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Introduction 

Infectious diseases such as measles, influenza or 

tuberculosis are a fact of modern life. The mechanism of 

transmission of infections is now known for most diseases. 

Generally, diseases transmitted by viral agents, such as 

influenza, measles, rubella and chicken pox, confer immunity 

against re-infection while diseases transmitted by bacteria such 

as tuberculosis, meningitis and gonorrhea, confer no immunity 

against re-infection. Other diseases, such as malaria, are 

transmitted not directly from human to human but by vectors 

which are agents (usually insects) who are infected by humans 

and who then transmit the disease to humans [1]. 

In this paper, it is intended to analyze a model which 

incorporates the exposed individuals on the transmission 

dynamics [4]. We shall study an eigenvalue elasticity analysis 

on the SEIRC model. The name of this class of model derives 

from the fact that they involve equations relating the number of 

susceptible individuals (S), the number of exposed individuals 

(E), the number of infective (I), the number of recovered 

individuals (R) and the number of cross-immune individuals (C). 

The transmission dynamics is described by a set of system 

of first order ordinary differential equations giving the change of 

population sizes of other individuals in the system [2]. 

Therefore, we introduce eigenvalue elasticity and sensitivity 

analysis in this paper to determine the parameter that has the 

greatest impact on the mathematical model [9].  

The Mathematical Model 

The SEIRC model is depicted in the compartmental diagram 

as shown in figure 1 and is expressed as the system of nonlinear 

initial value problem given in the form [2]; 

            (1) 

         (2) 

 (3) 

           (4) 

           (5) 

in which S = S(t), E = E(t), I = I(t), R = R(t) and C = C(t) 

represent the population of the susceptible, exposed, infective, 

recovered, and the cross-immune individuals respectively. The 

model assumes a population of constant size N with equal birth 

and death rates (b = μ) such that N(t) = S(t) + E(t) + I(t) + R(t) + 

C(t). The table below provides an interpretation of the model 

parameters.   

Figure 1: The diagram above represents the transmission 

dynamics of an SEIRC epidemic model [2] 

Analysis of the Equilibrium Points 

In this study, we restrict our study to the positive fractional 

values of the S(t), E(t), I(t), R(t) and C(t) denoted by s(t), e(t), 

i(t), r(t) and c(t)  with equal birth and death rates which are 

ensuring a constant population size. We investigate the existence 

of equilibria of the system (1-5). System (1-5) has always a 

disease-free equilibrium H0(s*, 0, 0, 0, 0) and a unique endemic 

equilibrium He(s*,e*, i*, r*, c*). 
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(a) Existence of disease-free equilibrium point H0 (s*, 0, 0, 0, 

0):  

Here, b/μ is the solution of the system (1-5) in the absence 

of infections in the community (i = 0) i.e. b – μs* = 0. Clearly, 

s* = b/μ > 0. So the equilibrium point H0 (b/μ, 0, 0, 0, 0) exists. 

(b) Existence of endemic equilibrium points He (s*,e*, i*, r*, 

c*):  

The non-trivial endemic equilibrium points He(s*,e*, i*, r*, 

c*) is the positive solution of the following algebraic equations; 

,                            (6) 

             (7) 

  (8)             

              (9) 

                (10) 

Combining 6 and 7, we obtain, 

                                                       (11) 

    From equations 8, 9 and 10, we have, 

                          (12) 

                         (13) 

                          (14) 

                        (15) 

Now using equations 11, 12, 13, 14 and 15, we obtain, 

                       (16) 

where,  

A=    (17) 

B=   

-           (18) 

and 

C =          (19) 

From equation 16, we obtain i* to be two values i.e i* > 0 

and i* < 0. For endemic condition, we consider i* > 0. 

Therefore, we obtain other results in terms of i* i.e. 

>0   (20)                     

>0;  (21)                                 

>0;                       (22) 

 > 0.       (23) 

and 

  > 0 is the basic reproductive number 

of the mathematical model [2].  

Hence, the non-trivial endemic equilibrium points He(s*,e*, 

i*, r*, c*) exists if R0 > 1.   

Stability Analysis 

For the stability analysis of the mathematical model, the full 

details shall be found in [2]. Hence, by the Routh-Hurwitz 

stability criteria, we can say that the endemic equilibrium point 

He(s*,e*, i*, r*, c*) is locally asymptotically stable if R0 > 1. 

