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Introduction  

  In recent decades, the robust neuronal adaptive control of 

complex nonlinear dynamic systems has been studied in several 

research works which we quote [1-6]. It is used in several 

industrial applications and particularly in the cases where we are 

confronted with complex nonlinear dynamics and inaccuracies 

due to uncertainties attached to the system to be controlled. The 

use of the method of robustification is essential to improve the 

tracking performance and ensure the robustness of the closed 

loop system in front of the structural uncertainties and external 

disturbances. This control technology adds to the main control 

signal a supervisory signal by sliding mode or of H type. 

Several studies of robustification of sliding mode adaptive 

neural control are based on the use of adaptive neural networks 

for modeling the process or to calculate the desired control law 

[7-11]. Generally, the control laws were derived from the 

examination of stability. Overall, the constructed command 

ensures stability and good tracking performance. The 

disadvantage of sliding mode adaptive neural control is the 

existence of the sign function that causes sudden and rapid 

changes of the control signal, which can excite the high 

frequency of the process and cause damage it. Many solutions 

have been proposed in literature in particular Lie Slotine and 

added a transition band around the sliding surface to transform 

the sign function in saturation and thus remove the abrupt 

changes [12]. 

Several research works have studied the technique H like 

[13-16]. This technique aims at determining the tracking 

performances based on a criterion connecting on the one hand 

the norms of prosecution errors   and on the other hand the 

desired level of disturbance attenuation. This criterion can be 

interpreted in the state space by obtaining a positive definite 

matrix unique solution of the Riccati equation. 

The contribution of this paper is to propose two adaptive 

controls neuronal structures of nonlinear dynamical 

multivariable systems rested on the theory of Lyapunov.  The 

architecture and learning algorithm of these two neural adaptive 

control structures require the modeling of system  to be 

controlled, that is to say the determination of its  state equations 

using the concepts of neural networks. In this sense, we 

proposed linearization technique inputs- outputs of the system to 

be controlled based on neural networks. This technique consists 

in finding linear relationships between inputs and outputs of the 

system. The neural model of the system obtained online by this 

linearization technique is used to calculate the commands laws. 

In fact, the first proposed control structure which is the neural 

indirect adaptive control uses the Jacobian matrix of the neural 

model during the calculation of the parameters of neural 

controller. by cons the second  proposed control structure which  

is the robust neural adaptive control, use the state equations 

derived from the neural model to determine the neuronal 

controller  and add to  main control signals supervision signals 

by the technique H .  

This document is organized as follows: In Section 2 we 

present the proposed architecture of recurrent neural network 

and its learning algorithm based on Lyapunov theory, used in the 

calculations of the model parameters of a complex nonlinear 

dynamic multivariable system. In Section 3 we show the 

architecture of the neuronal controller and its proposed learning 

algorithm in the structure of neuronal indirect adaptive control.  

The proposed structure of robust neural adaptive control by the 

technique H  is described in Section 4. The numerical results 

and discussions of these two commands mentioned previously 

are presented in Section 5. Finally, the conclusion is given in 

Section 6. 
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Neural network modeling approach 

Neural network modeling of a system from samples affected 

by noise usually requires four steps- The first step is the choice 

of the architecture of the neural network, that is to say the 

number of neurons in the input layer which is a function of past 

values of inputs and outputs, the number of hidden layers, the 

number of neurons in each hidden layer, the number of neurons 

in the output layer, the activation functions of each neuron and 

organization of these neurons between themselves [17-28]. 

-The second step is the normalization or the transformation 

performed on the data inputs-outputs to distribute them 

uniformly and adapt them to an acceptable level for the neural 

network [29-31]. All data values must be between  0,1  

or 1,1 .- The third step is learning or in other words the 

calculation of network parameters from samples inputs-outputs 

system to be identified [32-34].- The fourth step is the validation 

of the neural network obtained by using the tests measurements 

performances criteria. 

Proposed architecture of recurrent neural network 

The figure 1 shows the architecture of the neural network used 

during the identification phase of an uncertain and perturbed 

nonlinear complex dynamic multivariable system (with 

p inputs and p outputs).  The structure of this neural network 

is composed of three parts: two linear parts to model the 

behavior linear of the system and a nonlinear part to 

approximate the nonlinear dynamics. 

 
Figure 1- Proposed architecture of the neural network  
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$  $  $  1 , ,
T

py k y k y k 
 

L  is the vector of the neural network 

outputs at instant k . 

