheral devices to support high

speed media streaming and data conversion via a parallel

peripheral interface (PPI), and a synchronous serial port

(SPORT) for interfacing to high speed telecom interfaces. The

high data throughput requirements associated with this platform

make it impossible to store all the data in an on-chip memory or

cache. Therefore, a typical multimedia embedded system usually

provides a high-speed system-on-a-chip microprocessor and a

very large off-chip memory. The Analog Devices Black fin

family processors [4], the Texas Instrument OMAP, and the

Sigma Design EM8400 series are all examples of low-power

embedded media chip-sets which share many similarities in

system design and bus structure. Another key component in the

architecture model is the system bus and external memory.

Memory bandwidth is a great challenge for systems to process

streaming data in real-time. To insure sufficient bandwidth,

hardware designers usually provide multiple buses in the system,

each having different bus speeds and different protocols. An

external bus is used to interface to the largest off-chip memory

system and other asynchronous memory-mapped devices. The

external bus has a much longer physical length than other buses,

and thus typically has much higher bus capacitance and greater

power dissipation. The goal of the architectural model is to

accurately model power dissipation in a complete system power

model so that new power-efficient design.

The bus encoder model can be inserted either on the

interface from the processor to the first level of the memory

hierarchy or between any adjacent levels of the hierarchy to

evaluate the bus encoding effects on power consumption. The

model implements the main power oriented bus encoding

techniques, namely Gray, Bus- Invert [12], T0, T0_BI, Dual_T0

and Dual_T0_BI. The encoding schemes can be applied to both

data and address buses. The generator outputs are tightly

dependent on the processor architecture. The current version of

the stream generator model includes generic load/store RISC

architecture. For our analysis, we considered a sub-set of a

generic RISC instruction set, which is composed of three basic

classes of instructions: Conditional Branch Instructions (B);

Arithmetic-Logic or Data Processing Instructions (DP);

Load/Store or Data Transfer Instructions (DT). The memory

address spaces for data and instructions are separated. Basically,

the sequence of memory addresses is generated by assigning the

percentage of the different classes of instructions with respect to

the total number of generating addresses. The address sequence

is generated by the processor by varying: the format and the

execution frequency for each instruction class; the possible

addressing modes for each instruction and the related execution

frequency; the frequency to satisfy a conditional branch. All

these parameters contribute to modify the spatial and temporal

locality of memory references [16]. The address bus from the

processor to the memory subsystem contains a memory address

corresponding to a datum or an instruction. The address stream

characteristics can be assigned depending on the desired level of

the spatial and temporal locality. The bidirectional data bus can

carry two different types of information: instructions and data.

The type of instruction contained at a given memory address

depends on the parameters set for the address bus model.

Meanwhile, the datum contained in the memory address can be

generated either probabilistically or pseudo-random. In the first

case, the model is based on a medium average model of the first

order, MA (1), to take into consideration the correlation between

two consecutive data words, responsible for the switching

activity on the system-bus.

The power estimation unit:

A power estimation framework improved from is proposed.

The power estimation framework is divided into two individual

processes. One is the systemc simulation environment, and the

other is the power estimation unit. These two processes can be

operated in parallel, while communicating with each other by a

system FIFO. Therefore, the power consumption can be

calculated by the power estimation unit during the systemc

simulation. There are differences between different hardware

components, just like each power. Model in the hardware

component. To adapt different hardware consumptions, the

power models are built into the power estimation unit. These

units are defined by users, which makes the power estimation

unit more flexible. The power estimation unit will collect the

needed information by the power models to calculate the power

consumptions. In a systemc simulation environment, it has many

components which are included in a common embedded SOC

system. For instance, CPU, BUS, the main memory, and the

Application Specific Integrated Circuit (ASIC), etc. Also each

component in the embedded SOC system has different power

consumption factors. The power models have to be different to

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12020

adapt to different hardware component. The power estimation

unit has two different functions power information collector and

power consumption calculator. The hardware‟s power

consumption change when the input or the process has changed.

The power estimation unit collects the needed information with

the mapped power model during systemc simulation. The

information is then transferred to the power calculation unit.

When the power estimation units are separated with the systemc

simulation to achieve two advantages. The simulation and power

estimation are separated, which means that the simulation will

not be significantly delayed while collecting the power

information with the power estimation unit.

Power estimation of a CPU:

The CPU power estimator calculates ARM7TDMI power

consumption for each instruction, based on the trace from Trace

Converter. In the ARM7 programming model, the power

variation is dependent on instruction-level energy-sensitive

factors such as instruction fetch addresses, opcodes (operations),

register encoding, data fetch addresses, immediate operands, and

so on .