Numerical Simulation 

In this section, we present numerical simulation to explain 

the existence of equilibria of the model as well as the feasibility 

of stability conditions numerically for a set of parameter values 

given in table 1. To study the dynamical behavior of the model, 

numerical simulation of the system (1-5) is carried out by Maple 

version 15. With these values of parameters, it can be checked 

that the endemic equilibrium points  He(s*,e*, i*, r*, c*) is given 

by s*= 0.5565564033, e*=0.2136007706, 

i*=0.000022388774881, r*=0.07741647125 and 

c*=0.01738052003. The eigenvalues of the variational matrix 

corresponding to the endemic equilibrium of the model are, -

0.0200, -0.0306, -0.1955, -0.3997 and -111.5554. The results of 

numerical simulation are displayed graphically in figure 2 

variation of s, e, i, r, and c with time for the consider parameters 

set in the table 1. 

We observe from the graph that the population of the 

susceptible individuals decrease in the first few days and later 

increase due to the re infection of the infectious disease. After 

some days, the susceptible individuals become stable while more 

individuals are recovered at that time from the infective 

individuals.    

Eigenvalue Elasticity And Sensitivity Analysis 

Eigenvalue elasticities measure the transient – response 

sensitivities of the model to parameters [6] and since the values 

of elasticities are dimensionless, they can be compared with 

each other. This can aid us identifying the parameters which 

could greatly influence the system [8]. 

(a) Eigenvalue Sensitivity with respect to a parameter: 

This is defined as the partial derivative of the eigenvalue with 

respect to that parameter [5]. The eigenvalue sensitivity Si (i = 1, 

- - -, N and N is the dimension of the state vector) with respect 

to the j
th

 parameter of the system pj is given in the form;  

     (24) 

Eigenvalue Elasticity with respect to a parameter: 

This is defined as the partial derivative of the eigenvalue 

with respect to that parameter normalized for the size of the 

parameter and the size of the eigenvalue. This could also be 

described as the product of the eigenvalue sensitivity and the 

ratio of the eigenvalue and parameter [7]. Thus, it is given in the 

form ; 

   (25) 

With these equations, the eigenvalue elasticity and 

sensitivity with respect to a parameter can be computed using 

the left eigenvectors (Ii) and the right eigenvectors (ri) with the 

partial derivatives of the linearized Jacobian matrix (J) with 

respect to a parameter (pj). Because J and  can often be 

easily determined symbolically and because the eigenvalues can 

be computed for particular parameters values and points in time, 

both eigenvalue elasticity and sensitivity with respect to a 

parameter can be computed without the need to either compute 

closed form expressions for eigenvalues nor to perform numeric 

differentiation [8].  
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Using the MATLAB software package, the computer 

program was written for the evaluation of the values of 

eigenvalue elasticity and sensitivity of the mathematical model 

given in equations (1-5). The results obtained are shown in the 

table below. 

With the above table, it was shown that the parameter β 

which is the transmission coefficient has the highest positive 

eigenvalue elasticity value. This means that the parameter has 

the greatest impact on the formulated mathematical model of the 

infectious disease. This is to show that the parameter should be 

thoroughly investigated as a possible policy lever such that the 

rate of transmission should be reduced to the bearest minimum 

by public health officials and the government at large. 

Conclusion 

In this paper, we develop a mathematical model to explore 

the parameter with the greatest impact on the model using the 

eigenvalue elasticity analysis. From the analysis, we obtained 

that parameter β has the greatest impact such that the health 

policy makers will take into consideration such that the rate of 

the transmission of the infectious disease can be greatly reduced 

or eradicated from the community. 

 

Figure 2: The numerical result of the stable system investigated by the stability analysis 

Table 1: Parameter values in the mathematical model 

Parameters Definitions Hypothetical values 

b birth rate 0.02yr
-1

 

μ Mortality rate 0.02yr
-1

 

 
Rate of progression from cross-immune to susceptible 0.35yr

-1
 

 
Transmission coefficient  1200 

 
Rate of progression from exposed to infective 0.05yr

-1
 

 
Rate of re infection 

0 <  < 1 

 
Rate of progression from infective to recovered 365/3yr

-1
 

 
Rate of progression from recovered to cross-immune 0.0182yr

-1
 

S(0) Initial values of the susceptible individuals 0.3982 

E(0) Initial values of the exposed individuals 0.3086 

I(0) Initial values of the infective individual 0.2131 

R(0) Initial values of the recovered individuals 0.0502 

C(0) Initial values of the cross-immune individuals 0.0299 

 

Table 2: The values of the eigenvalue sensitivity and elasticity analysis 

Parameters Eigenvalue Sensisvity Eigenvalue Elasticity 

b 0 0 

μ -1.0000 -0.00017928 

η 0.00069621 0.0000021843 

β 0.00024876 0.0027 

ε 4.9743 0.0022 

ζ 0.0557 0.00024986 

α -0.0027 -0.0030 

δ 0.05 0.0000081650 
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