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Introduction

Ahlswede and Haroutunian (Ahlswede and Haroutunian,
2006) formulated an ensemble of problems on multiple
hypotheses testing for many objects and on identification of
hypotheses under reliability requirement.

The problem of many hypotheses testing on distributions of
a finite state Markov chain is studied in (Yarmohammadi and
Navaei, 2008) via large deviation techniques and also
identification of distributions for one Markov chain is studied in
(Haroutunian and Navaei, 2009). In this paper we solved the
problem of identification of distribution of many hypotheses for
three independent objects by study of simple homogeneous
stationary finite state of Markov chains. We take known the
definitions and results on many hypotheses Logarithmically
Asymptotically Optimal (LAO) testing for the case of Markov
chains and identification of distribution subject to the reliability
criterion presented in  (Yarmohammadi and Navaei, 2008),
(Haroutunian, 1988), (Haroutunian and Navaei, 2009) that we
introduce in continue .
Problem of LAO Identification of Distribution for Three
Independent Markov Chains and Formulation of Results

Let X=(Xgs X\, Xpperes Xy )y X, € x ={12,...., 1},

o N+1 _
xey " N=012.. "be vectors of observed states of
simple homogeneous stationary Markov chain with finite

number | of states. The L hypotheses concern the irreducible
matrices of the transition probabilities

R={R(jli) ij=11} | =1 L.
The stationarity of the chain provides existence for each
=1L Q, ={Q (i),

of the unique stationary distributions
=11} | :1’L,such that

QMR =Q ) ZQ. O=1;:_i7
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We define the joint distributions Q0R ,
QoR ={QoR (i, )=Q MR (1)
i,j=11 } =1L

The second order type of vector X the square matrix of
2
I relative frequencies of the simultaneous appearance on the

- H - - _1
pairs of neighbor places of the states ! and J are NG DN,
ZN(I =N N

T
11} It is clear that ' .Denote P the set of

N+1
vectors from £ which have the type such that for some joint
probability distribution QO
N(, j) =NQMP(jli), 1,j=11I.
We shall use the following definition of the probability of

N+1
of the Markov chain with transition

R and stationary distribution Q ,

Q|OP|N&) =Q (XO)le(Xn | X14)s I =1_|_.
Q|0P|N (A= ZQ|0P|N (i),

xeA ACZNH-'
We expand the concept of identification for three

Xy X2 and

the vector Xex

probabilities

independent stationary finite Markov chain. Let

X3 be independent RV, taking values in the same finite state

of Markov chain of set £ with oneL,PDIS, they are
characteristics of corresponding independent objects. The

random vector (Xl' Xz’ X3)

1,2 .3
values(X’X’X )exxle.

assumes
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Let
(0 % %5 ) = (06, X X2 s (6, X2 3 e, (64 XE T )
x"ey, h=123, n={02,..,N},

be a sequence of results of N+1 independent observations of a
simple homogeneses stationary Markov chain with finite number

| of states. The statistic must define unknown PD’S of objects
on the basis of observed data. The selection for each object was

done and it was denoted by Dy . The objects independence test

N may be considered as the pair of tests PN PNgng PN
for the respective separate objects. We will show the whole

h
compound test sequence by‘I’. The test N is defined by a
N+1

partition of the space X on the L sets and to every

trajectory x the test 2 puts in one correspondence from L
N+1
hypotheses. So the space 4 will be divided into L parts,

O = XA 06) =15 1=1L,h=123.
We define
(N) _ N
a(ll,lz,l3)|(ml,m2,m3) (q)N) - le ° nﬁ_(g|1,1)Qm2 °©
be the probability of the erroneous acceptance by the test
Py of the hypotheses (H'l’H'Z'H's)
(Hml’Hmz’Hm

provided that

3 is true ,
where (my,my,mg) = (I, 1,.1;), m, I, =1L, h=123.

H, Hn  Hy ).
The probability to reject true hypotheses ( M 3) is
the following:

) _ (N)
Oy m, gy iy ) (PN ) = O, 1 Jy iy mg mg) (PN -

(1. 15)(mym5.mg)

@
(311 )‘(ml,mz,m )((D )
We also study corresponding limits 3 3 of
error probability exponents of the sequence of tests D called
reliabilities:

(@)= lim -

|0 o
N—o0 g

(@),

E('l"zv's)\(ml'mz'ms) (115 13)|(mymy ma)

m;, i =1L, h=123. )
E(p") i _
We denote by the reliability matrices of the sequences

h —
oftest ¥ h=123, for each of the objects.
Applying (1) and (2), we obtain the following:

E D) = ()
(mmy gy ey () (@)

min E
(I 1y )2y my,mg) (1 1]y mp,ms)
©)

