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Introduction 

Ahlswede and Haroutunian (Ahlswede and Haroutunian, 

2006) formulated an ensemble of problems on multiple 

hypotheses testing for many objects and on identification of 

hypotheses under reliability requirement. 

The problem of many hypotheses tes ting on distributions of 

a finite state Markov chain is studied in (Yarmohammadi and 

Navaei, 2008) via large deviation techniques and also 

identification of distributions for one Markov chain is studied in 

(Haroutunian and Navaei, 2009). In this paper we s olved the 

problem of identification of distribution of many hypotheses for 

three independent objects by study of simple homogeneous 

stationary finite state of Markov chains. We take known the 

definitions and results on many hypotheses Logarithmically 

Asymptotically Optimal (LAO) testing for the case of Markov 

chains and identification of distribution subject to the reliability 

criterion presented in  (Yarmohammadi and Navaei, 2008), 

(Haroutunian, 1988), (Haroutunian and Navaei, 2009)  that we 

introduce in continue . 

Problem of LAO Identification of Distribution for Three 

Independent Markov Chains and Formulation of Results  
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simple homogeneous stationary Markov chain with finite 
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matrices of the transition probabilities  
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The second order type of vector x  the square matrix of 
2I relative frequencies of the simultaneous appearance on the 

pairs of neighbor places of the states i  and 
j
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probability distribution 
QoP

 

),|()(),( ijPiNQjiN 
  

.,1, Iji 
 

We shall use the following definition of the probability of 

the vector 
1 Nx 

of the Markov chain with transition 

probabilities lP
 and stationary distribution lQ
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We expand the concept of identification for three 

independent stationary finite Markov chain. Let  
,1X

2X
  and 

3X
  be independent RV, taking values in the same finite state 

of Markov chain of set 


 with one L , sPD' , they are 

characteristics of corresponding independent objects. The 

random vector 
 321 ,, XXX

 assumes 

values
   3

,
21, xxx

.
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be a sequence of results of 1N  independent observations of a 

simple homogeneses stationary Markov chain with finite number 

I of states. The statistic must define unknown sPD'  of objects 

on the basis of observed data. The selection for each object was 

done and it was denoted by N
. The objects independence test 

N
may be considered as the pair of tests   

1
N  , 

2
N and  

3
N  

for the respective separate objects. We will show the whole 

compound test sequence by  . The test 
h

N  is defined by a 

partition of the space  
1N

 on the L  sets and to every 

trajectory x the test  N  puts in one correspondence from L  

hypotheses. So the space  
1N

 will be divided into L parts, 
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We also study corresponding limits  
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error probability exponents of the sequence of tests  , called 

reliabilities:  
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We denote by 
)( hE 

 the reliability matrices of the sequences 

of test  
,3,2,1, hh
 for each of the objects. 

Applying (1) and (2), we obtain the following: 
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In this section we use the following lemma. 

Lemma: If elements  
3,2,1,,1,),(  hLlmE h
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strictly positive, then the following equalities hold for 
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Consider for given positive elements 
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What is identification of the probability distributions for 

three independent objects? The answer for this question 

constitutes reply of the question whether or not the triple of 

distributions 
 3,, 21 rrr

has occurred. 

There are three probabilities for each
 3,, 21 rrr

,  
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 Our aim is to determine the dependence of     
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We need to use the probabilities of different hypotheses. Let 

us that the hypotheses 
LlH ,1:1 

, have , say , probabilities  

Lrrr ,1,)( 
. The only supposition we shall use is 

that LrrPr ,1,0)(  . We demonstrate, the result formulated in 

the following theorem does not depend on values 

of
Lrrr ,1,)( 

, if they all are strictly positive. Thus, the 

following reasoning can be made for each 
3,2,1,,1  hLrh : 
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for every LAO test  from (3) and (4) we obtain the following : 
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where,   
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corresponding, the first and second and third objects. For every 
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and each of 
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from (6) , we know that the elements 
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let us denote 
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thus ,it can be implied that given strictly positive elements 

)
3

,2,1()
3

,2,1( rrrrrr
E

must meet inequalities (8) and the 

combination of these restrictions gives  
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Using (9) we can determine 
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The obtained results can be summarized in the following 

theorem: 

Theorem. If the distributions 
LmHm ,1, 

,  are different and 

the given strictly positive numbers 
)

3
,2,1()

3
,2,1( rrrrrr

E

 satisfies 

condition (8) then
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3
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 is defined in 

(10). 
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