
V. S. Gulhane et al./ Elixir Comp. Sci. & Engg. 55A (2013) 13108-13112

13108

Introduction

 XML has become the de facto standard for data exchange.

However, its flexibility and portability are gained at the cost of

substantially inflated data, which is a consequence of using

repeated tags to describe data. This hinders the use of XML in

both data exchange and data archiving. In recent years, many

XML compressors have been proposed to solve this data

inflation problem. There are two types of compressions:

unqueriable compression and queriable compression. The

unqueriable compression, such as XMill [Liefke, H. & Suciu, D.

2000.et al], makes use of the similarities between the

semantically related XML data to eliminate data redundancy so

that a good compression ratio is always guaranteed. However, in

this approach the compressed data is not directly usable; a full

chunk of data must be first decompressed in order to process the

imposed queries.

1. <site>

2. <open_auctions>

3. <open_auction id="open1">

4. <initial>$12.00</initial>

5. <bid>

6. <date>12/02/2000</date>

7. <increase>$2.00</increase>

8. </bid>

9. <bid>

10. <date>12/03/2000</date>

11. <increase>$1.50</increase>

12. </bid>

13. <seller person="person71"/>

14. </open_auction>

15. <open_auction id="open2">

16. <initial>$500.00</initial>

17. <seller person="person8"/>

18. </open_auction>

19. <open_auction id="open3">

20. <initial>$1.50</initial>

21. <bid>

22. <date>11/29/2002</date>

23. <increase>$0.50</increase>

24. </bid>

25. <seller person="person15"/>

26. </open_auction>

27. <open_auction id="open4">

28. <initial>$100.00</initial>

29. <seller person="person11"/>

30. </open_auction>

31. <open_auction id="open5">

32. <initial>$8.50</initial>

33. <bid>

34. <date>08/20/2002</date>

35. <increase>$5.00</increase>

36. </bid>

37. <seller person="person7"/>

38. </open_auction>

39. </open_auctions>

40. </site>

Fig. 1. A Sample Auction XML Extract

The queriable compression encodes each of the XML data

items individually so that the compressed data item can be

accessed directly without a full decompression of the entire file.

However, the fine-granularity of the individually compressed

data unit does not take advantage of the XML data

commonalities and, hence, the compression ratio is usually

much degraded with respect to the full-chunked compression

strategy used in unqueriable compression.

The queriable compressors, such as XGrind [P. M. Tolani

and J. R. Haritsa. XGRIND:] and XPRESS [J. K. Min, 2003 et

al], adopts homomorphic transformation to preserve the

structure of the XML data so that queries can be evaluated on

the structure. However, the preserved structure is always too

large (linear in the size of the XML document). It will be very

inefficient to search this large structure space, even for simple

path queries. For example, to search for bidding items with an

Tele:

E-mail addresses: v_gulhane@rediffmail.com

 © 2013 Elixir All rights reserved

Compression technique for XML - a new prototype
V. S. Gulhane

and M. S. Ali

ABSTRACT

XML makes data flexible in representation and easily portable on the Web but it also

substantially inflates data size as a consequence of using tags to describe data. Although

many effective XML compressors, such as XMill, have been recently proposed to solve this

data inflation problem, they do not address the problem of running queries on compressed

XML data. More recently, some compressors have been proposed to query compressed

XML data. However, the compression ratio of these compressors is usually worse than that

of XMill and that of the generic compressor gzip, while their query performance and the

expressive power of the query language they support are inadequate. In this paper we

propose our approach a XML compressor which support querring compress XML data with

partial de-compressor. Our approach address the compressor time and adaptive compression

ratio of existing XML compressor.

 © 2013 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 30 May 2012;

Received in revised form:

13 February 2013;

Accepted: 18 February 2013;

Keywords

Prototype,

XML,

Web,

Compressor.

Elixir Comp. Sci. & Engg. 55A (2013) 13108-13112

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

V. S. Gulhane et al./ Elixir Comp. Sci. & Engg. 55A (2013) 13108-13112

13109

initial price under $10 in the compressed file of the sample XML

extract shown in Fig. 1, XGrind parses the entire compressed

XML document and, for each encoded element/attribute parsed,

it has to match its incoming path with the path of the input

query. XPRESS makes an improvement as it reduces the

element-by-element matching to path-by-path matching by

encoding a path as a distinct interval in [0.0,1.0], so that a path

can be matched using the containment relationships among the

intervals. However, the path-by-path matching is still inefficient

since most paths are duplicate in an XML document, especially

for those data-centric XML documents.

