
Hassan Rashidi/ Elixir Comp. Sci. & Engg. 54A (2013) 12737-12740

12737

Introduction

 Many applications require a mechanism for storing

variable-size data objects of information in some situations [1].

A variable-size data objects is one in which the number of

components in object may change dynamically during program

execution. Some of the major types of variable-size data

structures are list, list structure, stack, queue, tree, directed graph

and property list.

This paper focuses on property lists. They are natural to use

when the number and type of components in an object are not

known in advance. Property List data structure supports many

real-time applications when they read some data from an input

device or change attributes of objects during program execution.

A record with a varying number of components is usually

termed a property list if the number of components may vary

without restriction [1]. In a property list, both the component

names (field names) and their values must be stored. Each field

name is termed a property name; the corresponding value of the

field is the property value.

A common representation for a property list is as an

ordinary linked list, with the property names and their values

alternating in a single long sequence, as illustrated in Figure 1.

In this Figure, the odd number items are property names, and the

even are property values. There are three commands to process a

property list:

 Inserting a new element to the list: When a new property is

inserted in the property list, two components are inserted: the

property name and its value.

 Removing an element from the list: To remove a particular

property value (e.g., the value for the „Name‟ property in Figure

1), the list is searched, looking only at the property names, until

the desired property is found. A pair of component is then

deleted from the list.

 Finding a value in the list: To select a particular property

value (e.g., the value for the „Age‟ property in Figure 1), the list

is searched, looking only at the property names, until the desired

property is found. The next list component is then the value for

that property.

Figure 1: A storage representation of Property List

Property lists are used extensively by applications and other

software on Mac OS X and iOS [3]. For example, the Mac OS X

Finder (through bundles) uses property lists to store file and

directory attributes. Applications on iOS use property lists in

Tele:
E-mail addresses: hrashi@googlemail.com

 © 2013 Elixir All rights reserved

An Efficient Solution for Implementation of Property Lists in Programming
Languages
Hassan Rashidi

 Department of Statistics, Mathematics, and Computer Science, Allameh Tabatabe‟i University, Tehran, Iran .

ABS TRACT

Supporting different data structures and their variations in both static and dynamic aspects

are one of the challenges in programming languages. One of the data structures is property

list of which applications use it as a convenient way to store, organize, and access standard

types of data. In this paper, the solution methods for implementation Property List as Link

List, Hash and Tree are reviewed. Then an efficient way to implement the property list as

Set is presented and compared with the existing methods.

 © 2013 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 9 July 2012;

Received in revised form:

15 March 2013;

Accepted: 15 March 2013;

Keywor ds

Programming Languages,

Property List,

Link List,

Set,

Hash,

Tree.

Elixir Comp. Sci. & Engg. 54A (2013) 12737-12740

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Hassan Rashidi/ Elixir Comp. Sci. & Engg. 54A (2013) 12737-12740

12738

their Settings bundle to define the list of options displayed to

users.

Property list is a simple XML format, designed by Apple

for OSX as a format for storing lists of key-value pairs [4]-[7].

In this operation system, most applications store their

Preferences as property list files. The property-list programming

interfaces for Cocoa and Core Foundation allow the user to

convert hierarchically structured combinations of these basic

types of objects to and from standard XML. The user can save

the XML data to disk and later use it to reconstruct the original

objects.

Property lists are not part of the LISP language, but are an

abstraction of common list patterns and usages, and are often

defined as LISP library functions. Each item in a list is tagged

with a name preceding the item like (n1 val1 n2 val2 ... nk valk

). In this list ni is the property name of i
th

element and vali is the

property value of i
th

 element.

This paper presents an efficient way for implementation of

Property List in programming languages. Section 2 makes a

literature review over the related work in implementation of

property lists. Section 3 presents the detail of the efficient

method and makes a comparison on the methods. Section 4 is

considered for summary and conclusion.

1. The Related Work

A property list is a structured data representation used by

Cocoa and Core Foundation [3] as a convenient way to store,

organize, and access different types of data. Property lists

organize data into named values and lists of values using several

object types. This type of data structure gives the user the means

to produce data that is meaningfully structured, transportable,

storable, and accessible, but still as efficient as possible.

In this section, the existing methods for implementation of

Property List are reviewed.

2.1. Property List as Link list

The first choice for implementation of property list is link

list. For situations where a user needs to store small amounts of

persistent data, for example less than a few hundred kilobytes,

property lists offer a uniform and convenient means of

organizing, storing, and accessing the data. In these situations,

the simplest property-list implementation is a linked list (like

Figure 1). The users can either have the alternating elements be

the keys and values (LISP does this), or they can have each

element be a structure containing pointers to the key and value.

The linked list implementation is appropriate when the users:

 are just using the pattern to allow user annotations on object

instances.

 don't expect many such annotations on any given instance.

 are not incorporating inheritance, serialization or meta-

properties into their use of the pattern.