 ISS

ARMulator Tracer

Trace converter

CPU energy

Estimator

Memory energy

Estimator

Bus energy

Estimator

Fig 20: Architecture of the power estimator

More specifically, Hamming distance between two adjacent

instructions and the number of one‟s in the encoding of an

instruction are the two major basis of power consumption [3].

Lectures deliver theoretical background of the ARM7TDMI

power consumption model. We guide the students to implement

the instruction-level estimator by adding the power consumption

of each pipeline stage. The power coefficients of the energy-

sensitive factors are supplied in the course materials. All the

coefficients are the measurable results of an ARM7TDMI test

chip, with a cycle-accurate energy measurement technique.

Students may also capture the coefficients of the ARM7TDMI

by themselves using SEE.

System-Level Power-Aware Design for Real-Time Systems:

We assume familiarity with common concepts in real-time

systems; for detailed information, the reader is encouraged to

consult [20]. System-level power-aware design in real-time

systems is a relatively new research area. Low-power had

become an important parameter at the higher layers of system

design by the mid - 1990‟s. Most of the new system level low-

power techniques initially targeted general-purpose computing

systems. However, it soon became apparent that real-time

systems present unique challenges and opportunities for system-

level low-power design as demonstrated next [26].

 Real-time systems are usually severely power constrained. In

particular, space borne and multimedia systems are typically

battery-operated and therefore have a limited energy budget.

Real-time systems are also relatively more time-constrained

compared to general-purpose systems. Therefore, the challenge

is to save power while satisfying temporal guarantees.

 Some real-time applications such as avionics, robotics and

deep space missions require systems with small form factors,

which in turn mandate low heat dissipation. Since heat is a

byproduct of power dissipation, low-power system-design

ensures a more reliable system by limiting he heat produced.

 Real-time systems are typically over-designed to ensure that

the temporal deadline guarantees are still met even if all tasks

take up their worst-case execution time (WCET) to finish. Since,

in the average case, tasks do not run until their WCET, this is

very energy inefficient. System-level techniques can decrease

this power dissipation through the use of power-aware task

scheduling algorithms while preserving the temporal guarantees.

 Real-time systems are designed to be fault-tolerant. Fault

tolerance ensures reliability through replication of

software/hardware resources. However, brute replication in turn,

causes high power dissipation. System-level low power

techniques manage replication resources judiciously to reduce

the required power.

System-level power-aware research in real-time systems is

still in its infancy. While there is intense activity in the area,

most initial research is concentrated in adding power awareness

as a second-tier design goal which complements the more

traditional real-time design goals. According to this approach,

the system is first optimized subject to traditional real-time

design constraints like timing and reliability. More often than

not, an additional optimization step subject to power-aware

design constraints is then piggybacked to this design. We

believe that power-awareness should be one of the primary

design goals for real-time systems, integrated in the design

process at all levels, simultaneously coexisting with the

traditional real-time design objectives. This requires a radical

rethinking of the design methods as well as the definition of new

metrics, a vision that is already becoming more ingrained in the

research community [22].

References:

[1]Madhu Saravana Sibi Govindan, Stephen Keckler, Sani

Nassif∗, Emrah Acar∗, “A Temperature-Aware Power

Estimation Methodology”, September 2, 2008

[2]Fuming Sun, Haiyang Wang, Fei Fu, and XiaoyingLi “Survey

of FPGA Low Power Design”, International Conference on

Intelligent Control and Information Processing August 13-15,

2010 - Dalian, China

[3] Bikash Chandra Rout, Dr. Kamala KantaMahapatra,

“Multilevel Power Estimation Of VLSI Circuits Using Efficient

Algorithms”, Master Thesis Dept. Elec. Eng., National Central

University Rourkela, 2011.

[4]DimitriKagaris&ThemistoklisHaniotakis Transistor-Level

Synthesis for Low-Power Applications” Department of

Electrical and Computer Engineering Proceedings of the 8th

International Symposium on 2007

[5]AdrielZiesemer, CristianoLazzari, RicardoReis “Transistor-

Level automatic layout generator for non complementary CMOS

cells”, 2007

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12021

[6] Mostafa E. A. Ibrahim,
 1, 2, Markus

 Rupp (EURASIP Member),
 2

and Hossam A. H. Fahmy
3
, “A Precise High-Level Power

Consumption Model for Embedded Systems Software”,

Accepted 11 August 2010

[7] A. Davoodi and A. Srivastava, “Probabilistic Dual-Vth

Leakage Optimization under Variability,” in Proc. International

Symp. Low Power Electronics and Design, 2005, pp. 143–168

[8] D. Soudris, G. Theodoridis, K. Katis, A. Thanailakis, and

C.E.Goutis “Structure and Techniques of the Low-Power Design

Flow”, 2000

[9]Toru Fujimura and Shigetoshi Nakatake School of

Environmental Engineering, University of Kitakyushu

“Transistor-Level programmable MOS analog IC with body

biasing”, 2008.

