
Aakash Ahuja et al./ Elixir Comp. Sci. & Engg. 53 (2012) 11819-11823

11819

Introduction

Internet is growing day by day but most of the people are

not aware of security and privacy. It is not a secure channel for

exchange of information. Nowadays most of the applications are

vulnerable making them a threat possible. An attack may be

possible due to poor design, configuration mistakes, or poor

written code of the web application.

An attacking technique that is being widely used is

Structured Query Language (SQL) Injection. It is a method for

exploiting web applications by inserting SQL meta-characters

and commands into Web-based input fields in order to

manipulate the execution of the back-end SQL queries [1]. It is

too vulnerable that it can bypass many traditional security layers

like Firewall and encryption and also bypassing the

authentication of user, which is a big flaw in the web

applications [2].

Login page is the most complicated web application which

allows users to enter into the database after authentication. In

this page, the user provides his identity like username and

password. There might be some invalid input validations which

can bypass the authentication process using some mechanism

like SQL injection. Whenever a user wants to enter into the

database, he/she inputs his/her authentication information

(Username and Password). If result of the query is true then the

user is authenticated otherwise, denied. But, there are some

attacks which can mislead the database server. The user can

enter malicious code through SQL injection which will always

return true results of the authentication query. For example the

user enters the expression in the Username field like '' ' OR 1=1

– – ' ''. Here, in this query the mark („) tells the SQL parser that

the user name string is finished and " OR 1=1 " statement is

appended to the statement which always results in true. The (– –

) is comment mark in the SQL which tells the parser that the

statement is finished and the password will not be checked. So,

the result of the whole query will return true always.

Many techniques have been proposed for controlling SQL

injection. Major problems with these techniques are either high

code modifications or it takes large extra time overhead.

Cryptographic support is another important aspect of database

security. Database encryption mechanism could provide

database security. Illegal users cannot access the database

without the proper key to decrypt it [3] [4] [5] [6].

Blowfish: Blowfish [7] is a 64-bit symmetric block cipher

with a variable length key. The algorithm operates with two

parts: a key expansion part and a data encryption part. The role

of key expansion part is to convert a key of maximum 448 bits

into several sub key arrays totalling 4168 bytes. The data

encryption occurs via a 16-round Feistel network. Each round

consists of a key dependent permutation, a key and data-

dependent substitution. All operations are EX-ORs and additions

on 32-bit words.

RSA: One of the best-known asymmetric-key cryptography

processes is the RSA, named after its originators Rivest, Shamir,

and Adleman [8] [9] [10]. RSA is easy to understand and

relatively easy to implement. It is widely used in many

cryptographic systems. RSA gets its security from factoring

large prime numbers. The RSA public and private keys are

derived from two randomly selected large prime numbers.

This paper proposes a new and better technique for query

encryption using a two level dual encryption. I. Balasundaram et

al. (2011) [11] proposed an encryption method for query

encryption, which provides an authentication and access control

for web applications and prevent from unauthorized access by

using malicious query. We extend this approach and propose an

alternate method. In our proposed method, two stage of

encryption is applied:

1) Encrypt the username and password by blowfish encryption

algorithm.

2) Encrypt the login query result by using asymmetric key

encryption algorithm.

Tele:

E-mail addresses: aakashahu@gmail.com

 © 2012 Elixir All rights reserved

Preventing SQL injection attacks using Blowfish and RSA
Aakash Ahuja, Pulkit Arora, Shashank Singh, Shobhit Srivastava, Saravanakumar Kandasamy

School of Information Technology and Engineering, VIT University, Vellore, India.

ABSTRACT

SQL injection attacks on the web databases are mainly due to the application development

process where the coding process is vulnerable as it was not secured. This however can be

prevented by various methods. One of the techniques is to limit the access of database to

authorized users only. Database contents are encrypted so as to allow a secure way of

efficient query processing directly on the encrypted database. SQL attacks can be prevented

through highly secure authentication schemes in the login phase itself. In this paper, we have

presented one such technique. Our scheme proposes that access be provided to verified users

only. That is, at the time of creation of the user account, a user key is generated for every

user where the user name and password at the time of login is encrypted by Blowfish

encryption and RSA technique at different levels of the total encryption process. The access

is provided by the server after confirming the user‟s authenticity. On server side the

encrypted data will be decrypted using the user key. The decrypted data will be checked and

if the user is genuine, further access will be granted to the database. The RSA encryption

will work as a protective cover for the SQL query generated by the user at the client‟s end.

 © 2012 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 25 October 2012;

Received in revised form:

20 November 2012;

Accepted: 3 December 2012;

Keywords

SQL injection attacks,

Web security,

Authentication,

Blowfish, RSA,

Unique key.