     11 1 , , 1
T

pu k u k u k     L  is the vector of  the 

system inputs. 

     1 , ,
T

py k y k y k   L  is the vector of  the system 

outputs. 

       

     

1 1 12 2 , , , , 2 ,

, , , 2 , ,

b j

T

j bj p p bp

U k u k u k n u k

u k n u k u k n

    

   


L L

L L L

 

such as 2 bjn , 1 j p                                (1)         

       

     

1 1 11 1 , , , , 1 ,

, , , 1 , ,

a j

T

j aj p p ap

Y k y k y k n y k

y k n y k y k n

    

   


L L

L L L

  

such as 1 ajn , 1 j p                                             (2) 

     1 , ,
T

pk l k l k    L  is the vector of the second 

hidden layer outputs of neural model 

       

     

1 1 11 1 , , , , 1 ,

, , , 1 , ,

r c j

T

j cj p p cp

Y k l k l k n l k

l k n l k l k n

    

   


L L

L L L

 such as1 cjn , 1 j p                                              (3) 

 1

1

1

x

x

e
f x

e









 and  2f x x  are the activation functions 

of neurons. 

hn  the number of neurons in the first hidden layer. 

The coefficients of the vector of the neural model parameters 

w are decomposed into eight groups, formed respectively by:  

1 1
11 1

1

1 1
1

r

h h r

n

n n n

w w

w

w w

 
 

  
 
  

L

M O M

L

 the weights between neurons of the 

input layer and neurons of the first hidden layer, 

2
11

2

2
1hn

w

w

w

 
 

  
 
  

M  the bias of neurons in the first hidden layer,  

 
3 3
11 1

3

3 3
1

h

n

n

p pn

w w

w

w w

 
 

  
 
  

L

M O M

L  the weights between neurons of the 

first hidden layer and neurons of the second hidden layer, 

 

4
11

4

4
1p

w

w

w

 
 

  
 
  

M

 the bias of neurons in the second hidden layer, 

 

5 5
11 1

5

5 5
1

r

r

n

p pn

w w

w

w w

 
 

  
 
  

L

M O M

L   the weights between neurons of the 

input layer and neurons of the second hidden layer,  
6 6
11 1

6

6 6
1

h

h h h

n

n n n

w w

w

w w

 
 

  
 
  

L

M O M

L

 the weights between neurons of the 

first hidden layer, 
7 7
11 1

7

7 7
1

p

p pp

w w

w

w w

 
 

  
 
  

L

M O M

L

 the weights between neurons of the 

second hidden layer, 



Farouk Zouari/ Elixir Control Engg. 55A (2013) 13050-13064 
 

13052 

8 8
11 1

8

8 8
1

p

p pp

w w

w

w w

 
 

  
 
  

L

M O M

L

 the weights between neurons of the 

input layer and output layer.  

 

 

 

11

1h

h

h

h
n

x k

x k

x k

 
 

  
 
  

M  the first hidden layer outputs of neural 

model, 

1 1 1

p p p

r aj cj bj

j j j

n n n n p
  

     
 

The vector of the neural model parameters is as follows: 
1 1 2 2
11 11 1

3 3 4 4 5
11 11 1 11

5 6 6 7 7 8 8
11 11 11

h r h

h

r h h

n n n

pn p

T

pn n n pp pp

w w , ,w ,w , ,w ,

                 w , ,w ,w , ,w ,w ,

                 ,w ,w , ,w ,w , ,w ,w , ,w







L L

L L

L L L L

     

              (5)                                                                                          

            1( ) 2 , 1 , 1 , ,
r

T TT T T

r nk U k Y k Y k k k            
L

    (6)                                                                                                                                                               

The vector of the first hidden layer outputs is in the following 

form: 

 

 

 

  

  

1 11

1h
h

h

h

h

n n

f s kx k

x k

x k f s k

  
  

    
  

    

M M                          (7) 

Such as:  

 

 

 

   

   

 

 

   

   

 

 

 

 

6 61 1 2
11 111 11 1 1 11

1 1 6 6 2

1 1 1

1

1

hr

h h h r r h h h h h

h
nn

h

n n n n n n n n n n

w k w kw k w ks k k x k w k

S k

s k w k w k k w k w k x k w k

         
        

           
                     

LL

M M O M M M O M M M

L L





                                                                                                          

                        (8) 

The vector of neural model outputs $ y k  is given by: 
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Assuming that: 
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Equation (9) then becomes: 