Proposed Xml Compression Methodology

The XML Compressor supports compression of XML

documents. The compression is based on tokenizing the XML

tags. The assumption is that any XML document has a repeated

number of tags and so tokenizing these tags gives a considerable

amount of compression. Therefore the compression achieved

depends on the type of input document; the larger the tags and

the lesser the text content, then the better the compression. The

goal of compression is to reduce the size of the XML document

without losing the structural and hierarchical information of the

DOM tree. The compressed stream contains all the "useful"

information to create the DOM tree back. The compressed

stream can also be generated from the SAX events. XML Parser

for Java can also compress XML documents. Using the

compression feature, an in memory DOM tree or the SAX

events generated from an XML document are compressed to

generate a binary compressed output. The compressed stream

generated from DOM and SAX are compatible, that is, the

compressed stream generated from SAX can be used to generate

the DOM tree and vice versa.

XML Serialization and Compression

An XML document is compressed into a stream by means

of the serialization of an inmemory DOM tree. When a large

XML document is parsed and a DOM tree is created in memory

corresponding to it, it may be difficult to satisfy memory

requirements and this can affect performance. The XML

document is compressed into a stream and stored in an in-

memory DOM tree. This can be expanded at a later time into a

DOM tree without performing validation on the XML data

stored in the compressed stream. The compressed stream can be

treated as a serialized stream, but the information in the stream

is more controlled and managed, compared to the compression

implemented by Java's default serialization.

There are two kinds of XML compressed streams:

 DOM based compression: The in-memory DOM tree,

corresponding to a parsed XML document, is serialized, and a

compressed XML output stream is generated. This serialized

stream regenerates the DOM tree when read back.

nerated

when an XML file is parsed using a SAX parser. SAX events

generated by the SAX parser are handled by the SAX

compression utility, which handles the SAX events to

generate a compressed stream. In addition to the above

methodology the implemented proposed compression

methodology compresses XML as well as HTML documents

and works as follows:

tags will be preserved and remain untouched (with the exception

of <script type="text/x-jquery-tmpl"> tags which are

compressed as HTML). Inline javascript inside tags

(onclick="test()") will be preserved as well. You can wrap any

part of the page in <!-- {{{ -->...<!-- }}} --> comments to

preserve it, or provide a set of your own preservation rules (out

of the box <?php...?>, <%...%>, and <!--#... --> are also

supported)

 Commen

Multiple spaces are replaced with a single space.

removed.

 Quotes around tag attributes could be removed when safe (off

by default).

 All spaces between tags could be removed (off by default).

 Spaces around selected tags could be removed (off by

default).

 Existing doctype declaration could be replaced with

simple <!DOCTYPE html> declaration (off by default).

 Default attributes from <script>, <style>, <link>, <form>,

<input> tags could be removed

(off by default).

 Values from Boolean tag attributes could be removed (off by

default).

 javascript: pseudo-protocol could be removed from inline

event handlers (off by default).

 http:// and https:// protocols could be replaced with // inside

href, src, cite, and action tag attributes (tags marked with

rel="external" are skipped).

 Content inside <style> tags could be optionally compressed

using YUI compressor or your own compressor implementation.

 Content inside <script> could be optionally compressed using

YUI compressor, Google Closure Compiler or your own

compressor implementation.

 Any content inside <![CDATA[...]]> is preserved.

 All comments are removed. Could be disabled.

 All spaces between tags are removed. Could be disabled.

 Unneeded spaces inside tags (multiple spaces, spaces around

=, spaces before />) are removed. With default settings your

compressed layout should be 100% identical to the original in all

browsers (only characters that are completely safe to remove are

removed). Optional settings (that should be safe in 99% cases)

would give you extra savings. Optionally all unnecessary quotes

can be removed from tag attributes (attributes that consist from a

single word: <div id="example"> would become <div

id=example>). This usually gives around 3% page size decrease

at no performance cost but might break strict validation so this

option is disabled by default. About extra 3% page size can be

saved by removing inter-tag spaces. It is fairly safe to turn this

option on unless you rely on spaces for page formatting. Even if

you do, you can always preserve required spaces with or

 . This option has no performance impact

Architecture :

The following figure 2 shows the complete architecture of

proposed implemented research methodology.