[10] SalarAlipour, BabakHidaji and Amir Sabbagh Pour

“Circuit level, Static Power, and Logic Level Power Analyses”

Dept. of Computer Science and Engineering Chalmers

University of Technology,2010

[11] S.Theoharis, G.Theodoridis, P.Merakos and C.Goutis

“Accurate data path models for fast RT-level power estimation”

IEEE proc.-Compute. Digit.Tech, Vol.147, No.4, July 2000

[12] Hirofumi Kawauchi, Ittetsu Taniguchi, and Masahiro Fukui

“A New Approach for Accurate RTL Power Macro-Modeling”

journal of semiconductor technology and science, vol.10, NO.1,

MARCH, 2010

[13] M. Bruno, A. Macii and M. Poncino “RTL power

estimation in an HDL-based design flow” IEE Proc.-Compute.

Digit. Tech., Vol. 152, No. 6, November 2005.

[14] MassoudPedram and Afshin Abdollahi “Low Power RT-

Level Synthesis Techniques” Dept. of Electrical Engineering

University of Southern California

[15]Yiwei Zhang, GeZhang, “Fast Gate-level Simulation and

Power Analysis For High Performance Microprocessor”

Department of Information and Technology University of

International Relations Beijing, China, International Conference

2009

[16] William Fornaciari, Donatella Sciuto,

CristinaSilvano,“Power Estimation of System-Level Buses for

Microprocessor-Based Architectures: A Case Study”1999.

[17] Sandro Penolazzi Doctoral “A System-Level Framework

for Energy and Performance Estimation of System-on-Chip

Architectures” Electronic and Computer Systems Stockholm,

Sweden 2011.

[18]Matthias Gries “Methods for evaluating and covering the

design space during early design development” CAD-Group,

Electronics Research Laboratory, University of California at

Berkeley the VLSI journal 38 (2004)

[19] Saumya Chandra, Kanishka Lahiri, Anand Raghunathan

and Sujit Dey, “Variation-Tolerant Dynamic Power

Management at the System-Level” Dept. of ECE, University of

California, San Diego NEC Laboratories America, Princeton, NJ

[20] Naehyuck Chang, Hyeonmin Lim, Kyungsoo Lee,

Youngjin Cho, HyungGyu Lee and Hojun Shim “Graduate Class

For System Level Low Power Design” School of CSE, Seoul

National University, Korea, June 2005

[21] KeNing “System-level memory power and performance

optimization for system-on-a-chip embedded systems”, The

Department of Electrical and Computer Engineering, January

01, 2008

[22] Osman S. Unsal Member, IEEE, and Israel Koren, Fellow,

IEEE “System-Level Power-Aware Design Techniques in Real-

Time Systems” Proceedings of the IEEE, VOL. 91, NO.7, JULY

2003

[23] Ankur Agarwal, Eduardo Fernandez, “System Level Power

Management for Embedded RTOS: An Object Oriented

Approach” Department of Computer Science and Engineering

Florida Atlantic University Boca Raton, FL 33431, USA

[24] Auburn, Alabama “Process-Variation-Resistant Dynamic

Power Optimization for VLSI Circuits” May 11, 2006

[25]Vincent Nijman “Effect of behavioural changes due to

habitat disturbance on density estimation of rain forest

vertebrates, as illustrated by gibbons (primates: hylobatidae)”

[26] Marcello Lajolo, Anand Raghunathan, Sujit Dey “Efficient

Power Co-Estimation Techniques for System-on-Chip Design”,

In Proc. Design Automation and Test Europe (DATE),March

2000

[27] C. Brandolese, A code sign approach to software power

estimation for embedded systems, Ph.D. disseration, Politecnico

di Milano, Institute of Electronics and Information, 2000.

[28]Q. Wang and S. B. K. Vrudhula, “On Short Circuit Power

Estimation of CMOS Inverters,” Proc. IEEE International

Conference on Computer Design, pp. 70–75, Oct. 1998

[29] Julien Lamoureux and Wayne Luk “An Overview of Low-

Power Techniques for Field-Programmable Gate Arrays”,

NASA/ESA Conference on Adaptive Hardware and Systems

IEEE 2008.