Elixir Comp. Sci. & Engg. 53 (2012) 11819-11823

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Aakash Ahuja et al./ Elixir Comp. Sci. & Engg. 53 (2012) 11819-11823

11820

The proposed method is secure and it needs a low

computational cost.

Related work

Many of the existing techniques can detect and prevent a

subset of the vulnerabilities that lead to SQL Injection Attacks.

In this section, we will highlight the most relevant techniques-

M. Anand Kumar et al [12] - gave a comparison study

which presented the performance evaluation of the two

commonly used encryption algorithms, namely Blowfish and

AES (Rijndael). Series of results based on the experimental

procedures such as encoding techniques, packet size, data types

and keys were found. Throughput was found to be high for

Blowfish when compared to that of AES.As throughput is

increased power consumption of decryption technique decreases.

Blowfish encryption also had better performance than AES for

text and document data files. Overall AES can be used in

circumstances where high security is needed.

Gang Chen Gang Chen et al. (2006) - [13] proposed a

Database Encryption Scheme. This was adopted to improve or

enhance the way data is shared inside a database as well as

preserving data privacy. It combines public key encryption with

conventional encryption. User encrypts private data with the

help of a conventional encrypted algorithm. If user has to see the

encrypt data ,private key is decrypted first with the pass phrase,

the working can then be decrypted to access the key with the

help of this private key.

Islam - [14] proposed a framework to make E-Government

Procurement Secure. This framework helped data protection in

which encryption based Private Information Retrieval is used

along with compression. It allows data storing, processing and

retrieving in a secure way.

SAFELI [15] - proposes Static Analysis Framework which

can detect the various vulnerabilities of SQL injection. The main

aim is to identify the type of SQL injection attacks during

compile time. This framework uses a Hybrid-Constraint Solver,

implementing an efficient string analysis tool which deals with

Boolean, integer and string variables.

AMNESIA (Analysis and Monitoring for Neutralizing

SQL-Injection attacks) - In [16], Junjin proposes AMNESIA

approach. The authors check the query during runtime and then

it is declared as either valid or malicious. Various steps are

involved during query checking. First a "hotspot" is identified.

These are application codes which issues SQL query to

database. Second NDFA (Non-Deterministic Finite Automata) is

created which checks for a valid query.

Ali et al [2] - Proposed a scheme which adopts the hash

value approach. This approach improves the user authentication

mechanism. When the user account is created for the first time,

the hash values for username and password are created and are

stored in the User account table.

MeiJunjin [17] has used static, dynamic and automatic

testing method for the detection of SQL injection vulnerabilities.

This approach traces user queries to a vulnerable location.

Although these techniques are effective, they cannot capture

more general forms of SQLIAs.

Ezumalai et al (R. Ezumalai 2009) - [18] used a signature

based approach for the protection of SQL injection. To detect

security issues three modules were used: A monitoring module

which takes the input from web application, an Analysis module

which finds out the 'hotspots' from web application. This module

uses Hirschberg algorithm (Hirschberg 1975) which works on

'divide and conquer' rule. It stores all the keywords in the

Specifications module.

Parse Tree Validation Approach - Buehrer et al. [19]

adopted the parse tree framework. Parse tree of a particular

statement at runtime is compared with its original statement.

They stopped the execution of statement unless there is a match.

This method was first tested on a student Web application using

SQL Guard. Although there were a few drawbacks to this

approach: additional overhead computation and listing of input

(black or white).

Pan (2008) [20] proposed an approach which was based on

criteria access control. This approach was to deal with multilevel

database security. Various authorization rules are transformed to

security criteria, security criterion expressions, and security

criterion subsets which serve as locks and keys. This approach is

easier as only one mechanism is used and also reduces the cost

of storage as only one row and one column is added to the table.

Proposed model

We propose a model for preventing SQL injection attacks

by combining two well-known encryption techniques Blowfish

(Symmetric key encryption) and RSA (Asymmetric key

encryption) at different levels of the proposed model. In the

proposed scheme, access to the database will be provided only

by the server to all the authenticated users. If a new user wants

to access the database he will have to register himself with the

server.

During the registration process, we require every new user

to provide username and password. Along with its regular

process of checking the availability of user name, on successful

completion, the server generates user key which is hexadecimal

value of the password and stores it in the user table along with

user name and password as shown in the Table 1.

Table I User table

Username Password Key

Abhishek Aloha User_keyabhishek

Shubham Mindbogller User_keyshubham

Usere354 Appleshare User_keyuser354

The information of the registered users is stored in the

server database, in the user table with other user details like user

name, user password and the key. Once the user is registered he

can access the database by requesting a log-in to the server and

the server responds with the access control once the request is

validated.

There are two stages in the process:

1) Access Request Process

2) Access Grant Process

Access Request process:

Access is provided to the database by the server after verifying

user‟s authentication. Every new user is required to register with

the database first. Existing users can directly access the database

by providing their username and password. Following are the

steps:

Registration

1. A new user has to register himself/herself with the database

server.