Figure 2: Complete Architecture of Proposed Implemented

Research Methodology

V. S. Gulhane et al./ Elixir Comp. Sci. & Engg. 55A (2013) 13108-13112

13110

In the proposed methodology initially all the XML

documents are compressed using XML SAX parser. The

graphical user interface is designed from where user can select

their XML or HTML documents that he/she want to compress.

The compressed XML and HTML file will be created in the

current working directory with name Compressed XML.xml and

Compressed HTML.html as per the file that has been selected by

the user. Figure 3 shows the screenshot of HTML compressor

where Image Acquisition Toolbox.html file is compressed. The

original size of file was 69114 bytes. After compression the size

of file is 49474 bytes. The total time required for compression is

234 ms. Figure 4 shows the screenshot where extracting frames

from video.html is compressed. The original size of the file was

41762 bytes. After compression the size of file is 36645 bytes.

The total time required for compression is 140 ms.

Figure 3: Compression of Image Acquisition Toolbox.html

Figure 4: Compression of extracting frames from video.html

Experimental design and setup :

We compare the performance of our approach with that of

the following four compressors:

(1) gzip, which is a widely used generic text compressor,

(2) XMill, which is a well-known XML-conscious compressor,

and

(3) XGrind, which is a well known XML-conscious compressor

that supports querying of compressed XMLdata. (4) XCQ -

Querriable compressor.

All the experiments were run on a notebook computer with

the following configuration:

– Core to Duo, machine with a clock rate of 600 MHz.

– 1GB RAM of main memory.

– 80GB hard disk.

During the experiments, the number of processes running

on the machine was minimized in order to reduce unrelated

influences. The time taken to compress documents is obtained

by running the corresponding processes repeatedly three times

and taking the average of the three runs. The main reason for

doing this is to reduce the disk I/O influences on the results by

loading the whole document into the physical memory if

possible . To evaluate the performance of the compressors, we

used five datasets that are commonly used in XML research

(see the experiments in [W. Y. Lam, W. Ng, may 2003et al,

Liefke, H. & Suciu, D. 2000. XMill) SwissProt, DBLP,ebay,

yahoo, and Shakespeare.We now briefly introduce each dataset.

1.Ebay,yahoo : It consists of many XML documents that are

used in online shopping processes through different e-shopping

and auction web sites. These documents are converted from

database systems and they contain many empty elements with

neither data nor sub-elements inside them

2. Swissprot is the complete description of the DNA sequence is

described in the XML document

3. DBLP is a collection of the XML documents freely available

in the DBLP archive . that illustrates different papers published

in proceeding of conferences and journals in the field of

computer science.

4. Shakespeare is a collection of the plays of William

Shakespeare in XML [AlHamadani, Baydaa (2011) et al].

The first four datasets given above are regarded as data-

centric as the XML documents have a very regular structure,

whereas the last one is regarded as document centric as the XML

documents have a less regular structure.

Figure 5 shows the screenshot of the XML Compressor

where shakespear.xml is compressed. The original size of file

was 7894787 bytes. After compression the file size is 3947393

bytes. The time required for compression is 3047 ms.

Figure 5: Compression of shakespear.xml

Figure 6 shows the screenshot of the XML Compressor

where SwissProt.xml is compressed. The original size of file

was 94460066 bytes. After compression the file size is

84775077 bytes. The time required for compression is 25359

ms.

Figure 6: Compression of SwissProt.xml

V. S. Gulhane et al./ Elixir Comp. Sci. & Engg. 55A (2013) 13108-13112

13111

Figure 7 shows the screenshot of the XML Compressor

where dblp.xml is compressed. The original size of file was

92301286 bytes. After compression the file size is 644495524

bytes. The time required for compression is 25547 ms.

Figure 7: Compression of dblp.xml

Figure 8 shows the screenshot of the XML Compressor

where yahoo.xml is compressed. The original size of file was

25327 bytes. After compression the file size is 22694 bytes. The

time required for compression is 125 ms.

