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1. Introduction  

Peristaltic transport is a form of material transport induced 

by a progressive wave of area contraction or expansion along the 

wave length of a distensible tube mixing and transporting the 

fluid in the direction of the propagation. This phenomenon is 

known as peristalsis. It plays an important role in transporting 

many physiological fluids in the body. It may be involved in 

movement of ovum in the female fallopian tubes, in the transport 

of lymph in the lymphatic vessels and in the vasomotion of 

small blood vessels.  Many modern mechanical devices have 

been designed on the principle of peristaltic pumping for 

transporting industrial and biofluids, The blood pump in the 

heart-lung machine and the peristaltic pump which transport 

noxious fluid in the nuclear industry are some of the devices 

working on the principle of peristalsis.  

The study of fluid flows and heat transfer through porous 

medium has attracted much attention recently. This is primarily 

because of numerous applications of flow through porous media, 

such as storage of radioactive nuclear waste material transfer, 

separation process in chemical industries, filtration, transpiration 

cooling, transport process in aquifers and ground water 

pollution. Examples of natural porous media are beach sand, 

sandstone, limestone, ryebread, wood, the human lung etc. 

      Many investigators studied peristaltic flow through porous 

media with heat transfer. Hayat [1] have analyzed peristaltic 

flow of a Maxwell fluid including the Hall effect through porous 

medium. Vajravelu et al. [7] analyzed the peristaltic flow and 

heat transfer in a vertical porous medium. Mekheimer and Abd 

Elmaboud [2] studied the influence of heat transfer and magnetic 

field on peristaltic transport of a Newtonian fluid in a vertical 

annulus. Subba Reddy, Ramachandra Rao and Sreenadh [6] 

analyzed the peristaltic motion of a power-law fluid in an 

asymmetric channel. Srinivas and Kothandapani [5] investigated 

the influence of heat and mass transfer on MHD peristaltic flow 

through porous space with compliant walls. Srinivas and Gayatri 

[3] studied the peristaltic transport of a Newtonian fluid in a 

vertical asymmetric channel with heat transfer and porous 

medium. Vajravelu et al. [8] analyzed the peristaltic transport of 

a Casson fluid in contact with a Newtonian fluid in a circular 

tube with permeable wall.Vajravelu et al. [9] analyzed  the 

influence of  heat transfer on peristaltic transport of a Jeffrey 

fluid in a vertical porous stratum. 

     The study of MHD plays an important role in agriculture, 

engineering and petroleum industries. For instance, it may be 

used to deal with problems such as cooling of nuclear reactors 

by liquid sodium, magnetotherapy and so on.  

     In view of the above observations, we study the MHD 

peristaltic flow of a conducting fluid with heat transfer in a 

vertical asymmetric channel through porous medium, under long 

wave length and low Reynolds number assumptions. The flow is 

examined in a wave frame of reference moving with the velocity 

of the wave. The analytical solutions have been obtained for the 

axial velocity, temperature and the pressure gradient. The effects 

of different parameters on the velocity and pressure rise are 

discussed through graphs. 

2. Mathematical formulation     

     We consider the motion of an incompressible viscous fluid in 

a two dimensional vertical asymmetric channel induced by 

sinusoidal wave train propagating with constant speed c  along 

the channel walls (see Fig.1).  

The wall deformations are given by 

1 1 1

2
cos[ ( )]H d a X ct  




  

(Right wall)                                                                  (1)
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2 2 1

2
cos[ ( ) ]H d b X ct    





   (Left wall)      (2) 

 
Fig.1: Physical Model 

where 1a
, 1b

 are the amplitudes of the waves,   is the wave 

length, 21 dd 
 is the width of the channel, the phase 

difference 


 varies in the range 
 0

, 
0

 

corresponds to symmetric channel with waves out of phase 

and
 

 with waves are in phase and further 

andddba 2111 ,,,
 satisfy the condition (Mishra and 

Ramachandra Rao, [3] ). 
2 2 2

1 1 1 1 1 22 cos ( )a b a b d d                                          (3) 

The  right hand side wall is maintained at temperature 0T
  and 

left hand side wall at  temperature 1T
. Let 0k

 be the 

permeability of the porous medium between the flexible rigid 

walls. X-axis is chosen between the two flexible walls and Y-

axis is taken perpendicular to X-axis. Cartesian coordinate 

system is used.    

