Awakening to reality Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Well-Dominated and Approximately Well-Dominated Graphs

D. K. Thakkar¹, B. M. Kakrecha² and G. J. Vala²

¹Department of Mathematics, Saurashtra University, Rajkot – 360 005. ²General Department, Government Engineering College, Rajkot – 360 005.

ARTICLE INFO

Article history: Received: 24 September 2012; Received in revised form: 7 December 2012; Accepted: 10 December 2012;

ABSTRACT

We prove that the upper domination number of a graph does not increase when a vertex is removed from the graph. Moreover, we consider well-dominated graphs and their upper domination number. We also define approximately well-dominated graphs.

© 2012 Elixir All rights reserved.

Keywords

Minimal dominating set, Upper domination number, Well-dominated graph, Approximately well-dominated graph.

Introduction

A subset S of the vertex set V(G) of the graph G is said to be a dominating set if for every vertex v in V(G) – S, v is adjacent to some vertex in S. A dominating set with minimum cardinality is called a minimum dominating set and it is also called a γ –set of G. The cardinality of a minimum dominating set is called the domination number of the graph G and it is denoted as γ (G).

A dominating set S is said to be a minimal dominating set if for every vertex v in S, $S - \{v\}$ is not a dominating set. A minimal dominating set with maximum cardinality is called an upper dominating set and it is denoted as Γ -set of G. The cardinality of an upper dominating set is called the upper domination number of the graph G and it is denoted as $\Gamma(G)$. Obviously, $\psi(G) \leq \Gamma(G)$ for any graph G.

The above concept can be found in [3] and [4].

If we remove a vertex v from the graph G, the domination number of the new graph $G - \{v\}$ may increase decrease or remains same. In [4] the necessary and sufficient conditions under which the domination number increases or decreases have been proved.

In this paper, we proved a necessary and sufficient condition under which the upper domination number of a graph does not change when a vertex is removed from the graph. Infect we prove that the upper domination number never increases when a vertex is removed from the graph. We also consider well-dominated graphs which have been introduced by [2].

Preliminaries: If G is a graph, V(G) will denote the vertex set of the graph G and E(G) will denote the edge set of the graph G. If $v \in V(G)$ then $G - \{v\}$ will denote the graph obtained by removing the vertex v and all edges incident to v. The following sets will be useful [4].

 $V^{+} = \{ v \in V(G) \mid \gamma (G - \{v\}) > \gamma (G) \}$ $V^{-} = \{ v \in V(G) \mid \gamma (G - \{v\}) < \gamma (G) \}$

$$\mathbf{V}^0 = \{ \mathbf{v} \in \mathbf{V}(\mathbf{G}) \mid \boldsymbol{\gamma} (\mathbf{G} - \{\mathbf{v}\}) = \boldsymbol{\gamma} (\mathbf{G}) \}$$

We will consider only simple graphs with finite vertex sets.

Definition 1.1: [4] Let S be a subset of V(G) and $v \in S$ then the private neighborhood of v with respect to the set S is the set

 $pn[v, S] = \{ w \in V(G) \mid N[w] \cap S = \{v\} \}$

The following result is well-known and its proof can be found in [4].

Theorem 1.2: A dominating subset S of V(G) is a minimal dominating set of G if and only if $pn[v, S] \neq \emptyset$ for every vertex v in S. Equivalently, for every vertex v in S, one of the following conditions satisfied :

(1) v is not adjacent to any vertex of S.

(2) there is a vertex w in V(G) – S such that N[w] \cap S = {v}.

Vertex Removal and Upper Domination Number

When a vertex v is removed from the graph G, the upper domination number of $G - \{v\}$ may remain same or it may change. First we prove that this number cannot increase.

Theorem 2.1: Let G be a graph and $v \in V(G)$ then $\Gamma(G - \{v\}) \leq \Gamma(G)$.

Proof: Let S be a Γ -set of G – {v}. If v is adjacent to some vertex of S then S is a minimal dominating set of G also, and hence $\Gamma(G) \ge |S| = \Gamma(G - \{v\})$. Thus $\Gamma(G - \{v\}) \le \Gamma(G)$.

If v is not adjacent to any vertex of S then $S_1 = S \cup \{v\}$ is a minimal dominating set in G, therefore $\Gamma(G) = |S_1| > |S| = \Gamma(G - \{v\})$. Thus $\Gamma(G - \{v\}) < \Gamma(G)$. This proves the theorem.

Theorem 2.2: Let G be a graph and $v \in V(G)$ then $\Gamma(G - \{v\}) = \Gamma(G)$ if and only if there is a Γ -set S of G not containing v such that one of the following two conditions hold:

(1) v is adjacent to at least two vertices of S.

(2) there is a vertex w in S such that pn[w, S] contains at least two vertices including v.

