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Introduction  

During the last 45 years reliability concepts have been 

applied in various manufacturing and technological fields. The 

reliability of a system and its maintenance employs an 

increasing important issue in modern day electronic, 

manufacturing and industrial systems. In real life, one comes 

across many complexities of modern day engineering systems.  

Earlier researchers [1, 2] have described various reliability 

aspects and its principles in the modern day life. Many authors 

[3, 4, 5, 6 and 7] discussed reliability and steady state analysis of 

some realistic engineering systems by using different approaches 

like probabilistic rational model technique, matlab tool, matrix 

method etc. Reliability techniques have also been applied to a 

number of industrial and transportation problems including 

automobile industry. Here the study is focused on the major part 

assembly process of an automobile. 

The auto industry is often thought of as one of the most 

global of all industries. Its products have spread around the 

world, and it is dominated by a small number of companies with 

worldwide recognition. However, in certain respect the industry 

is more regional than global, in spite of the globalizing trends 

evident in the 1990s. One feature of the auto industry in the last 

25 years was the way in which leading vehicle manufacturers 

extended their operations in developing countries. For the global 

producers, rapidly growing markets in developing countries 

were spreading vehicle development costs; for establishing 

cheap production sites for the production of selected vehicles 

and components; and for access to new markets for higher-end 

vehicles, which would still be produced in the triad economies. 

As the complexity and automation of equipments increased, it 

resulted in severe problems of maintenance and repair. This put 

forward the tasks of developing a systematic approach to the 

study of any phenomena and process that can lead to failure free 

operation or render service for a good or at least reasonable 

period of time. When production-operations are concern, a 

maintenance person plays an important role in the reliability of 

equipment. It is also a well-known fact that a significantly large 

proportion of total human errors occur during the maintenance 

phase. Human error in maintenance is a subject, which has not 

been given the amount of attention that it deserves.  

Humans play an important role during the design, 

installation, production, and maintenance phases of a product. 

Human error may be defined as the failure to perform a specified 

task (or the performance of a forbidden action) that could lead to 

disruption of scheduled operations or result in damage to 

property and equipment. While human error has existed since 

the beginning of mankind, only in the last 50 years it has been 

the subject of scientific inquiry.  Various reasons due to which 

human errors can occur include inadequate lighting in the work 

area, inadequate training or skill of the manpower involved, poor 

equipment design, high noise levels, an inadequate work layout, 

improper tools, and poorly written equipment maintenance and 

operating procedures. Human error may be classified into six 

categories: 1.Operating errors, 2. Assembly errors, 3. Design 

errors, 4. Inspection errors, 5. Installation errors and 6. 

Maintenance errors. Maintenance error occurs due to incorrect 

repair or preventive actions. Two typical examples are the 

incorrect calibration of equipment and application of the wrong 

grease at appropriate points of the equipment. The occurrence of 

maintenance errors increases due to the increase in maintenance 

frequency as the equipment becomes older. 

Keeping above facts in view the present paper proposes a 

methodology to develop a decision-making aid tool whose 

objective is to assess the dependability and performances of a 

manufacturing system incorporating human error. In practical 

situation data collected or available for the complex repairable 

industrial systems are vague, ambiguous, qualitative and 

imprecise in nature due to various practical constraints. So it is
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not easy to calculate reliability indices of such systems up to a 