Under the assumptions that the channel length is an integral 

multiple of the wave length   and the pressure difference across 

the ends of the channel is a constant, the flow is inherently 

unsteady in the laboratory frame (X,Y) and become steady in the 

wave frame (x,y) which is moving with velocity ‘c’ along the 

wave. The transformation between these two frames is given by 

, , , , ( ) ( , )x X ct y Y u U c v V p x P x t      
   (4) 

where u, v are velocity components in the wave frame (x,y), p 

and P are pressures in wave  and fixed frames of references 

respectively. 

The non-dimensional quantities are  
2

1 1 1
1

1 1

, , , , , , , ,
d d p Hx y u v ct

x y u v p t h
d c c c d

       
     

                

02 2 1 1 1
2

1 1 1 1 1 0

, , , , , , Pr ,
T TH d a b c d

h d a b R
d d d d T T k


      



 



   

 

  32 2 2
1 0 1 20 1 0 0 1

2 2

1 0 1

, , ,
g T T dQ d k B d

K Gr M
k T T d


   



 


 
                             

            (5)                                                                                                                                  

where R is the Reynolds number,   is the dimensionless wave 

number, K is the permeability parameter, Gr is the Grashof 

number, Pr is the Prandtl number,   is the kinematic viscosity 

of the fluid, 


 is the non-dimensional heat source/sink 

parameter and M is  the magnetic parameter.  

The basic equations can be written in non-dimensional form 

as below 

 
2 2

2 2

2 2

1
1

u u p u u
R u v M u Gr

x y x Kx y

        
                      

                        

      (6)     
2 2 2

3 2 2

2 2

v v p v v
R u v v

x y y Kx y

      
                


                                                 

      (7) 

    
2 2

2

2 2
Pr R u v

x y x y

    
    

    

   
             (8) 

    
0










y

v

x

u

                                                               (9) 

Using long wave length approximation and dropping terms of 

order  and higher, the governing equations  (2.6) - (2.8)  

reduce to 

    

  GruM
Ky

u

x

p



















 1

1
0 2

2

2

     (10) 

   y

p




0

                                                                      (11) 

   
0

2

2









y                                                                (12) 

The dimensional volume flow rate in the laboratory and wave 

frames are 

 

    

 
 

 1

2

,

,

, ,

H X t

H X t

Q U X Y t dY 
, 

 
 

 



xh

xh

dyyxuq
1

2

,

     (13)                                                                  

where 1h
 and  2h

 are function of x alone. From equations (2.4) 

and (2.13) we can write 

    
   xchxchqQ 21 

                                        (14) 

The time-averaged flow rate over a period T at a fixed position 

X is 

    
1 2

0

1
T

Q Q dt q c d c d
T

   
                             (15) 

The dimensionless mean flow   in the laboratory frame and  F 

in the wave frame are related as    

 1F d      Where  1cd

Q


, 

1

21

h

h

q
F u dy

cd
  

  (16)                                                                           

which in  

       1 21 cos 2 , cos 2h x a x h x d b x       
                                                                                                                                         

represents the dimensionless form of the peristaltic walls, and 

, ,a b d
and 


 satisfy the relation     

   
 

22 2 2 cos 1a b ab d   
                         (17) 

The corresponding  boundary conditions in the wave frame are 

1 21, 0 ; 1, 1u at y h u at y h        
                                            

                (18)                                                                           

3. Solution of the problem 

Solving equations (2.10) and (2.12) by using the boundary 

conditions (2.18), we get the  solution as follows  
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 
     2 2 2

1 2 1 2 1 2 1 2 1

2 1

1
2 2

2
h h h h h h h y h h y

h h
            

  

                    (19)  

     

   

2 2

1 2 1

2 2

1 1 2 1

2

1
2 2

1 1 7 1

2

1 2

1 1
cosh sinh

1 1
cosh sinh

1
sinh ( )

1
21

sinh ( )

dp
u L M y L M y s

dx K K

Gr s L M y L M y s
K K

M y h
K

Gr s h y L y h

M h h
K





 
     

 

 
     

 

 
  

      
 

  
                                     

      (20) 

Using equation (2.16), we can find the dimensionless mean flow 

F and the pressure gradient  in wave frame as  

6 1 6 5 8 7 9 1 2( )
6

dp
F L Gr s L L L L L h h

dx



 

