Domatic number of just excellent subdivision graphs

M. Yamuna and K. Karthika
School of Advanced Sciences, VIT University, Vellore, India.

ARTICLE INFO

Article history:

Received: 9 October 2012;
Received in revised form:
20 November 2012;
Accepted: 3 December 2012;

Keywords

Dominating set,
Just Excellent,
Domatic number,
Subdivision graph.

Abstract

A set of vertices D in a graph $G=(V, E)$ is a dominating set if every vertex of $V-D$ is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G , then D is called a minimum dominating set. A graph G is said to be Just excellent (JE), if it to each $u \in V$, there is a unique $\gamma-$ set of G containing u. In this paper we have obtained the domatic number of the subdivision graph of a just excellent graph.

© 2012 Elixir All rights reserved.

Introduction

We consider only simple connected undirected graphs $G=$ (V, E). The subgraph of G induced by the vertices in D is denoted by $\langle\mathrm{D}\rangle . \mathrm{C}_{\mathrm{n}}, \mathrm{K}_{\mathrm{n}}$ denotes the cycle and complete graph with, n vertices respectively, and Pn is a path of length n . The open neighborhood of vertex $\mathrm{v} \in \mathrm{V}(\mathrm{G})$ is denoted by $\mathrm{N}(\mathrm{v})=$ $\{u \in V(G) \mid(u v) \in E(G)\}$ while its closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. The private neighborhood of $\mathrm{v} \in \mathrm{D}$ is denoted by pn [$\mathrm{v}, \mathrm{D}]$, is defined by pn [$\mathrm{v}, \mathrm{D}]=\mathrm{N}(\mathrm{v}$ $)-N(D-\{v\})$. We indicate that u is adjacent to v by writing $u \perp v$.

Let S be a given set and $A=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$. If each A_{i}, i $=1,2, \ldots, m$ is a subset of $S, A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S, A_{i} \cap A_{j}=$ $\phi \mathrm{i} \neq \mathrm{j}, \mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{~m}$, then the set A is called a partition of S . A subdivision of a graph G is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints $\{u, v\}$ yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, $\{\mathrm{u}, \mathrm{w}\}$ and $\{\mathrm{w}, \mathrm{v}\}$.We shall denote the graph obtained by subdividing any edge uv of a graph G, by G_{sd} uv. Let w be a vertex introduced by subdividing uv. We shall denote this by $\mathrm{G}_{\mathrm{sd}} \mathrm{uv}=\mathrm{w}$.

A set of vertices D in a graph $G=(V, E)$ is a dominating set if every vertex of $V-D$ is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set - abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by $\gamma(\mathrm{G})$. A $\gamma-$ set denotes a dominating set for G with minimum cardinality. A vertex v is said to be a, down vertex if $\gamma(\mathrm{G}-\mathrm{u})<\gamma(\mathrm{G})$, level vertex if $\gamma(\mathrm{G}-\mathrm{u})=\gamma(\mathrm{G})$, up vertex if $\gamma(\mathrm{G}-\mathrm{u})>$ $\gamma(\mathrm{G})$. A vertex in $\mathrm{V}-\mathrm{D}$ is $\mathrm{k}-$ dominated if it is dominated by at least k - vertices in D .

The concept of the domatic number was introduced by Cockayne and Hedetniemi in 1977. A domatic partition of a graph $G=(V, E)$ is a partition of V into disjoint sets V_{1}, V_{2}, \ldots, V_{K} such that each V_{i} is a dominating set for G . The domatic number is the maximum number of such disjoint sets and it is denoted by (G).

A vertex v is said to be good if there is a γ - set of G containing v . A graph G is said to be excellent if every vertex of G is good. In [6] M. Yamuna and N. Sridharan, had defined a graph G to be Just excellent (JE), if it to each $u \in V$, there is a unique γ - set of G containing u.

Example

Fig. 1
In Fig. 1, G is a JE graph and $\{1,4,7\},\{2,5,8\}$ and $\{3,6,9\}$ are the distinct γ-sets for G.
In [6], they have proved the following results

1. A graph G is JE if and only if,
a. $\gamma(\mathrm{G})$ divides n .
b. $\mathrm{d}(\mathrm{G})=\mathrm{n} / \gamma(\mathrm{G})$, where $\mathrm{d}(\mathrm{G})$ denotes the domatic partition of G.
c. G has exactly $\mathrm{n} / \gamma(\mathrm{G})$ distinct γ - sets.
2.If $\mathrm{G} \neq \overline{K_{n}}$ is JE then $|\mathrm{PN}(\mathrm{u}, \mathrm{D})| \geq 2$ for each vertex $\mathrm{u} \in$

D, where D is any γ - set of G.
If the condition (2) is not satisfied, then the graph is not JE.
In [4] the following result has been proved.
3. A JE graph has no down vertex.