$ 

$  

 

 

   

   

 

 

8 8

1 11 1 11

8 8

1

( ) 1

( ) 1

p

p p pp pp

y k h k w k w k u k

h k w k w k u ky k





      
      

       
            

L

M M M O M M

L

                                                                                      (11)  

Equation (11) can be rewritten in the following state 

representation: 
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Define the modeling errors by: 
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Normalization techniques of data 

There are two techniques of normalization: 

-Min-Max normalization: 

This technique performs a linear transformation on the original 

data so that all values are in the interval  ,a b . The formula of 

the normalization min-max is the following: 
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with : 

  is the data value to normalize. 

'  is the new data value after the normalization,  ' ,a b  . 

min and max  are respectively the minimum and the 

maximum of   data value  to normalize . 

 

- Normalization by decimal scaling: 

The data are normalized by the following formula: 
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where : 

  is the smallest integer such as  max ' 1  . 

2.3 Learning algorithm of neural network 

In this section, we propose a theorem 1 that can be used during 

the learning phase of a neural network. 

Theorem 1:  
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T  designates the transpose operator. 
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For equation (42) has a unique solution, it is necessary that: 
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The term  w k can be written as follows: 
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The choice of the initial synaptic weights and the bias can 

influence the convergence speed of the learning algorithm of 

neural network [35-46]. According to [47], the weights can be 

initialized by a random number generator with a uniform 

distribution between   and   or a normal 

distribution  20N , .- If the weights are initialized by a random 

number generator with a uniform distribution:  20N , . 

- If the weights are initialized by a random number generator 

with a uniform distribution: 
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 - If the weights are initialized by a random number generator 

with a normal distribution: 
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where : 2 29s .   

Validation tests of the neural model 

Most validation tests use a set of samples inputs-outputs 

which have not been used in learning. Such a test set or 

validation should if possible cover the same range operating as 

the set of training samples.   

The residues    1, ,ie k i p  L  obtained from the 

estimated model parameters represent non-measurable 

disturbance presented within the system. The residues must 

constitute   independent random sequences thus assimilating the 

prediction errors to white noise. Various tests called whiteness 

tests residues were developed to validate this property.  These 

validation tests of a model are based on analysis of prediction 

errors, on the Nash-Sutcliffe criterion, on the auto-correlation of 

residues, on the cross-correlation function between the residues 

and other inputs in the system [31, 48-52].  

The Nash-Sutcliffe criterion relating to on each output is 

given by the following relation: 
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The correlation functions are: 
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N  is the number of samples. 

Ideally, if the model is validated, the results of these correlation 

tests and criterion Nash lead to the following results: 
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- Root mean square error on each output:  
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- MAE (Mean Absolute Error): 
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The desired value of iARE , iAARE  , iRMS and MEA  
is zero.                                                   

Neuronal indirect adaptive control  

In this section, we propose a neuronal indirect adaptive control 

structure of a complex dynamic multivariable system (with 

 
Figure 2. Structure of the neuronal indirect adaptive control 

 
Figure 3- Proposed architecture of the neural controller 

Learning algorithm of neural controller 

The learning algorithm of neural controller of a nonlinear 

complex uncertain and perturbed multivariate system (with p  

inputs and p  outputs) can use Theorem 2. 

 

Theorem 2:  

The learning of the neural controller can be made by the 

following equation: 
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         (59)                                                                  

Such as: 

1mc                                                                              (60) 
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is the weights vector of neural controller. 

hcn  is the number of neurons in the hidden layer of neural 

controller. 

Proof:   

From the following Lyapunov function: 

              
2 22 2 2

1 1 1

1
2 2 2 2 2
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i i i
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           (72)           

The adjustment parameters procedure of the neural controller is 

stable if: 
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                                                                                           (73)                                

with : 

2 0    
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Equation (73) then becomes: 
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If the previous equation has a unique solution, the term 2 is as 

follows: 
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The adjustment parameters equation of the controller neural can 

be written: 
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Like: 
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We can write: 
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therefore : 
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If all conditions are met proper identification, the neural model 

outputs $ y k  are good approximations of the system 

outputs  y k , which allow writing: 

  $  1, ,i i
y k y k i p ; L                                (80)   

Equation (79) then becomes:      
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The calculation of the term

$ 

 
i

y k
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 can be determined through 

the neural model as follows:  
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      (82)    

We can write:  

 

$ 

 

$  $ 

   

1

1 1 2

i i i

j j j

y k y k y k

u k u k u k

  

    
;  , 1, ,i p K , 

1, ,j p K                                                                (83) 

Robust neuronal adaptive control 

The structure of the proposed robust neural adaptive control 

is given in Figure 4.                                                                                  

 
Figure 4. Proposed structure of robust neuronal adaptive 

control 

With: 

TDL  : designates delays. 