In this section we use the following lemma.
E, (@™, mI=1Lh=123

Lemma: If elements are

strictly positive, then the following equalities hold for
1 2 3
<D=(¢,<o ,co)

_ 1 2 3y & _
)(CD) = E'l‘"h (p7)+ E'z‘mz (o) + E|3‘m3 (¢%),if m, #l,,h=1,2,3,

(4.9)

Ey 11|y my.mg

P, (Qg,z) °Qmy © Py (9|';,3),
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_ hy _ _
E(Ily Iz,|3)\<ml,m2,mg>(q’)‘z E'h\mh (o"), if m =l my=l, h=khk=123

(4.b)
B, '21'3)\(%mz,ms>(®): Elh‘mh (@"), if mc=l my=l, h=zkkh=123.
(4.0)
Consider for given positive elements
Em,m,m\m,m,Land Em,m,m‘m,L,m ’Em,m,m‘L,m,m , m=1L-1 the
family of regions:
R(l)—{ P:D(Q-P ‘ QoPRy) < Em,m,m\L,m,m} ,m=11L-1,
A [
RO =[Q-P:DQ-P | Q) <Epmmmim|  M=1L-1
A _
R(3 ={ P:D(Q-P ‘ Qopm)SEm,m,m\m,m,L} »m=L1L-1
A _
R(l :{ :D(Q-P ‘ Q-Ry)> Em,m,m\L,m,m'm:l'L_l} '
@2
R _{ P:D(Q-P ‘ QOPm)>Em,m,m\m,L,m'mzl'L_l} '
RI(_3) =1QoP:D(Q-P ‘ QoPRy) > Em|m|m\m,m,L'm =1 L_l}'

What is identification of the probability distributions for
three independent objects? The answer for this question
constitutes reply of the question whether or not the triple of

(r1: N,

distributions 3)has occurred.

There are three probabilities for each(rl’rz’r3),
n=LL-1,h=123

o™

(Il,lz,l3)¢(rl,r2,r3)

' the probability

my,my,m )=(ry,r,,r
(g, m)=(1y 1)

to accept
(I1’|2’|3)different from (rl’rz’r3), when (rl’rz’r3)is in
reality , and the probability
(N)

(Il 2I )=(rrpr )(m1 my,m )¢(r1 ro.r )

3 that

(I’l,l’z,l’3) is accepted,
when it is not correct.
o™

P o,
(.15 3)¢(r1 ry r3)

(my,m m )=(r.rp.r )
1 12 s already
o™V

(1 zr)‘(rlrzr)

The probability

known, it coincides with the probability

Our aim is to determine the dependence of
oM
(Il 2. ) (r.rp.r )(m:l my,m )¢(r:l ro.r)
3" ongiven
a™
(rl,rz,rs)(rl,rz,rg) ,

We need to use the probabilities of different hypotheses. Let
H,:l

us that the hypotheses =LL have say , probabilities

P(r),r= 1L.

that P(r)>0,r=
the following
OfP,(r) ,r=1L

The only supposition we shall use is

LL we demonstrate, the result formulated in
theorem does not depend on values

, if they all are strictly positive. Thus, the
=1L ,h= 123

following reasoning can be made for each "
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a™v _ Pr(N)((|1,|2,|3) = (1,1, 1), (M, My, mg) # (1, I‘z,l’s))

P, (my, my, mg) = (1, 1, 15)
for every LAO test D from (3) and (4) we obtain the following :

= min E', ,E? E?
my # .My #ry rl‘ml rz‘mg r3‘"‘3

1 2 (5)

E? . .E? o
where, rlm’ Treme " Trslms gre determined in [6] for,
corresponding, the first and second and third objects. For every
LAO test P from (3) and (4) we deduce that:

(Il'|2‘|3):(rl’r2’r3) (ml‘mz,m3)¢(r1‘r2,r3)

(Il,lz,la):(rl,rz,r3) (ml,mz,m3)¢(r1,r2,r3)

E = min (B}, E2,_ E% )
(rl,rz,r3)(r1,r2,r3) Mp #My,h=1,2,3 ryjmy’ |y " Trgjmg
(6)

E%l,rf rz‘r ’Er?"r . .
and each of 2’2 3I8satisfy the following
conditions .
0<EY, <min| min_ Ej(EL), min_D(Q - H oP.) |,

njn |:|:1'r1_1 I\I( I\I) By Q-R|Q rl)
(7.2)
0<E2_<min| min_ E' (E3), min D(Q H °P.) |,
ro|r Ll*rzl im |\|) Boviny Q-R|Q r2)
(7.b)
0<E3 <min| min_ E; (E2), min D op” -
r3lr3 [I:l,r3_1 im( '\') I=r3+1,0 Q-R|Q r3)
(7.c)