       
                                              

      (21) 

1 5 8 7 9 1 2 1

6

1
( )

6

dp
F Gr s L L L L h h Gr s

dx L




  
        

  

                            

1 5 8 7 9 1 2 1

6

1
1 ( )

6
d Gr s L L L L h h Gr s

L




  
          

                           
      (22) 

where  

1

2

1

1
s

M
K


 
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   ,   

2
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2
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 
 
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1 2

7

1 2

2

4

h h
L

h h

  



, 

 3 2 2

8 1 2 2 12 3L h h h h  
       

                                                                          

                                                              

 
 2

9 1 2 1 22L h h h h   
                                                                                         

The non-dimensional forms for pressure rise 
p

 and the 

frictional forces at the left and the right walls
)(1 tF

  and 

)(2 tF
respectively, are given as follows 

    

1

0

p
p dx

x


 


                                                                    (23) 

   

  





1

0

2

11 )( dxh
x

p
tF

                                                    (24) 

   

  





1

0

2

22 )( dxh
x

p
tF

                                                   (25) 

The non-dimensional shear stress can be obtained as  

    

2

2

1

yc

d







 

 
 
                                                                  (26) 

and it reduces to 

   

2 2
2 2

1 2
1 2

1

2 2

1 1 1 1sinh sh sinh sh

1 1

L M y L co M y L M y L co M yK Kdp K K
Gr s

dx
M M

K K

 

          
    

 
  

 

       

2

1

1 7

2 2

1 2

1
sh ( )

1 1
sinh ( )

co M y h
K

Gr s y L

M M h h
K K



 
  

   
 

   
                                                     

                 (27) 

4. Results and discussion 

The equation (2.20) gives the expression for velocity in 

terms of y. Velocity profiles are plotted in fig. 2 to study the 

effects of different parameters such as permeability parameter K, 

magnetic parameter M, Grashof number Gr on the velocity 

distribution. It reveals that the velocity profiles are parabolic. 

From Fig. 2a and Fig. 2c we observe that the velocity increases 

with increasing K and Gr. Fig. 2b and Fig. 2d shows that 

velocity decreases with increasing M and 


.  

The equation (2.19) gives the expression for temperature in 

terms of y. Temperature profiles are plotted in Fig. 3 to show the 

effects of heat source/sink parameter


and phase difference


. 

We observe that the temperature increases with increasing 


 

and decreases with the increase in 


. 

We have calculated the pressure rise
p

 in terms of the 

mean flow   from equation (2.23). The variation of pressure 

rise with the mean flow for different Gr is shown in  Fig. 4a. It is 

noticed that the pressure rise decreases with the increase in  . 

We observe that for a given  , pressure rise increases with 

increasing Gr. Also for fixed 
p

,  the increase in Gr increases 

the mean flow. The variation of pressure rise with the mean flow 

for different 


 is shown in Fig. 4b. We notice that for a given 
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 , pressure rise increases with increasing 


. Also for fixed 

p
,  the increase in 


 increases the mean flow.      Fig. 4c 

shows the variation of pressure rise with the mean flow for 

different values of permeability parameter K. We find that for  

fixed  , pressure rise decreases with increasing K. Also for a 

given 
p

,  the increase in K decreases the mean flow. The 

variation of pressure rise with the mean flow for different values 

of magnetic parameter M is shown in Fig. 4d. We notice that for 

a given  , pressure rise increases with increasing M. Also for 

fixed 
p

,  the increase in M increases the mean flow. 

The variations of frictional forces at the left and right walls 

with mean flow are calculated from the equations (2.24) and 

(2.25) for different values of M and are shown in Fig. 5a and 5b. 

We observe that the frictional forces at the left and right walls 

have the opposite behavior compared to the pressure rise. 

The stress distribution on the left and right walls of the 

channel for different values of  M is presented in Fig. 6a and 6b. 

Fig. 6a is plotted to study the effect of M on the shear stress at 

the right side wall. It is clear that the shear stress is symmetric 

about x = 0. We observe that it increases with increasing M and 

it takes the maximum value on the up stream s ide. Fig. 6b is 

plotted to study the effect of M on the shear stress at the left side 

wall. It is clear that the shear stress is symmetric about x = 0. 