The vectors of reference signals are: 

     1 , ,
T

pr k r k r k   K                                    (84) 

             1 1, , 1 , , , , 1 , , , , 1 , 1
T

s j j s p p sR k r k r k q r k r k q r k r k q j p          K K K K K                               

      (85)                     

The command applied to the system is given by: 

     1 1 1c ru k u k u k                                (86) 

The architecture of the neuronal controller (Figure 5) is deduced 

from the architecture of the neural model (Figure 1). 

From equation (23), we can write: 

           
1

1s s s su k q g k q H k q Ke k y k q


             

      (87)                                                                                   

For equation (87) is realizable, the matrix  g k must be 

invertible. 

Such as: 

The matrix 
1, ,

T
p n

pK K K    L ¡   is calculated so that 

the matrix    A BK  has all its eigenvalues strictly less than 

1. 
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The neural controller equation is then: 

           
1

1 c su k g k r k H k Ke k q


         (88) 

It is also assumed: 

      
1

1 , ,
T

pg k G k G k


   L                            (89) 

 
Figure 5- Proposed Architecture of the neural controller 

In reality, there are always modeling errors during the 

identification phase and disturbance which may affect the 

system. The equation of the dynamics of tracking errors without 

the additive component of control may be as follows: 

       1c s c s l se k q A BK e k q B k q               (90) 

With  l k  represents the set of disturbances and uncertainty 

estimates 

   l mook e k ;                                                                 (91) 

If we put: 

0A A BK                                                                        (92) 

   T

r ce k C e k                                                               (93)                        

The transfer function between the term  l z  and prosecution 

errors  re z  is as follows: 

   
1

, 0r l

T

eH z C zI A B


                                           (94) 

Theorem 3: 

The additive component ru  can be calculated using techniques 

based on optimization H . It can be given by: 

       
1

3

1
1 T

r c cu k g k B P e k q




                  (95) 

where :  

 , 2r leH z 

     such as 2 0                              (96)     

3  is a positive scalar and P a symmetric positive definite 

matrix verifying the following Riccati equation: 
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Proof: 

The dynamic of the   system prosecution errors   with the 

additive command ru  is in the following form: 
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      (98) 

To verify the stability of the system, define the following 

candidate Lyapunov function:  
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The term  V k  is given by:                             
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Using the Riccati equation (97), we obtain: 
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Replacing the value of   1ru k   in (95), equation (101) 

becomes: 
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      (102)               

If we assume: 
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      (103) 

According to the previous equation, we can write: 
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      (104)                        

then: 
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      (105) 

As   0V k  , in this case inequality (105) can be written as 

follows: 
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      (106) 

If  0 0V  , we can write: 
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Finally, we can write: 
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                                                       (108)   

Numerical results and discussion: 

Either the nonlinear system described by the equations system: 
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      (109)                                                                          

with : 

1u and 2u  are the  system inputs. 

1y and 2y  are  the system outputs. 

1 and 2  are noises such as: 

 1 1max y                                                            (110) 

  2 110max y 
                                                   (111)     

Figure 6 shows the evolution of the system parameters.  
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Figure 6 – Evolution of system parameters: (a) parameter 

1  ; (b) parameter 2  ; (c) parameter 3  ; 

(d) parameter 4  ; (e) parameter 5  ; (f) parameter 6  

The figures 7 and 8 represent respectively the training 

sequences and assessment performance sequences (or test 

sequences) which are normalized by the technical of Min-Max 

normalization.  The   neural model structure of the studied 

system is given in Figure 2. For online learning of this model we 

used Theorem 1. The maximum number of iterations is 1000 

during this learning phase. 
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(c)                                    (d) 

Figure 7 – Training sequences: (a) control input 1u  ; (b) 

control input 2u ; (c) desired output 1y  ; (d) desired output 
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Tables 1 and 2 show the obtained test results from different 

candidate neural models. Note that to obtain a neural model 

Tables 1 and 2 show the of the system studied of a satisfactory 

accuracy, it requires that: 2m  , 1 2bn  , 2 2bn  , 

1 2an  , 2 2an  , 1 1cn  , 2 1cn  , 8hn  , 1 0.7  , 

2 0.8  , 1 2  , 2 2.4  , 1.8  , 0 0.96  , 

1 0.025  , 2p  , 0.4  and 2 0.015  . 

