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1.  INTRODUCTION    

Time–frequency analysis has been successfully used in 

dealing with rapidly varying transient signals, such as guided- 

wave signals and damping vibration signals [1]. For Time–

Frequency Representations (TFRs), the Short-Time Fourier 

Transform (STFT), the Wigner-Ville distribution (WVD) and the 

Wavelet Transform (WT) are commonly used. STFT and WVD 

have certain advantages over the WT, but they also have some 

critical limitations in comparison with the WT. The fixed time–

frequency window of STFT can lead to undesirable time and 

frequency resolutions. In spite of its excellent time–frequency 

resolution, using WVD, it is often difficult to analyze a signal 

with composite-frequency components because of the appearance 

of interference terms. 

In the case of the WT, however, the window size changes 

adaptively to the frequency component because of its constant 

bandwidth-to-frequency ratio property [2–4]. In other words, this 

analysis uses a shorter time window for higher frequency 

components and a longer window for lower- frequency 

components. In fact, WT is only an extension of STFT in time 

domain with the constant bandwidth-to- frequency ratio. 

Unfortunately, even if under the same bandwidth-to-frequency 

ratio, the WT may have different TFR features [5]. Since the 

wavelet window function must satisfy the strict admissible 

condition, the WT often creates two problems.  

 The first one is the center of time–frequency window, which 

usually is not the observing center, and the other is the fact that 

most of wavelet functions are not symmetric. Therefore, the time–

frequency window of the WT will lose the easy operation in 

application and theory analysis, especially in the frequency 

domain. Moreover, it is often not convenient in application that 

the WT uses the scale instead of the observing frequency. 

Comparing with STFT, the WT can extract more accurately the 

instantaneous frequency information of signals, but the most 

important issue in the time–frequency analysis is how to achieve 

the best time–frequency energy localization for given signals. For 

instance, this localization is often employed to locate the arrival 

time and estimate the dispersed frequency of guided-wave signal. 

 Nevertheless, the characteristic of the mother wavelet 

function significantly affect the performance of the time-

frequency analysis of the Wavelet Transform (WT). For example, 

although the Gabor wavelet, which is one of the most widely used 

analytic wavelets, has the best time–frequency resolution, i.e. the 

smallest Heisenberg box, the center frequency and the time 

supporting width of the mother Gabor wavelet affect its time–

frequency decomposition characteristics. This means that, 

depending on the signals to be analyzed, different Gabor wavelet 

shapes must be used. Since the characteristics of signals are 

unknown in general, the determination of the optimal shape is 

usually difficult [6]. 

 Recently Power Quality (PQ) and related power supply issues 

have become quite a serious problem both for the end user as well 

as the utilities. The PQ issues and related phenomena can be 

attributed to the use of solid-state switching devices, unbalanced 

and non-linear loads, industrial grade rectifiers and inverters, 

computer and data processing equipments etc. These devices 

introduce distortions in the phase, frequency and amplitude of the 

power system signal thereby deteriorating PQ. Hence analysis of 

PQ related issues are indispensable and this has been the focus of 

the researchers in the past decade. 

 Current advances in signal analysis have led to the 

development of a new method for non-stationary signal analysis 

called Modified S-Transform (MST).  

 The MST is an extension of the Short Time Fourier 

Transform in time domain and it allows a signal to be analyzed in 

terms of both time and frequency. The MST is an extension of the 

short time Fourier transform in time domain and it allows a signal 

to be analyzed in terms of both time and frequency 

simultaneously. 

2.   THE MODIFIED S-TRANSFORM 

The ST of a time series  tx  is defined as 
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The standard deviation )( f  of the window w of the standard S-

transform in equation (1) is  

     ff /1)(                               (2) 

For the modified Gaussian window, we have chosen the standard 

deviation )( f  to be 

             )//()( fbakf                      (3) 

Where ba,  are positive constants, f is signal fundamental 

frequency and 22 bak  . In equation (1), the usually chosen 

window w  is the Gaussian one. Thus, the spread of the original 

Gaussian function is being varied with frequency to generate the 

new modified Gaussian window as 
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In which f is the frequency, t and   the time variables and k, b are 

scaling factors that control the number of oscillations in the 

window; a is a constant. When k is increased, the window 

broadens in the time domain and hence frequency resolution is 

increased in the frequency domain. Again by setting b=0 and k=1 

we can obtain the Short -Time Fourier Transform explicitly. Thus, 

an alternative representation for the Generalized S- transform with 

modified Gaussian window is  
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The discrete version of the S-Transform of a signal is obtained as  
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Where X[m+n] is obtained by shifting the discrete Fourier 

Transform (DFT) of  kx  by n,  mX  being given    
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Further S Transform of signal  tx  and noise  t  is 
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From equation (8) it can be seen that the noise can be removed 

from the S-Transform output by a simple thresholding technique. 