Figure 8: Compression of yahoo.xml

Figure 9 shows the screenshot of the XML compressor

where ebay.xml is compressed. The original size of file was

35469 bytes. After compression the file size is 34281 bytes. The

time required for compression is 141 ms.

Figure 9: Compression of ebay.xml

The following graph 1 shows the computed values of CR1,

CR2 and the compression time required for the implemented

methodology.

Graph 1: Comparison of CR1, CR2 and Compression time on

various datasets.

Compression performance

We now present an empirical study of our XML compressor

performance with respect to compression ratio, compression

time. All the numerical data used to construct the graphs can be

found in the graph in(W. Y. Lam, W. Ng, et al)

1] Compression Ratio :

The compression ratios are calculated for above discussed

results by using the following equation. There are two different

expressions that are commonly used to define the Compression

Ratio (CR) of a compressed XML document.

CR1 = bits/byte

CR2 = X 100

The first compression ratio, denoted CR1, expresses the

number of bits required to represent a byte. Using CR1 a better

performing compressor achieves a relatively lower value. On the

other hand, the second compression ratio, denotedCR2,

expresses the fraction of the input document eliminated. Using

CR2, a better performing compressor achieves a relatively

higher value. Graph 2 shows the compression ratios that are

achieved on the above-mentioned three datasets expressed in

CR1 (bits/byte).Both XMill and XCQ consistently achieve a

better compression ratio than gzip. Our approach compression

ratio is better than XGrind and comparable with XCQ. The

compression ratio achieved is relatively high for data-centric

documents (i.e., SwissProt, DBLP, Ebay,Yahoo) and relatively

low for document-centric documents (i.e., Shakespeare). This

can be explained by the fact that the Shakespeare document does

not have a regular structure, and therefore XMill , XCQ and our

approach cannot take much advantage of the document structure

during compression.

Graph 2: Comparison ratio for different data sets.

2] Compression Time :

Following Graph 3 shows the compression time (expressed

in seconds) required by the compressors to compress the XML

documents. From the observation it is clear that for our

approach, we are getting better compression time as compared to

other queribale XML compressor. It is clear that gzip out

performs the other compressors in this experiment. XMill had a

slightly longer compression time than gzip, and XCQ in turn had

a slightly longer compression time than XMill. Our approach

has slightly more compression time than Xmill but lesser

compression time than a quriable XCQ and Xgrind. The time

overhead can be explained by the fact that both XMill and XCQ

introduce a pre-compression phase for re-structuring the XML

documents to help the main compression process. The grouping

by enclosing tag heuristic runs faster than the grouping method

used in XCQ and thus XMill runs slightly faster than XCQ. It

should be noted, however, that the data grouping result

generated by XMill may not be as precise as our PPG data

V. S. Gulhane et al./ Elixir Comp. Sci. & Engg. 55A (2013) 13108-13112

13112

streams. This complicates the search for related data values of an

XML fragment in the separated data containers in a compressed

file. In addition, the compression buffer window size in XMill is

set at 8 MB, which is optimized solely for better compression

[H. Liefke and D. Suciu. XMill et al]. Such a large chunk of

compressed data is costly in full or partial decompression. On

the other hand, the compression time required by XGrind is

generally much longer than that required by gzip, XMill, XCQ

and our proposed approach. XGrind uses Huffman coding and

thus needs an extra parse of the input XML document to collect

statistics for a better compression ratio, resulting in almost

double the compression time required in a generic compressor.

Graph 3 : Compression time for different data sets for

different techniques

Conclusion and future Scope:

We have presented here our approach for compression of

XML database with the experimental evaluation we come to the

conclusion that our compression time is better and compression

ration with some of querible XML compressor. Still we found

that there is a room for improvement in compression ration by

applying schemes such as indexing.

References:

1] A. Arion, A. Bonifati, G. Costa, S. D'Aguanno, I. Manolescu,

and A.Pugliese. Efficient Query Evaluation over Compressed

XML Data. Proceedings of EDBT (2004).

2] A.Arion, A. Bonifati, G. Costa, S. D'Aguanno, I. Manolescu,

and A. Pugliese. XQueC: Pushing Queries to Compressed XML

Data. Proceedings of the 29
th

 International Conference on Very

Large Data Bases (VLDB'03), (2003).