desired accuracy. If reliability indices of these systems have 

been calculated, then they have high range of uncertainty. The 

objective of the present study is to compute the operational 

behaviour of major part assembly system of an automobile 

incorporating human error in maintenance. Considered system 

consists of eight sub-units working in series as: engine, 

transmission, fuel supply system, fuel ignition system, exhaust 

system, cooling system, brake system and build. The study is 

focused on the system failures due to human errors in 

maintenance. It is assumed that the engine can fail due to 

operating error (EO). Transmission consists of five units 

namely: Power train, gear, clutch, differential device and drive 

shaft. Here, (1) the system can fail due to improper installation 

of power train and gear in transmission (TI). (2)  It is in reduced 

efficiency state due to improper working of differential device 

(D). (3)  The system is in failed state due to failure of drive shaft 

in transmission (DS). Fuel supply system (FSS) consists of five 

units like: fuel pump, FIP (fuel ignition pump), fuel injector, 

indirect injection, and valve. It is assumed that the system can 

fail due to error in inspection of FIP timing and fuel pump in 

fuel supply system. Further, it can also fail by misfiring (M) and 

low pressure (LP) of fuel ignition system having maintenance 

error and inspection error. Exhaust system consists of four units 

they are: manifold, TIP, catalytic converter and silencer. It is 

assumed that the system can fail due to bad assembly exhaust 

system (EA) and is in reduced efficiency state due to improper 

maintenance of cooling system having overheating problem 

(OVH). Braking system (BR) consists of brake pedal having 

drum brake, disk brake and hydraulic brake. Any design error in 

the brake system can cause system breakdown. Finally, Building 

system (BU) consists of chasis, axle, drive axle, suspension and 

steering. It is assumed that the system can fail due to installation 

error in axle and design error in chasis and steering in build 

system. Considered system can completely fail due to failure of 

any of the subsystems. Once the system fails due to improper 

working of differential device and drive shaft in transmission 

two types of repairs are involved to repair the system, similarly 

when the fuel ignition system can fail due to misfiring and low 

pressure, again joint repairs are involved so, joint probability 

distribution is applied to repair the system with the help of 

copula [9, 10, 11]. All failures follow exponential time 

distribution whereas all repairs follow general time distribution. 

The transition state diagram and state specification of the 

considered system is shown in Figure-1 and Table-1 

respectively. With the help of Supplementary variable technique, 

Laplace transformation and copula methodology, following 

reliability measures of the system have been evaluated: 

(1) Transition state probabilities of the system.  

(2) Asymptotic behaviour of the system.  

(3) Various measures such as availability, reliability, MTTF and 

cost effectiveness of the system.  

We also perform a parametric investigation which provides 

numerical results to show the effects of different system 

parameters to the reliability, availability, MTTF and cost which 

may be helpful to managerial staff of the industry in the decision 

making. 

2. Brief Introduction of Gumbel-Hougaard Family Copula 

A number of authors including [8] have studied the family 

of copulas extensively. The Gumbel-Hougaard family copula is 

defined as: 
1

1 2 1 2( , ) exp( (( log ) ( log ) ) ), 1C u u u u  
        

 
 

For θ = 1 the Gumbel-Hougaard copula models 

independence, for θ→∞ it converges to comonotonicity. 

State specification 

Tables 1 and 2 show the state specification and notations of 

the considered system: 

The following assumption has been taken into the 

considerations in this study. 

 Initially at t=0, all subsystems are operating well. 

  At t = 0 all the components are perfect and t > 0 they start 

operating.  

 Failures are statistically independent. 

 The repair time of the subsystems are assumed to be 

arbitrarily distributed. 

 Repaired subsystem/ plant(s) works like new. 

 All failures follow exponential time distribution. 

 Considered system can completely fail due to failure of any of 

the subsystems. 

 Joint probability distribution has been obtained with the help 

of copula for repair when the system failed due to failure of 

transmission and fuel supply system.  

State transition diagram of model 

 
Figure 1: Diagram of investigated system 

 
Figure 2: State transition diagram 
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Mathematical formulation of the model 

Using elementary probability considerations and limiting 

procedure, we obtain the following set of difference-differential 

equations governing the behaviour of considered system, 

continuous in time and discrete in space: 
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The boundary conditions of designed system are defined as: 

The state transition probability of the system in a state = failure 

rate × probability of the previous state. Therefore  
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Initial Condition 
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… (22) 

In the above equations t and x both represent times. The 

supplementary variable x, which represents the elapsed repair 

time of the system, varies only when the system is in degraded 

or failed state, and its rate of variation is exactly equal to that of 

the schedule time, represented by t. 