In this paper we obtain the domatic number of subdivision graph of a just excellent graph. The domatic number of subdivision graph is denoted by $d\left(G_{s d} u v\right)$, for all $u, v \in V(G)$, $\mathrm{u} \perp \mathrm{v}$.
We already have proved the following result,
4. Let G be any graph. Then $\mathrm{d}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right) \leq 3$.

Theorem 1

Let G be a JE graph such that $\mathrm{d}(\mathrm{G}) \leq 3$. Then G has no $2-$ dominated vertex.

Proof

Since G is JE, we know that,
i. $\gamma(\mathrm{G})$ divides n .
ii. $d(G)=n / \gamma(G)$.
iii.G has exactly $\mathrm{n} / \gamma(\mathrm{G})$ distinct γ - sets.
iv. $|\mathrm{pn}[\mathrm{u}, \mathrm{D}]| \geq 2$, for all $\mathrm{u} \in \mathrm{D}$.

Case i $\mathrm{d}(\mathrm{G})=3$

Subcase i

If $\gamma(G)=2$, then by condition (ii), $n=6$.
By condition (iii), d(G) $=\left|\left\{\mathrm{V}_{1}\right\},\left\{\mathrm{V}_{2}\right\},\left\{\mathrm{V}_{3}\right\}\right|,\left|\mathrm{V}_{\mathrm{i}}\right|=$ $2, i=1,2,3$ and $V_{i}, i=1,2,3$ are γ - sets. Let $V_{i}=\left\{x_{i}, y_{i}\right\}, i=$ 1, 2, 3 .

By condition (iv), $\mathrm{pn}\left[\mathrm{x}_{\mathrm{i}}\right] \geq 2$ and $\mathrm{pn}\left[\mathrm{y}_{\mathrm{i}}\right] \geq 2, \mathrm{i}=1,2,3$.
$\left|\mathrm{V}-\left\{\mathrm{V}_{\mathrm{i}}\right\}\right|=4, \mathrm{i}=1,2,3$, which implies every element in $\mathrm{V}-\mathrm{D}$ is private neighborhood of some elements in V_{i}. In this case, G has no 2 - dominated vertex.

Subcase ii

If $\gamma(\mathrm{G})=3$, then by condition (ii), $\mathrm{n}=9$.
As in subcase - $\mathrm{i}, \mathrm{d}(\mathrm{G})=\left|\left\{\mathrm{V}_{1}\right\},\left\{\mathrm{V}_{2}\right\},\left\{\mathrm{V}_{3}\right\}\right|$, where \mid $\mathrm{V}_{\mathrm{i}} \mid=3, \mathrm{i}=1,2,3$ and $\mathrm{V}_{\mathrm{i}}, \mathrm{i}=1,2,3$ are $\gamma-$ sets. Let $\mathrm{V}_{\mathrm{i}}=\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right.$, $\left.z_{i}\right\}, i=1,2,3$.

By condition (iv), pn $\left[\mathrm{x}_{\mathrm{i}}\right] \geq 2, \mathrm{pn}\left[\mathrm{y}_{\mathrm{i}}\right] \geq 2$ and $\mathrm{pn}\left[\mathrm{z}_{\mathrm{i}}\right] \geq$ $2, i=1,2,3$.
$\left|\mathrm{V}-\left\{\mathrm{V}_{\mathrm{i}}\right\}\right|=6, \mathrm{i}=1,2,3$, which implies every element in $\mathrm{V}-\mathrm{D}$ is private neighborhood of some elements in V_{i}. In this case, G has not 2 - dominated vertex.

By subcase - i and ii, we observe that, when $\mathrm{d}(\mathrm{G})=3$, as the value of γ is increased by 1 , the value of n increases by 3 . Also $\left|\mathrm{V}-\mathrm{V}_{\mathrm{i}}\right|=2\left|\mathrm{~V}_{\mathrm{i}}\right|, \mathrm{i}=1,2,3$, which implies, if G is JE such that $\mathrm{d}(\mathrm{G})=3$, then G has no $2-$ dominated vertex.
Case ii $\mathrm{d}(\mathrm{G})=2$

Subcase i

If $\gamma(\mathrm{G})=2$, then by condition (ii), $\mathrm{n}=4$.
By condition (iii), d(G)=|\{ $\left.\mathrm{V}_{1}\right\},\left\{\mathrm{V}_{2}\right\}\left|,\left|\mathrm{V}_{\mathrm{i}}\right|=2\right.$, $i=1,2$.