Tableau 1. Evolution of MEA of different candidate neural 

models   in the case 1m   

The autocorrelation functions of residuals and cross-correlation 

functions between inputs and residues (figure 9) are within the 

confidence intervals, validating the use of neural network of 

characteristics ( 1 2bn  , 2 2bn  , 1 2an  , 2 2an  , 1 1cn  , 

2 1cn  , 8hn  ) as a model of the studied system. 
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  (e)                                                (f) 

Figure 9 – Validation tests of the chosen neural model: (a) 

Autocorrelation function of the prediction error 1e ; (b) 

Autocorrelation function of the prediction error 2e  ; (c) Cross-

correlation function between the input 1u  and the residues 1e ; 

(d) Cross-correlation function between the input 1u  and the 

residues 2e ; (e) Cross-correlation function between the input 

2u  and the residues 1e ; (f) Cross-correlation function between 

the input 2u  and the residues 2e . 

After the determination phase of a neural network capable 

to best approximate the desired relationships of inputs-outputs of 

the studied system, the proposed structures of neural adaptive 

control (indirect adaptive control and robust neural adaptive 

control by the technique H ) are applied to this system. 

First, we will control the system by neural indirect adaptive 

control. The structure of this command is that presented in 

Figure 2. The architecture of the neural controller is that given 

by Figure 3. The online calculation procedure of the controller 

parameters uses the theorem 2. The maximum number of 

iterations is 1000 during the phase of the calculation of the 

parameters. The evolution of mean values of the absolute 

differences between reference signals and outputs of the system 

as a function to the parameters ( an , bn , cn  and hcn ) are 

presented in Tables 3 and 4.  

From the results of these evolutions, the chosen neural 

controller    has the   characteristics: 
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                                                                        (112)     

and during learning  of this controller,  the chosen parameters 

( 1c , 2c , 1c , 2c , c , 0c , 1c , 2c , m ) are as 

follows: 
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The average value of absolute differences between reference 

signals and the outputs of the system is given by the following 

equation: 
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The results obtained by the proposed neural indirect 

adaptive control applied to the system are defined in Figures 

10, 11 and 12. 
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Figure 10 – Results of neuronal indirect adaptive control 

where 
1r  and 2r are respectively  a signal with random 

uniformly distributed amplitudes and a triangular signal: (a)  

control signal 
1u  applied to the system ; (b)  control signal 

2u  

applied to the system; (c) reference signal 
1r and the system 

output 
1y  ; (d) reference signal 2r and the system output 

2y  ; 

(e) Evolution of the difference between the reference signal
1r  

and the system output
1y  ; (f) Evolution of the difference 

between the reference signal 2r  and the system output 
2y  . 
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Figure 11 – Results of neuronal indirect adaptive control 

where 1r and 2r  are respectively a sinusoidal signal and a 

sinusoidal signal : (a)  Control signal 1u  applied to the system ; 

(b)  Control signal 2u  applied to the system ; (c) reference 

signal 1r and the system output 1y  ; (d) reference signal 2r and 

the system output 2y  ; (e) Evolution of the difference between 

the reference signal 1r  and the system output 1y  ; (f) Evolution 

of the difference between the reference signal 2r  and the system 

output 2y   
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Figure 12 – Results of neuronal indirect adaptive control 

where  1r and 2r  are respectively a triangular signal and a 

triangular signal: (a)  control signal 1u  applied to the system; (b)  

Control signal 2u  applied to the system; (c) reference signal 

1r and the system output 1y  ; (d) reference signal 2r and the 

system output 2y  ; (e) Evolution of the difference between the 

reference signal 1r  and the system output 1y  ; (f) Evolution of 

the difference between the reference signal 2r  and the system 

output 2y  . 