3] Al-Hamadani, B. T., Alwan, R. F., Lu, J. & Yip, J. 2009.

Vague Content and Structure (VCAS) Retrieval for XML

Electronic Healthcare Records (EHR). Proceeding of the 2009

International Conference on Internet Computing, USA. P: 241-

246.

4] Al Hamadani, Baydaa (2011) Retrieving Information from

Compressed XML Documents According to Vague Queries.

Doctoral thesis, University of Huddersfield.

5] Augeri, C. J., Bulutoglu, D. A., Mullins, B. E., Baldwin, R.O.

& Leemon C. Baird, I. (2007). An analysis of XML compression

efficiency. Proceedings of the 2007 workshop on Experimental

computer science, ACM, San Diego, California.

6] Clarke J (2004) The Expat XML parser. Extensible Markup

Language (XML) 1.0 (Second Edition) W3C Recommendation,

October (2000). http://www.w3.org/TR/REC-xml/.

7] G. Antoshenkov. Dictionary-Based Order-Preserving String

Compression. VLDB Journal 6, page 26-39, (1997).

Gerlicher, A. R. S. (2007), Developing Collaborative XML

Editing Systems, PhD thesis, University of the Arts London,

London.

8] Groppe, J.(2008), SPEEDING UP XML QUERYING, PhD

thesis,Zugl Lübeck University, Berlin. H. Liefke and D. Suciu.

XMill: An Efficient Compressor for XML Data. Proceedings of

the ACM SIGMOD International Conference on Management of

Data, pp. 153-164 (2000).

9] Harrusi, S., Averbuch, A. & Yehudai, A. 2006. XML Syntax

Conscious Compression.Proceedings of the Data Compression

Conference (DCC’06),http://www.w3.org/TR/xquery.

10] J. Cheng and W. Ng. XQzip: Querying Compressed XML

Using Structural Indexing. Proceedings of EDBT (2004).

11] J. Clark. XML Path Language (XPath), (1999).

http://www.w3.org/TR/xpath.

12] J. Gailly and M. Adler. gzip 1.2.4. http://www.gzip.org/.

13] J. K. Min, M. J. Park, and C. W. Chung. XPRESS: A

Queriable Compression for XML Data. Proceedings of the ACM

SIGMOD International Conference on Management of Data

(2003).

14]J.M.Martinez.MPEG-7Overview(version9).

http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-

7.htm.

15] Liefke, H. & Suciu, D. 2000. XMill: an Efficient

Compressor for XML Data. ACM.

16] Mark nelson, Prinipal of data compression, pub 1999.

Moro, M. M., Ale, P., Vagena, Z. & Tsotras, V. J. 2008. XML

Structural Summaries. PVLDB '08, Auckland, New Zealand.

17] Ng, W., Lam, W.-Y. & Cheng, J. (2006) Comparative

Analysis of XML Compression Technologies. World Wide

Web: Internet and Web Information Systems, Vol. 9,

Pages 5-33

18] Norbert, F. & Kai, G. (2004) XIRQL: An XML query

language based on information retrieval concepts. ACM Trans.

Inf. Syst., 22, 313-356.

19] P. M. Tolani and J. R. Haritsa. XGRIND: A Query- friendly

XML Compressor. IEEE Proceedings of the 18th International

Conference on Data Engineering (2002). pkzip.

http://www.pkware.com/.

20] S. Boag et al. XQuery 1.0: An XML Query Language, Nov.

(2002).

21] Smith S. Nair XML compression techniques: A survey.

Department of Computer Science ,University of Iowa, USA

22] T. M. Cover and J. A. Thomas. Elements of Information

Theory. Wiley-Interscience, John Wiley &S ons, Inc., New York,

(1991). The bzip2 and libbzip2 official home page.

http://sources.redhat.com/bzip2/.

23] Violleau, T. (2001) Java Technology and XML. ORACLE.

24] W. Y. Lam, W. Ng, P. T. Wood, and M. Levene. XCQ:

XML Compression and Querying System. Poster Proceedings,

12th International World-Wide Web Conference (WWW2003),

May (2003). Winzip. http://www.winzip.com/.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xpath
http://www.gzip.org/
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.pkware.com/
http://sources.redhat.com/bzip2/
http://www.winzip.com/