2. For registration a user has to provide valid username and

password of minimum 4 characters.

3. User also has to fill in a randomly generated CAPTCHA to

ensure that it‟s a human attempt or a computer generated

attempt, to prevent hackers creating malicious accounts.

Aakash Ahuja et al./ Elixir Comp. Sci. & Engg. 53 (2012) 11819-11823

11821

4. Hexadecimal value of the password provided by the user is

stored in the user authentication table, which will act as a key for

blowfish decryption.

Login

1. User enters username and password.

2. Password is converted into hexadecimal.

3. Username and password is encrypted using the hexadecimal

value of the password as a key, by blowfish encryption

technique.

4. An SQL query is the generated for the user request with

username, password and encrypted username and password.

5. SQL query is then encrypted with RSA encryption using a

public key for further security.

6. Encrypted query is then sent over to the server.

Since a two level encryption technique is used in this scheme the

level of security is very high. The server end has to decrypt and

verify user‟s authentication and provide further access to the

database.

Access Grant process:

Server provides access to the requested user only after the

verification is complete. Following are the steps included:

1. Server receives encrypted data.

2. Data is decrypted to get SQL query using a private server key.

3. From the decrypted SQL query the username and password

are used to fetch the key (hexadecimal value of password) stored

in the user authentication table.

4. Key is used to decrypt the encrypted username and password

in the query.

5. If the decrypted user name and password matches any of the

authorized users in the user table stored in the server then access

is granted to the user or else the query is rejected.

Blowfish algorithm will only be able to decrypt successfully the

data if the hexadecimal value of the password and the

hexadecimal value stored in the user table match.

An example of SQL query generated and encrypted query figure

2 and figure 3 respectively.

SQL_query=SELECT * FROM user_table WHERE username =

‘user123’ AND password=’alohA’ AND encrypted_username =

‘key_user123’ AND encrypted_password = ‘key_alohA’;

Fig 1: Sample query generation in the proposed model using

unique user key.

Encrypted_SQL_query= EncryptedSQL_query

Fig 2: Encrypted SQL Query sent to the server side.

 Figure 1 shows a sample SQL query with user key and

password, figure 2 shows an encrypted SQL query, which server

receives.

Architecture/design

Figure 1 and 2 show the access request architecture and

access grant architecture respectively.

Results and discussion

The reason for using Blowfish over Rijndael (AES) was

because Blowfish is considered faster. As per the findings made

by M. Anand Kumar et al [12], we observe that time taken by

Blowfish to encrypt and decrypt the information is less than that

what Rijndael takes for the same sized data. Two levels of

encryption maintains ample security with low computation time,

if we go for more levels of encryption then computation time

will increase also increasing the complexity of the model,

making it slower on devices with low memory space and low

end processors. The following Table II is showing encryption

and decryption time taken by Blowfish and Rijndael. Table II

shows a comparative study between the times taken by both the

encryption methods.

Fig 3: Access Request Process

Fig 4: Access Grant Process

Aakash Ahuja et al./ Elixir Comp. Sci. & Engg. 53 (2012) 11819-11823

11822

Table II Time taken for encryption

Input Size (kb) Time (ms) Blowfish Time (ms)

Rijndael

74 72 87

500 121 134

1025 310 364

Encryption occurs at the client side and faster encryption

makes the process faster and faster access is provided to the

client. It does not create a problem even for the low end

processors and devices with low memory space as the memory

footprint of blowfish is just over 4KB. On server side

information is decrypted. Time taken by the methods to decrypt

is shown in Table III.

Table III Time taken for decryption

Input size

(kb)

Time (ms)

Blowfish

Time (ms)

Rijndael

76 86 94

500 130 167

1025 300 301

It is clear from these results that in the cases, viz.

Encryption & Decryption, the time taken by Blowfish Algorithm

is observed to be lesser than the time taken by AES Algorithm (a

well-established encryption/decryption technique). Moreover, it

was also found that Blowfish Algorithm has a higher throughput

when compared to AES Algorithm, i.e. the power consumption

for decryption in Blowfish is lower than AES Algorithm. Hence,

based on the performance comparison, Blowfish algorithm is

considered as a better option for implementation. The table

below, based on the findings made by Indrani Balasundaram et

al [11], gives an analysis of the RSA Execution Time for

different key sizes

TABLE IV Time taken by RSA

Key size (bit) Execution time (ms)

128 19.015

512 36.085

Hence, Blowfish algorithm combined with RSA Algorithm,

results in a highly secure and efficient method to prevent SQL

injection attacks. On the other hand Blowfish encryption is an

unpatented technique available at public domain making it easier

to use and cheap so that any organization can use it.