By condition (iv), $\mathrm{pn}[\mathrm{u}, \mathrm{D}] \geq 2$, for any $\mathrm{u} \in \mathrm{D}$. Also if this condition is not satisfied, then G is not JE. $\left|V-V_{i}\right|=2$, which implies $\mathrm{pn}[\mathrm{u}, \mathrm{D}] \geq 2$, for every $\mathrm{u} \in \mathrm{D}$ is not possible.

If $d(G)=\gamma(G)=2$, then G is not JE.

Subcase ii

If $\gamma(\mathrm{G})=3$, then by condition (ii), $\mathrm{n}=6$.
By condition (iii), $\mathrm{d}(\mathrm{G})=\left|\left\{\mathrm{V}_{1}\right\},\left\{\mathrm{V}_{2}\right\}\right|,\left|\mathrm{V}_{\mathrm{i}}\right|=3, \mathrm{i}=$ 1, 2. Since $\left|V_{1}\right|=\left|V_{2}\right|$, each $u \in V_{i}$ can have atmost one private neighborhood, that is pn [$\mathrm{u}, \mathrm{D}]<2$, for each vertex $u \in D$.

If $\mathrm{d}(\mathrm{G})=2$ and $\gamma(\mathrm{G})=3$, then G is not JE.
From the above discussion, in case - ii, we observe that if d (G) $=2$, as the value of γ is increased by 1 , the value of n increases by 2 . Also $\left|\mathrm{V}-\mathrm{V}_{\mathrm{i}}\right|=\left|\mathrm{V}_{\mathrm{i}}\right|, \mathrm{i}=1$, 2 . So when $\mathrm{d}(\mathrm{G})=$ 2 , it is not possible that $\mathrm{pn}[\mathrm{u}, \mathrm{D}] \geq 2$. This implies that, if $\mathrm{d}(\mathrm{G})=2$, then G is not JE. Also for any graph $\mathrm{G}, \mathrm{d}(\mathrm{G}) \geq 2$. [Since $\mathrm{d}(\mathrm{G})=|\mathrm{V}, \mathrm{V}-\mathrm{D}|$ is always possible for any $\gamma-$ set D for G].

Hence we conclude that, if G is JE and $\mathrm{d}(\mathrm{G}) \leq 3$, then G has no 2 - dominated vertex.

Corollary 1

If G is JE, $d(G) \leq 3$, then every vertex in $V-D$ is a private neighborhood.

Remark

If G is JE, $d(G)>3$, then it is possible that G has a $2-$ dominated vertex.

Example

Fig. 2
In Fig. 2, G is a JE graph and $d(G)=\mid\{1,2\},\{3,8\}$, $\{4,7\},\{5,6\} \mid=4$. Vertex 6 is 2 dominated vertex, with respect to $\{1,2\}$ as shown in the figure.

Corollary 2

There is no JE graph G such that $\mathrm{d}(\mathrm{G})=2$.

Proof

If possible assume that $d(G)=2$, where G is $J E$.
If $\gamma(\mathrm{G})=2$, then G is not JE as in subcase i of case ii.
If $\gamma(G)=m, m \geq 3$, then $n=2 m$. Let $d(G)=\mid\left\{V_{1}\right\}$, $\left\{V_{2}\right\}\left|,\left|V_{i}\right|=m, i=1\right.$, 2 . Since $| V_{1}\left|=\left|V_{2}\right|\right.$, each $u \in V_{i}$ can have atmost one private neighborhood as in subcase ii of case ii, that is $\mathrm{pn}[\mathrm{u}, \mathrm{D}]<2$, for each vertex $\mathrm{u} \in \mathrm{D}$, which implies G is not JE.

In general, there is no JE graph G such that $\mathrm{d}(\mathrm{G})=2$.

Theorem 2

In a JE graph every vertex is a level vertex.
Proof
Let G be a JE graph and let $\mathrm{u} \in \mathrm{V}(\mathrm{G})$.
Case $\mathbf{i} u$ is not a down vertex
By result [3], we know that a JE graph does not contain a down vertex.
Case $\mathbf{i i} u$ is not an up vertex

Claim

If u is an up vertex for a graph G, then u must be included in every possible γ - set.