We observe that it increases with increasing M and it takes the 

maximum value on the up stream side.  

The formation of an internally circulating bolus of fluid by 

closed streamlines is called trapping and this trapped bolus is 

pushed ahead along with the peristaltic wave. The stream lines 

for different values of mean flow 

effect of  M on trapping  is illustrated in Fig. 8. It can be seen 

that volume of the bolus decreases with the increase of M. The 

stream lines for different values  

notice that the size of bolus increases with increasing  K.  

5. Conclusions  

A study is made in order to explain the effect of heat 

transfer on MHD peristaltic flow through a vertical asymmetric 

porous channel. The effects of various emerging parameters on 

the axial velocity, pressure rise, shear stress and stream line flow 

pattern are seen with the help of graphs. From the present study 

the following conclusions can be drawn. 

(1) The velocity increases with the increase of K and Gr and 

decreases by increase M and 


 in the middle part of the 

channel. 

(2) The temperature increases with the increase in 


and 

decreases with the increase in


. 

(3) The pressure rise increases with the increase each of Gr, 


 

and M where as it decreases as K increases. 

(4) The pressure rise for different values of Gr, 


, M and K 

becomes grater with decreasing the mean flow  and reaches 

maximum at zero flow rate. There is an inversely linear relation 

between 
p

 and  .  

(5) The friction force has the opposite behavior compared to 

pressure rise.  

(6) The size of trapped bolus increases with the increase in K 

and decreases with  increase in  and M. 

      
2 (a) 

     
2(b) 

     
2(c) 

 
2(d) 

Fig.2  Velocity distribution: (a) 

x 0,  a 0.5,  b 0.5,  d 1, 2,       Gr 0,  M 1, 0  
. 

(b) 
x 0,  a 0.5,  b 0.5,  d 1, 2,       Gr 0, K 1, 0  

. 

(c) x 0,  a 0.5,  b 0.5,  d 1,     

 2,  K 1, 1, 0M    
. 

(d) 
x 0,  a 0.5,  b 0.5,  d 1, 2,       Gr=0, K 1, 0.1M 

. 
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3(a) 

 
3(b) 

Fig.3  Temperature profiles: (a) 

x 0,  a 0.5,  b 0.5,  d 1, 0    
.                                              

(b). 
x 0,  a 0.5,  b 0.5,  d 1, 1    

 

        
4(a)                                                                             

 
4(b) 

 
4(c) 

 
4(d) 

Fig.4   Pressure rise: 

(a) 
 a 0.1,  b 0.1,  d 1, 1,      2,  M 1, 2K    

. 

(b)  a 0.1,  b 0.1,  d 1,   Gr 1, 1,  K 2, 2M     
. 

(c) 
Gr 1, 1,  1, 2M      

. 

(d)  a 0.1,  b 0.1,  d 1,   Gr 1, 1,  K 1, 2     
. 

   
5(a) 

 
5(b) 

Fig.5  Frictional force:  

(a) 1y h
).  a 0.1,  b 0.1,  d 1,   Gr 1, 1,  K 1, 2     

. 

(b) 2y h
).  a 0.1,  b 0.1,  d 1,   Gr 1, 1,  K 1, 2     

. 

 
6(a) 
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6(b) 

Fig.6  Variation of shear stress: 

(a) 1y h
).  a 0.3,  b 0.3,  d 1,  

Gr 2, 2,  K 2, 0, 4      
. 

(b) 2y h
).  a 0.3,  b 0.3,  d 1,  

Gr 2, 1,  K 4, 0, 4      
. 

   
7(a) 

       
7(b) 

 
7(c) 

Fig. 7 Streamlines (for different (a) 2  ,(b) 

2.5  3  ). with fixed  
0.25, 0.3, 1, 2, 8, 2, 0.12, 2a b d Gr K M             

 

   
8(a) 

   
8(b) 

 
8(c) 

Fig. 8  Streamlines (for different  (a) 3M  ,(b) 
5M  7M  ).with fixed 

0.25, 0.3, 1, 2, 8, 2, 0.12,  3a b d Gr K          
 

    
9(a) 

  
9(b) 
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9(c) 

Fig. 9  Streamlines (for different  (a) 0.1K  ,(b) 

0.5K  1K  ).with fixed 

0.25, 0.3, 1, 2, 8, 2, 2,  3a b d Gr M          
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