Solution of the model 

 Taking Laplace transforms of equation (1) through (21) 

subject to initial condition (22) and then on solving them one by 

one; we obtain the following transition state probabilities of the 

system: 
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Also up state and down state probabilities of the system is 

given by: 
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Asymptotic behaviour of the system  

In long run as t tends to infinity, the state transition 

probability of system can be obtained using Abel’s lemma in 

Laplace transformation i.e. )()(lim)(lim
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Particular cases 

(1) Availability analysis

 

A particular case is also discussed as given below: 
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 Let us take EO  = 0.005, TI  = 0.008, D  = 0.009, DS  = 

0.01, FSS  = 0.06, M  = 0.006, LP =0.005, EA =0.002, 
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OVH =0.004, CS =0.003, BR =0.009, BU =0.004, Фi = 1 

for  i= EO, TI, D, DS, FSS, M, LP, EA, OVH, CS, BR, BU, θ 

= = 1, and x= y= w= v= m= r= n= v=k = 1, then putting all 

these values in equation (47), taking inverse Laplace 

transformation, we get 

Pup (t) = -0.002992831292 e
(-0.003000000000 t) 

+0.09089745085 e
(-

1.10098171 t) 
-0.1045972416  

10
(-7) 

e
(-.9969905879t) 

-0.04625367733e
(-0.2043987365 t)

 -

0.009328505569e
(-0.00471367337 t)

      +0.9676775738            …(50)                        
 

Now setting t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, in equation (50), 

one can obtain Figure 2 which represents the variation of 

availability with respect to time. 

(2) Reliability Analysis 

Let the failure rates be EO  = 0.005, TI  = 0.008, D  = 

0.009, DS  = 0.01, FSS  = 0.06, M  = 0.006, LP =0.005, 

EA =0.002, OVH =0.004, CS =0.003, BR =0.009, 

BU =0.004, repair rates be Фi = 0 for  i= EO, TI, D, DS, FSS, 

M, LP, EA, OVH, CS, BR, BU, θ = = 1, and x= y= w= v= m= 

r= n= v=k = 1. Also let the repair follows exponential 

distribution. Now by putting all these values in equation (40) 

and taking inverse Laplace transform, using (46) and varying 

time from t = 0 to t = 10, one can obtain  Figure 3 which 

demonstrate the manner in which reliability varies as time 

passes. 

(3) MTTF Analysis 

We know that MTTF = )(
0

lim up sP
s 

 

(a) Setting Фi = 0 for  i= EO, TI, D, DS, FSS, M, LP, EA, 

OVH, CS, BR, BU = 0, TI  = 0.008, D  = 0.009, DS  = 

0.01, FSS  = 0.06, M  = 0.006, LP =0.005, EA =0.002, 

OVH =0.004, CS =0.003, BR =0.009, BU =0.004, θ 

= = 1, and x= y= w= v= m= r= n= v=k = 1 and varying EO  

as 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 

0.009,.01 one can obtain Figure 4 which demonstrates variation 

of MTTF with respect to EO . 

(b) Let us take Фi = 0 for  i= EO, TI, D, DS, FSS, M, LP, EA, 

OVH, CS, BR, BU = 0, EO  = 0.005, TI  = 0.008, D  = 

0.009, DS  = 0.01, FSS  = 0.06, M  = 0.006, EA =0.002, 

OVH =0.004, CS =0.003, BR =0.009, BU =0.004, θ 

= = 1, and x= y= w= v= m= r= n= v=k = 1 and varying LP  

as 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 

0.009,.01 Figure 4 can be obtained which shows how MTTF 

varies as the value of LP  increases. 

(c) Fixing Фi = 0 for  i= EO, TI, D, DS, FSS, M, LP, EA, 

OVH, CS, BR, BU = 0, EO  = 0.005, TI  = 0.008, D  = 

0.009, DS  = 0.01, FSS  = 0.06, LP =0.005, EA =0.002, 

OVH =0.004, CS =0.003, BR =0.009, BU =0.004, θ 

= = 1, and x= y= w= v= m= r= n= v=k = 1and varying M  

as 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 

.01, one can obtain Figure 4 which shows variation of MTTF 

with respect to .M  

Putting Фi = 0 for  i= EO, TI, D, DS, FSS, M, LP, EA, OVH, 

CS, BR, BU = 0, EO  = 0.005, TI  = 

(d) 0.008, D  = 0.009, DS  = 0.01, FSS  = 0.06, M  = 

0.006, LP =0.005, EA =0.002, OVH =0.004, CS =0.003, 

BU =0.004, θ = = 1, and x= y= w= v= m= r= n= v=k = 

1and varying BR  as 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 

0.007, 0.008, 0.009, .01 one can obtain Figure 4 which 

represents the manner in which MTTF varies with respect 

to BR . 

