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Introduction  

 Wire antennas are often used for radio communication 

purposes from the days of discovery of Electromagnetic 

radiation. The term wire here represents a metallic highly 

conducting structure. The wire structure can be constructed from 

a given number of wire segments and the segments may in 

principle be straight or curved.  

It is well known that the current distribution in the dipoles 

of length less than /4 can be approximated by triangular current 

distribution. When the length of the dipole is much less than „‟, 

the constant current distribution is found to be valid. 

For the dipoles of lengths of the order of „‟, the sinusoidal 

current distribution is reasonably good approximation. When the 

straight wire antenna is terminated in a resistance, the current 

distribution is approximated as a travelling wave. In fact, V-

antennas can also be converted to a travelling wave antenna by 

terminating each arm with a matched resistance. 

Radiation Pattern of Wire Antennas 

Consider a thin wire antenna located in free space. To 

obtain far-field pattern, the distance r should be much greater 

than wavelength. Consider typical antenna geometry as shown in 

Fig.1 

Let E be the electric field and r is the radius vector. Then 

the electric field is in the form of 

 

Fig 1. Geometry of wire and its coordinate system  

 

    rAaarE  rrj                       (1) 

Here, 
ra  is the unit vector from the origin towards the point of 

interest.  

The computed magnetic field vector is given by  
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Here, 
0

 is intrinsic impedance of free space.  

As the dimensions of the wire cross-section is much smaller 

than wavelength, the current in the wire can be assumed to be 

along its axis.  

As a result, the vector magnetic potential in the far-field 

zone is approximately written in the form of  
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Here,   rG  is Green‟s function 

 
Xma  is unit vector tangential to wire axis 

 r is the distance from origin to element 
mdX  

N is number of segments  

If the wire segments are straight  

XmmXm S arr     

From the above equations, Electric field is given by  
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Here, 
a and 

a  are the unit vectors of the spherical coordinate 

system.  

In the above expressions  

 mm XI  is given by the polynomial  
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Here, 
mn  is the desired degree of polynomial.  

Radiation Pattern of Wire Antenna Placed above the Earth. 

Consider a long horizontal wire at a height H above the 

earth fed at one end with respect to ground and other end 

terminated with matched load as shown in Fig. 2. Such a wire 

antenna will have the image. The wire and its image form an 

efficient radiating system. The current distribution on such a 

structure is an outward travelling damped wave. As the earth is 

conductive, the image current lies at a distance of H below the 

xy plane as the earth surface is found to be in z=0 plane.  

The current on the image is an outward travelling wave and 
0180  out of phase with respect to the current in the wire. The 

pattern of such a wire structure is obtained by the product of the 

element pattern of the wire and the array factor. 

The current distribution along the wire can be assumed in the 

form of  

  x
0 e.AxA 

              (6) 

Here,  = propagation constant 

For the above current distribution, the radiation pattern of the 

wire antenna is given by 
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Fig 2. Horizontal wire antenna 

Here, Ψ represents an angle between the two straight wire 

antennas as shown in the Fig. 3.  

 

Fig.3. Geometry of V-antenna 

The above equation can be simplified as follows.  
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Equations (1) to (8) are presented in order to bring out the 

element pattern of the wire antennas. 

Generation of sector beams from array of wire antenna 
Consider the array of geometry shown in Fig.4 

 

Fig.4. Array geometry 

„‟ represent angle between line of observer and broadside. 

When the radiating elements are isotropic in nature, the array 

factor without additional excitation phase is given by  
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Here, u = sin 



L2  Is normalized array length 

N is number of elements in the array 

In this paper we are interest to consider array of discrete 

radiators but not line sources. However, the Taylor amplitude 

distribution for a continuous line source is made  

Use of to extend it for the case of discrete arrays. In most of 

the works reported in the literature, discrete amplitude 

distributions are exclusively determined for discrete arrays. But 

in the present work, the amplitude distribution for discrete arrays 

is obtained from that of continuous line sources directly. 

Results and Discussions 

The radiation patterns are numerically computed for the 

following parameters.  

N = 20, 50, 100, 200 

n = 5    

Here, n   is a parameter in the Taylor‟s distribution for 

continuous line source and it is an integer which divides the 
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radiation pattern into uniform side lobe region surrounding the 

main beam and the region of decaying side lobes. 



L2  = 10, 25, 50, 100 

The results are presented in Fig. (5 - 8)   

As the results are the field strength patterns plotted in 

logarithmic scale, they are not compared with another pattern.  

 

Fig 5. Normalized Radiation Pattern for side lobe level= -35 

dB, array length = 10, Number of elements = 20 
 

Fig 6. Normalized Radiation Pattern for side lobe level= -35 

dB, array length = 25, Number of elements = 50 
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Fig 7. Normalized Radiation Pattern for Side lobe level = -35 

dB,array length = 50, Number of elements = 100 
 

Fig 8. Normalized Radiation Pattern for side lobe level = -35 

dB,array length = 100, Number of elements = 200 

The patterns so obtained are converted into sector beams by 

introducing an additional phase distribution presented in the 

preceding chapter for desired beam widths of 0.4, 0.5, 0.6 and 

0.8. 

The results are presented in fig. (9 – 24). Here also the 

amplitude distribution is fixed and the computed phase is made 

use of. 
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Fig 9. Normalized Radiation Pattern for Side lobe level = -35 

dB,array length = 10, beam width = 0.4 
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Fig 10. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 25, beam width = 0.4 

 

Fig 11. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 50, beam width = 0.4 
 

Fig 12. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 100, beam width = 0.4 

 

Fig 13. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 10, beam width = 0.5 
 

Fig 14. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 25, beam width = 0.5 

 

Fig 15. Normalized Radiation Pattern for Side lobe level = -

35 dB, array length =50, beam width = 0.5 
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Fig 16. Normalized Radiation Pattern for Side lobe level = -

35 dB, array length = 100, beam width = 0.5 
 

Fig 17. Normalized Radiation Pattern for Side lobe level = -

35 dB, array length = 10, beam width = 0.6 
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Fig 18. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 25, beam width = 0.6 
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Fig 19. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 50, beam width = 0.6 
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Fig 20. Normalized Radiation Pattern for Side lobe level = -

35 dB,array length = 100, beam width = 0.6 
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Fig 21. Normalized Radiation Pattern for Side lobe level = -

35 dB, array length = 10, beam width = 0.8 

0

0.5

1

-1 -0.5 0 0.5 1
u

E
(u

)

 
Fig 22. Normalized Radiation Pattern for Side lobe level = -

35 dB, array length = 25, beam width = 0.8 

0

0.5

1

-1 -0.5 0 0.5 1
u

E
(u

)

 
Fig 23. Normalized Radiation Pattern for Side lobe level = -

35 dB, array length = 50, beam width = 0.8 
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Fig 24. Normalized Radiation Pattern for Side lobe level = -

35 dB, array length = 100, beam width = 0.8 

The above sector beams are numerically computed for the 

arrays of wire antennas taking the element pattern into account. 

Conclusion 

It is evident from the results that the amplitude distribution 

obtained from Taylor‟s is reasonably tapered and it is practically 

realizable. The phase distribution used for the conversion of 

narrow beams into sector beams is found to be optimal, as the 

resultant patterns over the angular widths are very close to the 

specified ones. Moreover, the converted beams do not have any 

side lobes in the desired region. The beams are almost flat in the 

specified angular regions.   
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