Proof: Suppose $\Gamma(G - \{v\}) = \Gamma(G)$. Let S be any Γ -set of G –

 $\{v\}$. If v is not adjacent to any vertex of S then S \cup $\{v\}$ is a

minimal dominating set of G and therefore $\Gamma(G) \ge |S \cup \{v\}| > |S| = \Gamma(G - \{v\})$. Thus $\Gamma(G - \{v\}) < \Gamma(G)$. This contradicts our hypothesis. Thus S is a dominating set in G and therefore Γ -set of G not containing v.

Tele:	
E-mail addresses: kakrecha.bhavesh2011@gmail.com	
	© 2012 Elixir All rights reserved

If v is adjacent to at least two vertices of S then condition (1) holds.

If v is adjacent to exactly one vertex w of S then since S is a minimal dominating set of $G - \{v\}$, there is a vertex u of $G - \{v\}$ $\{v\}$ such that $u \in pn[w, S]$. Thus pn[w, S] contains u and v. Hence condition (2) holds.

Conversely, suppose there is a Γ -set S of G not containing v such that condition (1) or condition (2) holds.

If condition (1) holds then since S is a minimal dominating set in G, for every vertex w in S, pn[w, S] contains a vertex x of G. This vertex x cannot be equal to v because v is adjacent to at least two vertices of S. Thus private neighborhood of each vertex w of S contains a vertex of $G - \{v\}$. So S is a minimal dominating set in G – {v}. Therefore $\Gamma(G - \{v\}) \ge |S| = \Gamma(G)$. But $\Gamma(G - \{v\}) > \Gamma(G)$ is impossible and hence $\Gamma(G - \{v\}) =$ $\Gamma(G)$.

Suppose condition (2) holds, then pn[w, S] contains a vertex of $G - \{V\}$, also for any other vertex u of S, v cannot be in pn[u, v]S], therefore pn[u, S] contains a vertex of $G - \{v\}$. Therefore S is a minimal dominating set of $G - \{v\}$, and therefore again by similar argument $\Gamma(G) = \Gamma(G - \{v\})$. This proves the theorem. We introduce the following two notations.

 $W^{-} = \{ v \in V(G) \mid \Gamma(G - \{v\}) \leq \Gamma(G) \}$

 $W^{0} = \{ v \in V(G) | \Gamma(G - \{v\}) = \Gamma(G) \}$

Well-Dominated graphs

The concept of a well-dominated graph was introduced by [2], one can refer to [5] also.

Definition 3.1: [2] A graph G is said to be well-dominated if all minimal dominating sets have the same cardinality, equivalently, \mathbf{v} (G) = Γ (G).

We now prove the following theorem.

Theorem 3.2: Let G be a well-dominated graph

(1) For this graph G, V^+ is an empty set.

(2) If $v \in V^0$, then $G - \{v\}$ is a well-dominated graph. (3) If $v \in V^0$ then $v \in W^0$, that is $V^0 \in W^0$.

Proof: (1) If $v \in V^+$, then $\Gamma(G) = \gamma(G) < \gamma(G - \{v\}) \le \Gamma(G - \{v\}$ {v}).

Thus $\Gamma(G) < \Gamma(G - \{v\})$. Which is not true by Theorem 2.1, therefore V^+ is an empty set.

(2) $\boldsymbol{\gamma}$ (G) = $\boldsymbol{\gamma}$ (G - {v}) $\leq \Gamma$ (G - {v}) $\leq \Gamma$ (G).

Since γ (G) = Γ (G), we have γ (G - {v}) = Γ (G - {v}). Thus $G - \{v\}$ is a well-dominated graph.

(3) It is clear from (2) that γ (G) = γ (G - {v}) = Γ (G - {v}) = Γ(G).

Theorem 3.3: Let G be a well-dominated graph and $v \in V(G)$ such that $v \in V^-$ then either $v \in W^0$ or $G - \{v\}$ is well-dominated. **Proof**: Since G is a well-dominated graph, γ (G) = Γ (G) also from $v \in V^-$, γ (G - {v}) < γ (G). Note that γ (G - {v}) $= \gamma$ (G) – 1.

Thus $\gamma(G) - 1 = \gamma(G - \{v\}) \leq \Gamma(G - \{v\}) \leq \Gamma(G)$ = **y** (G).

Therefore either $\Gamma(G - \{v\}) = \gamma (G - \{v\})$, then $G - \{v\}$ is well-dominated or $\Gamma(G - \{v\}) = \Gamma(G)$ then $v \in W^0$.

Now we define a new concept called approximately welldominated graph.

Definition 3.4: A graph G is said to be an approximately welldominated graph, if $\Gamma(G) = \gamma(G) + 1$. It follows that in an approximately well-dominated graph, every minimal dominating set is either a γ -set or Γ -set.

Example 3.5: In the cycle graph C_6 with vertices 1, 2, 3, 4, 5, 6, V (C₆) = 2 and Γ (C₆) = 3.

Corollary 3.6: If G is a well-dominated graph and $v \in V^-$ then either $G - \{v\}$ is a well-dominated graph or $G - \{v\}$ is an approximately well-dominated graph.

Proof: Note that γ (G - {v}) = γ (G) - 1. Since G is a welldominated graph and $v \in V^{-}$, γ (G) = Γ (G) and γ (G - {v}) $\leq \gamma$ (G).