Logically a property list is an unordered set, not a sequential

list, but when the set size is small enough a linked list can yield

the best performance. The performance of the link list is O(N),

so for long property lists the performance can deteriorate

rapidly.

If the user needs a way to store large complex graphs of

objects, objects not supported by the property-list architecture,

or objects whose mutability settings must be retained, use

Archiving and Serializations[3]. Archiving and serializations are

two ways in which the user can create architecture-independent

byte streams of hierarchical data. Byte streams can then be

written to a file or transmitted to another process, perhaps over a

network. When the byte stream is decoded, the hierarchy is

regenerated. Archives provide a detailed record of a collection

of interrelated objects and values. Serializations record only the

simple hierarchy of property-list values.

2.2. Property List as Hash

The next most common implementation choice is a hash-

table, which yields amortized constant-time on the operations of

finding, inserting and removing for a given list, albeit at the cost

of more memory overhead and a higher fixed per-access cost,

i.e. the cost of the hash function. When a confliction occurs on

inserting a new element in the list, the solutions of Rehashing,

Sequential Search and Bucketing [1] may be used.

In most systems, a hash-table imposes too much overhead

when objects are expected to have only a handful of properties,

up to perhaps two or three dozen [6]. A common solution is to

use a hybrid model, in which the property list begins life as a

simple array or linked list, and when it crosses some predefined

threshold (perhaps 40 to 50 items), the properties are moved into

a hash-table. So if we need a tolerant constant-time on access an

item and want to maintain the insertion order, we can't do better

than a LinkedHashMap [5], a truly wonderful data structure.

Java 6.0 implemented this solution. The complexity of this

solution is O(1). However, the cos ts of hash-function and its

overheads for solving confliction are inevitable.

2.3 Property List as Binary Tree

The third choice for implementation of property list is

binary tree. If a language needs to impose a sort order on

property names, it must use an ordered-map implementation,

typically an ordered binary tree such as a splay tree or red/black

tree [6]. A splay tree can be a good choice because of the low

fixed overhead for insertion, lookup and deletion operations, but

with the tradeoff that its theoretical worst-case performance is

that of a linked list. A splay tree can be especially useful when

properties are not always accessed uniformly. If a small subset

M of an object's N properties are accessed mos t often, the

amortized performance becomes O(log M), making it a bit like

an Least Recently Used (LRU) cache [2].

2. Property List as Set

This section presents a new and an efficient solution for

implementation of property lists. In some situations, the

property-list architecture may prove insufficient [3] and

inefficient. An efficient solution for implementation of property

list is to present it as a set rather than a list because elements are

accessed randomly by subscript (attribute name) rather than

sequentially. A root property-list object is at the top of this

hierarchy with a couple of pointers like Figure 2.

Figure 2: Representation of a property list object

In this solution, we define a data structure alike Table 1,

consisting of SetContents to store the contents and Pointers to i
th

element. We make OR operation together all the properties in

the set and store this value in SetContents. The number of

elements in the property list is variable with a limit on the

maximum. For a 32-bit wordsize of memory, there will be 32

such pointers. The names are stored in a global table alike Table

2 with a bit value, representing its position in the set. If a

http://java.sun.com/javase/6/docs/api/java/util/LinkedHashMap.html

Hassan Rashidi/ Elixir Comp. Sci. & Engg. 54A (2013) 12737-12740

12739

machine has a 32-bit word size, then up to 32 properties can be

stored, with bit values of: 1, 10, 100, 1000, and so on. The Bit

Strings are shown for clarity; i.e. they can be removed

practically because they are i
n
 (n=0, 1, 2,.., 31) respectively. The

commands to process the property list in this solution method

are as follows:

 On lookup operation, we check if the bit string of the property

name requested AND SetContents = 0, then the property is not

defined in the set. If the value is 1, then the bit position defines

the location containing a pointer to its attribute value.

 When a new element is to be inserted in the list, we must

make a lookup as above. If the property name is in the list,

duplication is not possible. If the result of the lookup is negative,

the property name is put into an empty position in the Table 2.

Then, we make OR operation the SetContents with the

corresponding bit string of the property name. After that the

corresponding Printer to the property value is set in Table1.

 When an existing element is to be removed from the list, we

must make a lookup again. If the result of the lookup is positive,

then we make an AND operation of SetContents with 00000..00

and store the result in SetContents. After that the memory for

property name and property vale are freed and they set to Null in

Tables 1 and 2. If the result of the lookup is negative (The result

of 0), the element requested doesn‟t exist in the list.

Table 1: The Data Structure for the set
SetContents

Pointer to Property Value1

Pointer to Property Value2

……….

……….