Er (Eh), r=1r-1
from (6) , we know that the elements mEp) =1

Ein(Ef) n=1r,-1 E(E}), r=1r-1

are determined

2
E; Em E3 .
by only ', "and ''. However, we are considering only
2 2
El6 E E
elements 11, 2I2ang 272

0< El‘rl < min{ min_ D(Q °R HQ| oPrl,I:min D(Q R HQ' oprl)}

1 I=Ln-1 n+LL
(8.a)
0< Ef‘r <min| min. D(Q ° F’,HQ. oP,_, min_ D(Q - PIHQI °P.) |
212 1=1,r,-1 I:r2 i1l
(8.b)
0< Ef‘r <min| min_ D(QloleQIOPr , min_ D(Q °R|Q P )|
33 1=1,r;-1 |:r3 PiL s
(8.)

r=max(n,n,5)  k=min(,n,r)

let us denote d

From (6) we have that , when

E = Ej‘r
(rl,rz,rg)(rl,rz,rg) 1 1then

;"1 = min(E"zz‘rz ' Erza‘rs)and when
E =E?

RPN CRPNY r2|r2 then
mi”(E:\r ’Erl\r )= rz\r

1 88 212 and when

E =E’ ; 1 1 2

(rl,rz,rs) (rl,rz,r3) 3", then min( Erl‘rl, E"z‘rz) = Er3‘r3
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thus it can be implied that given strictly positive elements
E

(ry,r5,1)
1207,

(ry,r5,r) ) .
2% must  meet inequalities

combination of these restrictions gives

ERRCEES COTS I min[lff,i%l D@ -RlQi-Fr ., min, DO -R[Q - Pk)}’

(8 and the

=r+l,L
©)
Using 9) we can determine

E

(I, 1,1 )=(rg, 5,1 )|(My,mo,m )#(ry, 1o, r ) | i

Loyl Ty T2 2 s i function of
E

(1:r2:1|(rrz ) as follows:

E(Il,lz,I3)=(rl,r2)‘(ml,mz)::(rl,rz)(E(rl,rz)‘(rl,rz) =

(E . (E ).E
rl‘ml

The obtained results can be summarized in the following
theorem:

= min

My %1y, My £T, (rl,rz)‘(rl,rz) rz‘mz(E(rl,rz)‘(rl,rz)) (10)

Theorem. If the distributions Hy, m=1, L, are different and

E

. . . (rq,r5,r )|(r,r5,r ) .
the given strictly positive numbers 23 1"273" satisfies

1,05, )=(ry,r5) (M, my )=(ry 1
condition (8) then 1tz 3) (.2 (mmp)=(1.12)
(10).

References:

[1] Ahlswede R. F. and Haroutunian E. A. 2006, “On
logarithmically asymptotically optimal testing ofhypotheses and
identification”. Lecture Notes in Computer Science, Springer,
vol. 4123, pp. 462-478.

[2] Csiszar I. and Shields P. 2004, "Information Theory and
Statistics,” Fundamentals and trends in communications and
information theory", now publishers Inc.

[3] Csiszar I. and Kdrner J. 1981, "Information theory, coding
theorem for discrete memoryless systems”, Academic press,
New York.

[4] Csiszar I. 1998, " The method of types", IEEE trans. Inform.
Theory, vol. 44. no. 6, pp. 2505-2523.

[5] Dembo A. and Zeitouni O. 1993 " Large deviations
techniques and applications”, Jons. and Bartlet. Publishers,
London.

[6] Haroutunian E. A. 1988, "On asymptotically optimal testing
of hypotheses concerning Markov chain (in Russian)", Izvestia
Acad. Nauk Armenian SSR. Seria Mathem. vol. 22, no. 1, pp.
76-80.

[7] Haroutunian E.A. and Navaei L. 2009,”0On optimal
identification of Markov chain distribution subject to the
reliability criterion”, Mathematical Problems of Computer
Sciences, vol. 32, pp. 65-69.

[8] Natarajan S. 1985 " Large deviations, hypotheses testing,
and source coding for finite Markov chains”. IEEE Trans.
Inform. Theory. vol. 31, no. 3, pp. 360-365.

[9] Navaei L. 2007, "On many hypotheses LAO testing via the
theory of large deviations", Far East Journal of Mathematical
Sciences, vol. 25, no. 2, pp. 335-344.

[10] Kullback S. 1959, “Information theory and statistics",
Wiley, NewYork.

[11] Yarmohammadi M. and Navaei L. 2008,”Application of
Markov processes for many hypotheses optimal testing via
LDT”, Australian Journal of Basic and Applied Sciences, vol. 2
no. 4, pp. 1454-1462.

is defined in