[30] Y.A. Durrani, T. Riesgo, “Architectural Power Analysis for

Intellectal Property-Baesd Digital Systen”, Journal of Low

Power Electronics, pp. 271-279(9), Vol.3, No.3, 2007.

[31] Joel Coburn, Srivaths Ravi, and Anand Raghunathan

“Hardware Accelerated Power Estimation”, 2005 IEEE

[32] Y. A. Durrani, T.Riesgo, F.Machado “Statistical Power

Estimation for Register Transfer Level”, International

Conference Department of Microelectronics & Computer

Science 2006

[33] Y.A. Durrani, T. Riesgo, “LUT-Based Power

Macromodeling Technique for DSP Architectures”, In

Proceedings for IEEE International conference on Electronics,

Circuits and System, 2007.

[34] Dirk Rabe Wolfgang Nebel “New Approach in Gate-Level

Glitch Modeling”, 1996 IEEE

[35]S. Ravi, A. Raghunathan, and S. Chakradhar, “Efficient

RTL power estimation for large designs,” in Proc. Int. Conf.

VLSI Design, Jan. 2003

[36] B.Arts, N.Eng, M.J.M.Heijligers, etal., “Statistical power

estimation of behavioral descriptions,” in Proceedings of the

13th International Work shop on Integrated Circuit and System

Design, Power and Timing Modeling, Optimization and

Simulation (PAT MOS ‟ 03), vol. 2799 of Lecture Notes in

Computer Science , pp. 197–207, Springer, Torino, Italy,

September 2003.

[37] R. Zafalon, M. Rossello, E. Macii, and M. Poncino, “Power

macro modeling for a high quality RT-level power estimation,”

in Proceedings of the 1st IEEE International Symposium on

Quality of Electronic Design (ISQED ‟00), pp. 59–63, San Jose,

Calif, USA, March 2000

[38] Robertas Dama sevicius and Vytautas Stuikys, “Estimation

of Power Consumption at Behavioral Modeling Level Using

SystemC”, Department of Software Engineering, Faculty of

Informatics, Kaunas University of Technology, Accepted 6 May

2007

R.Prabakaran et al./ Elixir Elec. Engg. 53 (2012) 12005-12022

12022

[39] Nikhil Bansal Kanishka Lahiri Anand Raghunathan Srimat

T. Chakradhar, “Power Monitors: A Framework for System-

Level Power Estimation Using Heterogeneous Power Models”,

Proceedings of the 18th International Conference on VLSI

Design in 2005

[40] L.Zhong, S. Ravi, A. Raghunathan, and N. K. Jha, “Power

Estimation for Cycle-Accurate Functional Descriptions of

Hardware,” in Proc. Int. Conf. Computer-Aided Design, 2004.

[41] S. Gupta and F. N. Najm, “Power modeling for high level

power estimation,” IEEE Transactions on VLSI Systems,vol. 8,

no. 1, pp. 18–29, Feb. 2000. [Online]. Available:

http://www.eecg.toronto.edu/ najm/papers/tvlsi00-gupta.pdf

[42] Kavel M. Buyuksahin, Farid N. Najm, Fellow ,“Early

Power Estimation for VLSI Circuits”,vol 24,pg 1076-1088 in

2005

[43] S. Gupta and F. N. Najm, “Analytical models for RTL

power estimation of combinational and sequential circuits,”

IEEE Transactions on Computer-Aided Design, vol. 19, no. 7,

pp. 808–814, July 2000. [Online]. Available:

http://www.eecg.toronto.edu/ najm/papers/tcad00-gupta.pdf

[44] J. A. Darringer,R. A. Bergamaschi, S. Bhattacharya, D.

Brand, A. Herkersdorf, J. K. Morrell,I. I. Nair,P. Sagmeister,Y.

Shin, “Early analysis tools for system-on-achip design”, IBM J.

RES. & DEV. VOL. 46 NO. 6 NOVEMBER 2002

[45] R. Damasevicius, “Estimation of design characteristics at

RTL modeling level using systemC,” Information Technology

and Control, vol. 35, no. 2, pp. 117–123, 2006

[46] N.D. Zervas
a
,*, G. Theodoridis

b
, D. Soudris

c
, “Behavioral-

level event-driven power management for DECT digital

receivers”, Microelectronics Journal 36 (2005) 163–172.