(e) Setting Фi = 0 for  i = EO, TI, D, DS, FSS, M, LP, EA, 

OVH, CS, BR, BU = 0, EO  = 0.005, TI  = 0.008, D  = 

0.009, FSS  = 0.06, M  = 0.006, LP =0.005, EA =0.002, 

OVH =0.004, CS =0.003, BR =0.009, BU =0.004, θ 

= = 1, and x= y= w= v= m= r= n= v=k = 1and varying DS  

as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 one can 

obtain Figure 5 which demonstrates variation of MTTF with 

respect to DS . 

(f) Assuming Фi = 0 for  i= EO, TI, D, DS, FSS, M, LP, EA, 

OVH, CS, BR, BU = 0, EO  = 0.005, TI  = 0.008, D  = 

0.009, DS  = 0.01, M  = 0.006, LP =0.005, EA =0.002, 

OVH =0.004, CS =0.003, BR =0.009, BU =0.004, θ 

= = 1, and x= y= w= v= m= r= n= v=k = 1and varying FSS  

as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,0.1 Figure 5 

can be obtained which shows how MTTF varies as the value of 

FSS
 
increases. 

(4) Cost Analysis

 

Letting EO  = 0.005, TI  = 0.008, D  = 0.009, DS  = 0.01, 

FSS  = 0.06, M  = 0.006, LP =0.005, EA =0.002, 

OVH =0.004, CS =0.003, BR =0.009, BU =0.004, Фi = 1 

for  i= EO, TI, D, DS, FSS, M, LP, EA, OVH, CS, BR, BU, θ 

= = 1, and x= y= w= v= m= r= n= v=k = 1. Furthermore, if 

the repair follows exponential distribution then using equations 

(46), we can obtain equation (51).
 
If the service facility is always 

available, then expected profit during the interval (0, t] is given 

by
 

                                
 
t

tKdttupPKtEP

0
)()( 21

 

where, K1 and K2 are the revenue and service cost per unit time 

respectively, then 

E P (t) = K1 [0.2602109240 e
(-0.5000000000 t) 

+ 0.003420894509 e
(-

0.9100000000 t) 
+0.3707166241 

e
(-1.577110005 t) 

+0.2282704474 e
(-0.8601482323 t) 

cos(0.007394121216 

t) +0.2901464146  

e
(-0.8601482323 t)

 sin(0.007394121216 t) -0.05867072106 e
(-

0.7862665523 t) 
–0.2283382234  

e
(-0.7285677930 t)

-0.003350319082 e
(-0.6042513821 t)

-9.234941008 e
(-

0.1268411365 t) 
    +8.996326343]-K2t                              …..(51)  

Keeping K1 = 1 and varying K2 at 0.1, 0.2, 0.3 in equation (51), 

one can obtain Figure 6. 
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Table 1: State specification of the system 

States Description System 

State  

S0 The system is in fully operational condition. G 

S1 The system is in failed state due to operating error in engine. FR 

S2 The system is in failed state due to improper installation of power train and gear in transmission. FR 

S3 The system is in reduced efficiency state due to improper working of differential device. D 

S4 The system is in failed state due to failure of drive shaft in transmission. FR 

S5 The system is in failed state due to error in inspection of FIP timing and Fuel pump in Fuel supply system. FR 

S6 The system is in failed state due to misfiring and low pressure of fuel ignition system having maintenance error and inspection 

error. 