Pointer to Property Value32

Table 2: A Global Table with a bit string, representing the

position of each property value

Since the property lists are based on an abstraction for

expressing simple hierarchies of data, they can support the

application programs. Some types are for primitive values and

others are for containers of values. The primitive types are

strings, numbers, binary data, dates, and boolean values. The

containers are arrays and dictionaries. The arrays are indexed

collections of values and the dictionaries are collections of

values each identified by a key. The containers can contain other

containers as well as the primitive types. Thus the user might

have an array of dictionaries, and each dictionary might contain

other arrays and dictionaries, as well as the primitive types. A

root property-list object is at the top of this hierarchy, and in

almost all cases is a dictionary or an array like Figure 3. Note,

however, that a root property-list object does not have to be a

dictionary or array; for example, the user could have a single

string, number, or date, and that primitive value by itself can

constitute an array or a dictionary.

Property list is extensively used in Markup Languages.

From the basic abstraction, languages derive both a static

representation of the property-list data and a dynamic (runtime)

representation of the property list [3]. The static representation

of a property list, which is used for storage, can be either XML

or binary data. The binary version is a more compact form of the

XML property list. In XML, each type is represented by a

certain element. The runtime representation of a property list is

based on objects corresponding to the abstract types. Both he

static and dynamic representation can use our implementation.

Figure 3: An array or dictionary of collections of values

The property lists are also used to define the SQL Queries

in Database Management Systems and JDBC2 Components ‎[8].

The solution presented here can by used in these systems and

can create more efficient Dynamic Data Object.

The performance of this solution for all operations is O(1).

On insertion and deletion operation of an element, although the

performance of this solution is as the same as the hash-function,

it benefits from the lookup operation and practically outperforms

the hash because of no overheads.

Table 3 makes a summary on the main features and

performance of the four solutions discussed in this paper. In the

Link List solution, the property list is presented as an unordered

set and has a lower difficulty for implementation. After that, the

hash and binary tree are with a high and medium difficulty for

implementation, respectively. Both solutions have some

overheads in run-time during the operations. As shown in the

table, our solution has no overheads on operations and its

implementation is easy.

Table 3: A comparison among the solutions methods for

implementation of property list

Solutions Main Features
Complexity of Operations

Lookup Insertion Deletion

Link List

An unordered set,

Low difficulty to

implement

O(N) O(1) O(N)

Hash

High fixed
overhead, High

difficulty to

implement

O(1) O(1) O(1)

Binary Tree

Low fixed

overhead, Medium

difficulty to

implement

O(Log

N)

O(Log

N)

O(Log

N)

Solution in
this Paper

(Set)

No overhead, Too
easy to implement

O(1) O(1) O(1)

4. Summary and Conclusion

Basic differences among the languages refer to the types of

data allowed, in the types operations available, and in the

mechanisms provided for the implementation. Modern high

programming languages need some data structures and their

variations in both static and dynamic aspects. In this paper, the

solution methods for implementation Property List as Link List,

Tree and Hash are reviewed. Then a solution to implement the

Hassan Rashidi/ Elixir Comp. Sci. & Engg. 54A (2013) 12737-12740

12740

property list as Set was presented. The solution proposed has

more efficiency than the existing methods. In the construction of

large application programs, the programmer is almost inevitably

concerned with the design and implementation of new data

types. The solution presented in this paper for implementation of

Property List, supports the users so that they can have more

flexible and efficient dynamic data objects. It can be used in

both, programmer and programming languages levels.

References

[1]. Pratt T.W. and Zelkowitz M. (2001), "Programming

Languages, Design and Implementation", 4
th

 Edition Prentice

Hall.

[2]. Pfaff B. (2004), “Performance Analysis of BSTS in System

Software”, ACM Sigmetrics Performance Evaluation Review,

Volume 32(1), pp. 410–411.

[3]. Mac OS X Reference Library, available on web at

http://developer.apple.com/library/mac/#documentation/Cocoa/

Conceptual/PropertyLists/.

[4]. XML and Property Lists, available on web at

http://www.satimage.fr/software/en/smile/xml/index.html.

[5]. Java Platform Standard Edition 6, available on web at

http://download.oracle.com/javase/6/docs/api/java/util/LinkedHa

shMap.html.

[6]. Language features at the Emerging Languages camp,

available on web at

http://planets.sun.com/AllRuby/group/jruby/.

[7]. Lindfors J. (2002), " JMX: Managing J2EE with Java™

Management Extensions", Sams Publishing.

[8]. Stark S., and the JBoss Group (2002), "JBoss

Administration and Development", 2
nd

 Edition, JBoss.

http://www.satimage.fr/software/en/smile/xml/index.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedHashMap.html
http://download.oracle.com/javase/6/docs/api/java/util/LinkedHashMap.html
http://planets.sun.com/AllRuby/group/jruby/