Secondly, the proposed robust neural adaptive control by 

the technique H  is applied to the system using the following 

procedure: 

- We chose: 

2

3

0.1

0.02









                                                                      (115) 

- The offline calculation of the matrix A , B , C , K , P ,Q  : 

 Based on the neural identification results of the system, we 

have: 

 

0 1 0 0 0 0 1 0

0 0 1 0 1 0 0 0
, ,

0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0

A B C

     
     
       
     
     
     

   
    (116)   

So that all the eigenvalues of matrix 0A  are less than 1: 



Farouk Zouari/ Elixir Control Engg. 55A (2013) 13050-13064 
 

13061 

0.002 0.05 1 0.01

0 0.007 0 0.003
K

 
  
 

                              (117) 

The resolution of the Riccati equation (97) gives: 
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0 0 0 10
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If : 

10 10.2 0 0

10.2 21 0 0.17

0 0 19 10
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The figures (13), (14) and (15) show the results of the robust 

neural adaptive control by technical H . We notice that the 

specified constraint of attenuation is verified: 

- where 1r  and 2r  are respectively  a signal with random 

uniformly distributed amplitudes and  a triangular signal: 
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-  Where 1r  and 2r  are respectively a sinusoidal signal and a 

sinusoidal signal: 
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- Where 1r  and 2r  are respectively a triangular signal and a 

triangular signal: 
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Figure 13 – Results of the robust  neural adaptive control by 

technique H  where  1r and 2r  are respectively a signal with 

random uniformly distributed amplitudes and a triangular 

signal  : (a)  control signal 1u  applied to the system; (b)  Control 

signal 2u  applied to the system; (c) reference signal 1r and the 

system output 1y  ; (d) reference signal 2r and the system output 

2y  ; (e) Evolution of the difference between the reference signal 

1r  and the system output 1y  ; (f) Evolution of the difference 

between the reference signal  2r  and  the system output 2y  . 
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Figure 14 – Results of the robust neural adaptive control by 

technique H  where  1r and 2r  are respectively a sinusoidal 

signal and a sinusoidal signal : (a)  Control signal 1u  applied to 
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the system; (b)  Control signal 
2u  applied to the system; (c) 

reference signal 1r and system output 1y  ; (d) reference signal 

2r and system output 2y  ; (e) Evolution of the difference 

between the reference signal 1r  and system output 1y  ; (f) 

Evolution of the difference between the reference signal 2r  and 

the system output 2y   
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Figure 15 – Results of the robust neural adaptive control by  

technique H  where  1r and 2r  are respectively a triangular 

signal and a triangular signal : (a)  Control signal 1u  applied to 

the system; (b)  Control signal 2u  applied to the system; (c) 

Reference signal 1r and system output 1y  ; (d) Reference signal 

2r and system output 2y  ; (e) Evolution of the difference 

between the reference signal  1r  and the system output 1y  ; (f) 

Evolution of the difference between the reference signal 2r  and 

the system output 2y  . 

Based on the results of the proposed neural adaptive controls, we 

can conclude: 

- The control signals are bounded. 

- Abrupt changes of system parameters involve sudden changes 

of the amplitudes of commands laws and the outputs of the 

controlled system. 

- The proposed neural adaptive control guarantees the stability 

of control structures and show robustness in the presence of 

parameter changes of the controlled system. 

- Robust neural adaptive control by technique H reduces the 

effect of disturbances and / or uncertainties compared with 

neural indirect adaptive control. 

Conclusion 
In this work, the purpose of the command is solving 

problems tracking given trajectories. The principal contribution 

of this work lies in developing new methodologies of adaptive 

control based on neural network. Two techniques of neural 

adaptive control have been proposed, developed and tested 

successfully. The first technique which is indirect neural 

adaptive control has the advantage of being simple to the use. It 

uses the neural model of the system to be controlled and 

Lyapunov theory for make online learning of neural controller 

and to maintain stability of the controlled system. On the other 

hand, this technique risks not to mitigate the effects of 

disturbance and therefore the controlled system cannot follow 

the trajectories of references of good performance. To solve this 

problem, we propose a robust neural adaptive control by the 

technique H . In the second technique, the control law 

implemented is the sum of two terms. Indeed, the first term is an 

approximation of the inputs-outputs linearization control of the 

system to be controlled based on neural network.  On the other 

hand, the second term is a term of robustification. The two 

proposed techniques of neural adaptive control ensure the 

stability of control structure and present robustness in the 

presence of parameter changes of the system to be controlled. 

Robust neural adaptive control by the technique H   reduces 

the effect of disturbances and / or uncertainties compared with 

the neuronal indirect adaptive control. The robust neuronal 

adaptive control   by the technique H  allows to  the   

controlled system  outputs to follow correctly the reference 

signals relative to the adaptive control neuronal indirect. 
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