FR 

S7 The system is in failed state due to bad assembly exhaust system. FR 

S8 The system is in reduced efficiency state due to improper maintenance of cooling system having overheating problem. D 

S9 The system is in failed state due to failure of cooling system. FR 

S10 The system is in failed state due to design error in brake system. FR 

S11 The system is in failed state due to installation error in axle and design error in chasis and steering in build system. FR 

Note:  G= Good state; FR= Failed state under repair; D = Degraded 

 

Table 2: Notations 

Pr                       Probability 

)(0 tP              Pr (at time t system is in good state S0) 

),( tjPi           

 

Pr {the system is in failed state due to the failure of the ith subsystem at time t},where i=1, 2, 4, 5, 6, 7, 9, 10, 11 and j=x, 

y, w, v, m, r, n, v, k.   

 j                   Elapsed repair time, where j= x, y, w, v, m, r, n, v, k.                  

EO               Engine failure rate due to operating error. 

TI / FSS           Transmission failure rate due to improper installation of power train and gear. 

Failure rate of Fuel supply system due to error in inspection of FIP timing and Fuel pump. 

DSD  /                Transmission failure rate due to improper working of differential device/ drive shaft. 

LPM  /                   Misfiring rate / Rate of low pressure of fuel ignition system due to maintenance error and inspection error. 

EA
 

Failure rate of exhaust system due to bad assembly. 

OVH
 

Overheating rate of cooling system due to improper maintenance. 

CS
 

Failure rate of cooling system. 

BR
 

Failure rate of brake system due to design error. 

BU
 

Failure rate of build system due to installation error in axle and design error in chasis and steering. 

)( ji
 

General repair rate of ith failure in the time interval (j, j+), where i= EO, TI, D, DS, FSS, M, LP, EA, OVH, CS, BR, BU 

and j=x, y, w, v, m, r, n, v, k. 

K1, K2               
Revenue cost per unit time and service cost per unit time respectively. 

C(u1(x),u2(x)) 

))(),(( 21 wXwXC  

The expression for joint probability (failed state to good state) according to Gumbel-Hougaard family is given as: 


  /1

021 ])}({logexp[)())(),(( mmmmumuC MLP . 


  /1

021 ])}({logexp[)())(),(( wwwXwXwXC DSD  

where, 
,1

meu  )(2 mu MLP
and 

,1
weX  ),(2 wX DSD  
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10. Conclusions 

 Figure 2 provide information about the changes of 

availability of the repairable system with respect to time when 

failure rates are fixed at different values. When failure rates are 

fixed at lower values EO  = 0.005, TI  = 0.008, D  = 0.009, 

DS  = 0.01, FSS  = 0.06, M  = 0.006, LP =0.005, 

EA =0.002, OVH =0.004, CS =0.003, BR =0.009, 

BU =0.004 availability of the system decreases fast and 

probability of failure increases, with passage of time and 

ultimately becomes steady to the value zero after a sufficient long 

interval of time. From this, one can safely predict the future 

behaviour of the system at any time for any given set of 

parametric values, as is evident by the graphical consideration of 

the model. The reliability of the system initially decreases 

rapidly with respect to time and later on stabilizes at value 0.4 as 

shown in Figure 3. By critically examination of Figures 4 and 5 

one can see that the MTTF of the system decreases with the 

increment in the values of EO , LP , M , BR
, DS  

and FSS . MTTF is found to be highest with respect to FSS . 

The value of MTTF varies from 29.9382-27.6353, 30.5031-

28.1159, 30.7936-28.3625, 31.6993-29.1291, 29.3939-22.0303 

and from 53.8888-21.5555 with respect to EO , LP , 

,M ,BR DS  and FSS  respectively for considered 

parameters. When revenue cost per unit time K1 fixed at one, 

service cost K2 = 0.1, 0.2, 0.3 profit has been calculated and 

results are demonstrated by graphs (Figure 3). The observation 

outlines that as the service cost decreases profit increases. Here 

highest and lowest values of expected profit are obtained to be 

8.2203 and 0.6647 respectively for considered values. 

 Thus, in general with this study, behaviour of such complex 

system can be analyzed and forecast in advance. 

 
  Figure 2: Time vs. Availability 

 
Figure 3: Time vs. Reliability 

 
Figure 4: MTTF vs.

 EO
, LP

, M , BR
 

 
Figure 5 MTTF vs. ,DS FSS  

 
 Figure 6: Time vs. cost 
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