Proof

If there is a γ - set for G not containing u, then D is a dominating set for $\mathrm{G}-\{\mathrm{u}\}$ also, that is $\gamma(\mathrm{G}-\mathrm{u})=\gamma(\mathrm{G})$, which is a contradiction as u is an up vertex [If u is an up vertex, then $\gamma(\mathrm{G}-\mathrm{u})>\gamma(\mathrm{G})]$. This implies that, an up vertex must be included in every possible $\gamma-$ set.

By the above claim, if u is an up vertex, then u must be included in every possible γ - set, a contradiction as G is JE.

Hence, from case - i and ii, we conclude that, in a JE graph every vertex is a level vertex.

In [5], M. Yamuna and K. Karthika introduced the concept of domination subdivision stable graph. A graph G is said to be domination subdivision stable (DSS), if the γ - value of G does not change by subdividing any edge of G.

Fig. 3
In Fig. 3, $\gamma(\mathrm{G})=\gamma\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)=2$. This is true for each $\mathrm{e}=$ $(\mathrm{ab}) \in \mathrm{E}(\mathrm{G})$, which implies G is a DSS graph.

Theorem 3

Let G be a graph such that $\mathrm{d}(\mathrm{G})=\left|\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{m}}\right|$, where $\mathrm{m} \geq 3$ and $\left|\mathrm{V}_{\mathrm{i}}\right|=\gamma(\mathrm{G})$, for all $\mathrm{i}=1,2, \ldots, \mathrm{~m}$. If G is not DSS, then $\mathrm{d}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)<\mathrm{m}$.

Proof

Let G be a graph and $d(G)=\left|V_{1}, V_{2}, \ldots, V_{m}\right|$ such that \mid $V_{i} \mid=\gamma(G)$, for all $i=1,2, \ldots, m$. In this case $n=m \gamma(G)$. If G is not DSS, then there is atleast one $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{u} \perp \mathrm{v}$ such that $\gamma\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)=\gamma(\mathrm{G})+1$, that is
i. $\left|\mathrm{V}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)\right|=|\mathrm{V}(\mathrm{G})|+1$.
ii. $\left|\gamma\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)\right|=\gamma(\mathrm{G})+1$.

If $d\left(G_{s d} u v\right)=m$, then $\left|V\left(G_{s d} u v\right)\right| \geq m(\gamma(G)+1)$,
$\Rightarrow\left|\mathrm{V}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)\right| \geq \mathrm{m} \gamma(\mathrm{G})+\mathrm{m}$.
$\Rightarrow\left|V\left(G_{\text {sd }} u v\right)\right| \geq|V(G)|+m$.
But by condition (i), we know that $\left|\mathrm{V}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)\right| \neq \mid \mathrm{V}$ (G $) \mid+m$, which implies $d\left(G_{s d} u v\right) \neq m$. Hence $d\left(G_{s d} u v\right)<m$.

Theorem 4

If G is just excellent, then G is not DSS.

Proof

Let G be just excellent. Let D be a $\gamma-$ set for G . Let $\mathrm{u} \in \mathrm{D}$ and let $\mathrm{v} \in \mathrm{pn}[\mathrm{u}, \mathrm{D}]$. There is one such v , since by result [2], $\mathrm{pn}[\mathrm{u}, \mathrm{D}] \geq 2$ for each vertex $\mathrm{u} \in \mathrm{D}$ for a JE graph G. Let us assume that G is DSS. D does not dominates G_{sd} uv, since v is not dominated by D. If $G_{\text {sd }}$ uv is DSS, then there is one $\gamma-$ set D^{\prime} for $\mathrm{G}_{\mathrm{sd}} \mathrm{uv}$, such that $\left|\mathrm{D}^{\prime}\right|=|\mathrm{D}|$.
Case $1 u \in D^{\prime}, w, v \notin D^{\prime}$
D is a $\gamma-$ set for G, where $v \in p n[u, D] . D^{\prime}$ is a $\gamma-$ set for G, where $\mathrm{v} \notin \mathrm{pn}\left[\mathrm{u}, \mathrm{D}^{\prime}\right]$, that is D and D^{\prime} are two distinct γ - set for G containing u, which is a contradiction.
Case $2 \mathrm{w} \in \mathrm{D}^{\prime}$ and $\mathrm{u}, \mathrm{v} \notin \mathrm{D}^{\prime}$
$D^{\prime \prime}=D^{\prime}-\{w\} \cup\{v\}$ is $a \gamma-$ set for G.