3. RESULTS AND DISCUSSION 

In our study we have discussed different types of power 

signal waveforms such as voltage flicker, transient, momentary 

interruption, some simultaneous cases, and noisy cases. The time-

frequency contours of these disturbances and their corresponding 

change in magnitude vs. time are analyzed with MATLAB 

software. The chosen sampling rate is 3.84 kHz. The MST outputs 

show the plots of the normalized frequency contours of a given 

magnitude in the time-frequency co-ordinate system. 

Fig. 1-5, and Fig. 7, shows the time-frequency contours of 

some typical PQ disturbances with MST, and these contours 

clearly the nature of disturbances in the presence of noise. For 

example, Fig. 1(a) actual signal showing nearly four-cycles 

voltage Interruption. In Fig. 1(b) the normalized time-frequency 

contour from MST is shown. Fig. 1(c) gives the magnitude-time 

spectrum obtained by searching rows of MST matrix. 

Fig. 2, Fig. 3 (a)-(c), show similar plots as in Fig. 1 obtained 

from MST analysis. The time-frequency contours of the MST 

output shows a decrease or increase in magnitude for voltage 

flicker and for voltage transient which provide a better visual 

classification strategy in comparison to the wavelet transform. 
 

 

Fig.1 (a) Momentary Interruption (b) Modified ST time-

frequency contour (c) Modified ST magnitude response 

 

Fig. 2 (a) Voltage Flicker (b) Modified ST time-frequency 

contour (c) Modified ST magnitude response. 

Fig. 4 represents simultaneous disturbances occurred in the 

voltage signal. Fig. 4(a)-(c), shows similar plots as in Fig. 1-Fig. 3 

obtained from MST analysis. The time-frequency contours of the 

MST output shows increase in magnitude for voltage swell and 

zero magnitude for voltage interruption which provides a better 

detection, localization and visual classification. 

Fig. 5(a) represents a simulated Gaussian signal having three 

different frequency Gaussian signals centered at different time 

intervals. Fig. 5(b), represent time frequency contour of simulated 

Gaussian signal, and here we can observe that three different 

frequency Gaussian signals were localized to different time 

intervals. Fig. 6 represents scalogram for the simulated Gaussian 

signal that was shown in Fig. 5(a). Here the scalogram represents 

percentage of energy for each Modified or modified ST 

coefficient. 
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Fig. 3 (a) Voltage Transient (b) Modified ST time-frequency 

contour (c) Modified ST magnitude response 

 
Fig. 4 (a) Simultaneous Disturbances (b) Modified ST time-

frequency contour (c) Modified ST magnitude response 

 
Fig. 5 (a) Simulated Gaussian signal (b) Modified ST time-

frequency contour (c) Modified ST magnitude response. 

 

 
Fig. 6 Scalogram for the simulated Gaussian signals. 

Fig. 7(a) represents a simulated Gaussian signal with 25 dB 

noise. Fig. 7(b), represent time frequency contour of simulated 

Gaussian signal with noise, and here we can observe that there is 

no effect on the time-frequency contour. Fig. 8 represents 

scalogram for the simulated Gaussian signal with 25 dB noise that 

was shown in Fig. 7(a).  

From this analysis we can say that MST is more powerful 

method for time-frequency analysis of non-stationary signals when 

compared to existing techniques.  

 
Fig. 7 (a) Simulated Gaussian signal with 25dB noise 

(b) Modified ST time-frequency contour 

(c) Modified ST magnitude response 

4.   CONCLUSION 

This paper has proposed a new approach for detection and 

localization of power quality disturbances in a power distribution 

system. The S-Transform with modified Gaussian window is used 

in this paper as a powerful analysis tool for detection, localization 

and visual classification of non-stationary power signal 

waveforms. The Modified S-Transform (MST) with modified 

Gaussian window gives better localization even in the presence of 

noise when compared with generalized S-Transform. In future this 

method can be widely applied to image processing, Radar signal 

detection and classification and seismic signal processing.  
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Automatic classification can be done by extracting feature vector 

from the MST frequency contour and finally passing those 

pertinent feature vectors through an intelligent classifier for 

pattern classification. 

 
Fig. 8 Scalogram for the simulated Gaussian signal with 25dB 

noise 
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