Therefore
$$\gamma$$
 (G) - 1 = γ (G - {v}) $\leq \Gamma$ (G - {v}) $\leq \Gamma$ (G) = γ (G).

Thus if $\Gamma(G - \{v\}) = \gamma (G - \{v\}) + 1$, then $G - \{v\}$ is an approximately well-dominated graph and if $\Gamma(G - \{v\}) = \gamma$ (G $- \{v\}$) then $G - \{v\}$ is well-dominated graph.

Theorem 3.7: Suppose G is an approximately well-dominated graph and v is any vertex of G,

(1) If $v \in V^+$, then $G - \{v\}$ is well-dominated graph.

(2) $\mathbf{v} \in \mathbf{W}^0$ if and only if $\Gamma(\mathbf{G} - {\mathbf{v}}) = \boldsymbol{\gamma} (\mathbf{G}) + 1$.

Proof: Since G is an approximately well-dominated graph, $\Gamma(G)$ $= \gamma$ (G) + 1.

(1) If $v \in V^+$, then γ (G) $< \gamma$ (G - $\{v\}$),

that is, γ (G) < γ (G - {v}) $\leq \Gamma$ (G - {v}) $\leq \Gamma$ (G) = γ (G) + 1 ...(1).

Therefore γ (G – {v}) = Γ (G – {v}). Thus G – {v} is welldominated graph.

(2) $v \in W^0 \Leftrightarrow \Gamma(G - \{v\}) = \Gamma(G)$

 $\Leftrightarrow \Gamma(G - \{v\}) = \gamma(G) + 1$ (since inequality (1)).

Theorem 3.8: Suppose G is an approximately well-dominated graph. v is a vertex such that $v \in V^0$, then $G - \{v\}$ is either an approximately well-dominated graph or it is a well-dominated graph.

Proof: Since G is an approximately well-dominated graph, $\Gamma(G)$ $= \gamma$ (G) + 1, also v \in V⁰, we have γ (G - {v}) = γ (G).

We know that from Theorem 2.1, either $v \in W^0$ or $v \in W^-$. **Case 1**: If $v \in W^0$ then $\Gamma(G - \{v\}) = \Gamma(G)$, then from hypothesis, $\Gamma(G - \{v\}) = \Gamma(G) = \gamma(G) + 1 = \gamma(G - \{v\}) + 1$.

That is, $\Gamma(G - \{v\}) = \gamma (G - \{v\}) + 1$.

Thus $G - \{v\}$ is an approximately well-dominated graph. Case 2: If $v \in W^-$ then $\Gamma(G - \{v\}) \leq \Gamma(G)$, therefore from hypothesis γ (G - {v}) $\leq \Gamma$ (G - {v}) $\leq \Gamma$ (G) = γ (G) + 1 = \mathbf{v} (G – {v}) + 1.

That is, $\Gamma(G - \{v\}) = \gamma (G - \{v\})$.

Thus $G - \{v\}$ is a well-dominated graph.

Theorem 3.9: Let G be an approximately well-dominated graph and v is a vertex such that $v \in V^{-}$, then exactly one of the following three possibilities hold :

(1) $G - \{v\}$ is well-dominated graph.

(2) $G - \{v\}$ is an approximately well-dominated graph. (3) $v \in W^0$

Proof: Suppose G is an approximately well-dominated graph, that is $\Gamma(G) = \gamma(G) + 1$, and v is a vertex such that $v \in V^{-}$, that is γ (G - {v}) < γ (G), also note that γ (G - {v}) = γ (G) - 1.

Thus γ (G) - 1 = γ (G - {v}) $\leq \Gamma$ (G - {v}) $\leq \Gamma$ (G) = γ (G) + 1 ... (1).

Now from inequality (1), if $\Gamma(G - \{v\}) = \mathcal{V}(G - \{v\})$ then G – {v} is well-dominated graph, otherwise if $\Gamma(G - \{v\}) \ge \gamma (G - \{v\})$ $\{v\}$, that is $\Gamma(G - \{v\}) = \gamma (G - \{v\}) + 1$, then $G - \{v\}$ is an approximately well-dominated graph, otherwise if $\Gamma(G - \{v\}) = \Gamma(G)$, then $v \in W^0$.

References:

[1] J. V. Changela. Mathematical Modelling, Ph. D. Thesis. 2(2012), 11 - 41.

[2] A. Finbow, B. Hartnell and R. Nowakowski. Well-dominated graphs: a collection of well-covered ones. *Ars Combin.* 25(1988), 5-10.

[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. DOMINATION IN GRAPHS ADVANCED TOPICS, Marcel Dekker, Inc, 1998.

[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. FUNDAMENTAL OF DOMINATION IN GRAPHS, Marcel Dekker, Inc, 1998.

[5] Jerzy Topp, Lutz Volkmann. Well-covered and Well-dominated block graphs and Unicyclic graphs, Mathematica Pannonica 1/2(1990), 55 - 66.