1. If $\mathrm{pn}\left[\mathrm{w}, \mathrm{D}^{\prime}\right]=\phi$, then $\mathrm{pn}\left[\mathrm{v}, \mathrm{D}^{\prime \prime}\right]=\phi$.
2. If $\mathrm{pn}\left[\mathrm{w}, \mathrm{D}^{\prime}\right]=1=\mathrm{v}$, then $\mathrm{pn}\left[\mathrm{v}, \mathrm{D}^{\prime \prime}\right]=\phi$.
3. If $\mathrm{pn}\left[\mathrm{w}, \mathrm{D}^{\prime}\right]=2$, then $\mathrm{pn}\left[\mathrm{v}, \mathrm{D}^{\prime \prime}\right]=1$.

In all cases, we get a contradiction, by result [2], we know that, since G is JE graph, then $p n[u, D] \geq 2$, for all $u \in V(G)$.
Case $3 \mathrm{v} \in \mathrm{D}^{\prime}, \mathrm{u}, \mathrm{w} \notin \mathrm{D}^{\prime}$
$\mathrm{D}^{\prime \prime}$ and D^{\prime} are two distinct $\gamma-$ sets for G containing v , which is a contradiction as G is JE.
Case $4 u, w \in D^{\prime}, v \notin D^{\prime}$
$D^{\prime \prime \prime}=D^{\prime}-\{w\} \cup\{v\}$ is a $\gamma-$ set for G containing $u . D$ and $D^{\prime \prime \prime}$ are two distinct γ-sets for G containing u, which is a contradiction as G is JE.
Case $5 \mathrm{v}, \mathrm{w} \in \mathrm{D}^{\prime}, \mathrm{u} \notin \mathrm{D}^{\prime}$
$D^{\text {iv }}=D^{\prime}-\{w\} \cup\{u\}$ is a $\gamma-$ set for G. D and $D^{\text {iv }}$ are two distinct γ - sets for G containing u, which is a contradiction as G is JE.
Case $6 u, v \in D^{\prime}, w \notin D^{\prime}$
D^{\prime} is a $\gamma-$ set for G also that is D and D^{\prime} are two distinct γ sets for a containing u , which is a contradiction as G is JE.

In all cases we get a contradiction and hence G is not DSS.

Conclusion

By corollary [2] of theorem [1], we already know that there is no JE graph such that $\mathrm{d}(\mathrm{G})=2$. With this, and from the results so far proved we conclude the following about the domatic number of the subdivision of a just excellent graph.

Theorem 5

If G is $J E$, then $d\left(G_{\text {sd }} u v\right)=2$, if $d(G)=3$ and $d\left(G_{\text {sd }} u v\right)$ ≤ 3, if d (G) ≥ 4.

Proof

If G is JE such that $\mathrm{d}(\mathrm{G})=3$. Let $\mathrm{d}(\mathrm{G})=\mid\left\{\mathrm{V}_{1}\right\},\left\{\mathrm{V}_{2}\right\}$, $\left\{V_{3}\right\} \mid$, then by theorem [1], we know that,
i. G has no $2-$ dominated vertex. Also since G is JE,
ii. $\left|\mathrm{V}_{\mathrm{i}}\right|=\gamma(\mathrm{G})$.
iii. $n=3 \gamma(\mathrm{G})$.
iv.G is not DSS, by theorem [4].

By theorem [3], we conclude that $\mathrm{d}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right) \neq 3$. Hence $\mathrm{d}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)=2$.

If $d(G) \geq 4$, then by result [4$], d\left(G_{s d} u v\right) \leq 3$.

References

1.Haynes, T. W., Hedetniemi, S. T., Slater, P. J, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
2. Karthika, K, Domination Dot Stable - domatic dot stable domination Subdivision Stable graphs, M. Phil thesis, VIT University, Vellore, India. (2011)
3. West, D. B, Introduction to Graph Theory, second ed., Prentice-Hall, Englewood Cliffs, NJ, 2001.
4. Yamuna, M., Karthika, K, Excellent - Domination Dot Stable Graphs, International Journal of Engineering Science, Advanced Computing and Bio - Technology Vol. 2, No. 4, pp. 209-216, 2011.
5. Yamuna, M., Karthika, K, Domination Subdivision Stable Graphs, International Journal of Mathematical Archive - 3(4), pp. 1467-1471, 2012.
6. Yamuna, M., Sridharan, N, Just Excellent Graphs, International Journal of Engineering Science, Advance Computing and Bio - Technology Vol. 1, No. 3, pp. 129 - 136, 2010.