Conclusion And Future Work

SQL injection attacks make the database vulnerable to

unwanted access by non-reliable users that may not be good in

terms of security. A secure database needs to restrict its user‟s

activity according to the authentication of the user in order to

work efficiently. In our scheme the proposed authentication

process ensures user authenticity and efficient SQL query

generation and in turn efficient database access and usage. The

encryption on the client side and the decryption on the server

side makes it hard for the non-reliable and malicious users to

make an attempt to access the server database. Since the user

name and SQL query both are encrypted and the query is only

executed after the authenticity of the user is verified, hence

making the process highly secured. In future, this project may be

enhanced by improving its security and making it more secure.

Other enhancement that can be done in the proposed project is to

find a better encryption technique so that cost can be decreased

and efficiency can be increased.

References

[1] W.G.J. Halfond, A. Orso, “AMNESIA: analysis and

monitoring for Neutralizing SQL-injection attacks,” 20
th

IEEE/ACM International Conference on Automated Software

Engineering, Long Beach, CA, USA, 2005, pp. 174–183.

[2] Shaukat Ali, Azhar Rauf, Huma Javed “SQLIPA : An

authentication mechanism Against SQL Injection”.

[3] Henry Brown, (2003), “Considerations in implementing a

Database Management System Encryption Security solution,” A

Research Report presented to The Department of Computer

Science at the University of Cape Town.

[4] George l Davida, David L Wells, and John B Kam, (1981),

“A Database Encryption System with Subkeys,” ACM

Transactions on Database Systems, 6:2(1981), pp. 312–328.

[5] Hakan Hacigumus, Bala Lyer, and Sharad Mehrotra, (2002),

“Providing Database as a Service”, in: Proc. of ICDE 2002, pp.

29–38.

[6] Jingmin He, Min Wang, (2001), “Cryptography and

Relational Database Management System”, IDEAS, pp. 273–

284.

[7] Tingyuan Nie Teng Zhang, A study of DES and Blowfish

encryption algorithm, Tencon IEEE Conference, 2009.

[8] Schneier, B., Applied Cryptography, 2nd edition, John Wiley

& Sons Inc, 1996.

[9] ANSI Standard X9.31-1998, Digital Signatures Using

Reversible Public Key Cryptography for the Financial Services

Industry (rDSA).

[10] Rivest, R.L., Shamir, A., and Adleman, L.M., “A Method

for Obtaining Digital Signatures and Public Key

Cryptosystems”, Communications of the ACM, v.21, n.2,

February1978, pp. 120-126.

[11] Indrani Balasundaram and E. Ramaraj (2011), “An

Authentication Scheme for Preventing SQL Injection Attack

Using Hybrid Encryption (PSQLIA-HBE)” European Journal of

Scientific Research Vol.53 No.3 (2011), pp.359-368.

[12] M. Anand Kumar and Dr. S. Karthikeyan (2012),

“Investigating the Efficiency of Blowfish and Regindael (AES)

Algorithms”. I. J. Computer Network and Information Security,

2012, 2, 22-28 Published Online March 2012 in MECS

(http://www.mecs-press.org/) DOI: 10.5815/ijcnis.2012.02.04

[13] Gang Chen; Ke Chen; Jinxiang Dong, (2006), “A Database

Encryption Scheme for Enhanced Security and Easy Sharing;

Computer Supported Cooperative Work in Design”. CSCWD

'06, ppt 1 – 6.

[14] Islam, M.S.; Dey, S.; Kundu, G.; Hoque, A.S.M, (2008), “A

Solution to the Security Issues of an E-Government Procurement

System,” Electrical and Computer Engineering, ICECE 2008.

International Conference on; Publication Year: 2008, pp 659 –

664.

[15] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao.

A Static Analysis Framework for Detecting SQL Injection

Vulnerabilities, COMPSAC 2007, pp.87-96, 24-27 July 2007.

[16] Halfond, W. G. J. and A. Orso (2005). AMNESIA: analysis

and monitoring for Neutralizing SQL-injection attacks. .

ASE‟05. Long Beach, California, USA.

[17] Mei Junji, An approach for SQL injection vulnerability

detection. Sixth International Conference on Information

Technology, (2009): New Generations: pp. 1411-1414.

[18] R. Ezumalai, G. A. (2009). Combinatorial Approach for

Preventing SQL Injection Attacks.2009 IEEE International

Advance Computing Conference (IACC 2009). Patiala, India:

pp.1212-1217.

Aakash Ahuja et al./ Elixir Comp. Sci. & Engg. 53 (2012) 11819-11823

11823

[19] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, Using Parse Tree

Validation to Prevent SQL Injection Attacks, in: 5th

International Workshop on Software Engineering and

Middleware, Lisbon, Portugal, 2005, pp. 106–113.

[20] Pan L. (2008), “Using Criterion-based access control for

multilevel database security,” Electronic Commerce and

Security, 2008 International Symposium, ppt 518 – 522.

