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In this paper, we proposed the development of neural adaptive controls to ensure the
robustness of uncertain nonlinear multivariable systems. We used two techniques: Robust
neural adaptive control and neural indirect adaptive control. The study of the stability and
robustness of both techniques was performed by Lyapunov theory. To validate these
techniques and discover their effectiveness, a simulation example was considered. The

simulation results obtained by these two control techniques have shown the effects of

Keywords

Neural adaptive controls;
Robust neural adaptive control;

Neural indirect adaptive control; adaptive control.

disturbance compensation, good performance tracking data paths and stability control
systems. Comparative studies between these two techniques show that the neural indirect
adaptive control cannot mitigate the effect of disturbances compared to the robust neural

Lyapunov theory;
Uncertain  nonlinear  multivariable
systems.

Introduction

In recent decades, the robust neuronal adaptive control of
complex nonlinear dynamic systems has been studied in several
research works which we quote [1-6]. It is used in several
industrial applications and particularly in the cases where we are
confronted with complex nonlinear dynamics and inaccuracies
due to uncertainties attached to the system to be controlled. The
use of the method of robustification is essential to improve the
tracking performance and ensure the robustness of the closed
loop system in front of the structural uncertainties and external
disturbances. This control technology adds to the main control

signal a supervisory signal by sliding mode or of H __ type.

Several studies of robustification of sliding mode adaptive
neural control are based on the use of adaptive neural networks
for modeling the process or to calculate the desired control law
[7-11]. Generally, the control laws were derived from the
examination of stability. Overall, the constructed command
ensures stability and good tracking performance. The
disadvantage of sliding mode adaptive neural control is the
existence of the sign function that causes sudden and rapid
changes of the control signal, which can excite the high
frequency of the process and cause damage it. Many solutions
have been proposed in literature in particular Lie Slotine and
added a transition band around the sliding surface to transform
the sign function in saturation and thus remove the abrupt
changes [12].

Several research works have studied the technique H _ like

[13-16]. This technique aims at determining the tracking
performances based on a criterion connecting on the one hand
the norms of prosecution errors and on the other hand the
desired level of disturbance attenuation. This criterion can be
interpreted in the state space by obtaining a positive definite
matrix unique solution of the Riccati equation.
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The contribution of this paper is to propose two adaptive
controls neuronal structures of nonlinear dynamical
multivariable systems rested on the theory of Lyapunov. The
architecture and learning algorithm of these two neural adaptive
control structures require the modeling of system to be
controlled, that is to say the determination of its state equations
using the concepts of neural networks. In this sense, we
proposed linearization technique inputs- outputs of the system to
be controlled based on neural networks. This technique consists
in finding linear relationships between inputs and outputs of the
system. The neural model of the system obtained online by this
linearization technique is used to calculate the commands laws.
In fact, the first proposed control structure which is the neural
indirect adaptive control uses the Jacobian matrix of the neural
model during the calculation of the parameters of neural
controller. by cons the second proposed control structure which
is the robust neural adaptive control, use the state equations
derived from the neural model to determine the neuronal
controller and add to main control signals supervision signals

by the technique H _, .

This document is organized as follows: In Section 2 we
present the proposed architecture of recurrent neural network
and its learning algorithm based on Lyapunov theory, used in the
calculations of the model parameters of a complex nonlinear
dynamic multivariable system. In Section 3 we show the
architecture of the neuronal controller and its proposed learning
algorithm in the structure of neuronal indirect adaptive control.
The proposed structure of robust neural adaptive control by the

technique H_ is described in Section 4. The numerical results

and discussions of these two commands mentioned previously
are presented in Section 5. Finally, the conclusion is given in
Section 6.
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Neural network modeling approach

Neural network modeling of a system from samples affected
by noise usually requires four steps- The first step is the choice
of the architecture of the neural network, that is to say the
number of neurons in the input layer which is a function of past
values of inputs and outputs, the number of hidden layers, the
number of neurons in each hidden layer, the number of neurons
in the output layer, the activation functions of each neuron and
organization of these neurons between themselves [17-28].
-The second step is the normalization or the transformation
performed on the data inputs-outputs to distribute them
uniformly and adapt them to an acceptable level for the neural

network [29-31]. All data values must be between [0,1]

or[—l,l] .- The third step is learning or in other words the

calculation of network parameters from samples inputs-outputs
system to be identified [32-34].- The fourth step is the validation
of the neural network obtained by using the tests measurements
performances criteria.
Proposed architecture of recurrent neural network
The figure 1 shows the architecture of the neural network used
during the identification phase of an uncertain and perturbed
nonlinear complex dynamic multivariable system (with
p inputs and P outputs). The structure of this neural network
is composed of three parts: two linear parts to model the
behavior linear of the system and a nonlinear part to
approximate the nonlinear dynamics.

Figure 1- Proposed architecture of the neural network
with:

ﬁk):[ﬁ;(k),L %(k)T is the vector of the neural network
outputs at instant K .

u (k —1) = [ul (k —1),L Uy (k —ZI.)]T is the vector of the
system inputs.

y(k)z[yl(k),L ,yp(k)]T is the vector of the system
outputs.
U(k—2)=[ul(k—2),L U (k=ny).L ,uj(k—Z),

L ,uj(k—nbj),L U (k-2).L ,up(k—nbpﬂT
suchas 2<n,, 1< j<p ()
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Y (k=1)=[y;(k=1),L ,y; (k=n,).L .y, (k-1),

L ’yi(k_naj)’l‘ ’yp(k_l)'l- 'yp(k_nap)T
suchas 1<n,, 1<j<p ®)

;((k):[ll(k),L ,Ip(k)]T is the vector of the second
hidden layer outputs of neural model
Y, (k=1)=[1,(k=1),L .|, (k=ny).L ,1; (k-1),

LI (k=ng).L 1, (k-1),L ,Ip(k_ncp)]T
suchasl<n,,l<j<p (3)
e -1
fl(x): -X
e’ +1
of neurons.
N, the number of neurons in the first hidden layer.

The coefficients of the vector of the neural model parameters
W are decomposed into eight groups, formed respectively by:

and f, (X) =X are the activation functions

W111 L Wlln,
w=| M O M | the weights between neurons of the
Wlnhl L Wlnhnr
input layer and neurons of the first hidden layer,
[ 2
W
w?=| M | the bias of neurons in the first hidden layer,
_Wznhl

.3 3
Wi Loowy,

w= M O M
w’y L w®, | the weights between neurons of the
first hidden layer and neurons of the second hidden layer,
_W411
wi=| M
w“pl the bias of neurons in the second hidden layer,
WL W51nr
w= M O M
W5pl L w on, | the weights between neurons of the
input layer and neurons of the second hidden layer,
I woy L W61nh
w= M O M | the weights between neurons of the
_w6nh1 L w,

first hidden layer,

why Loowy,
w= M O M
_W7 m LW
second hidden layer,

the weights between neurons of the
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Equation (11) can be rewritten in the following state
representation:

k()= (k). i=n, L m =L =1L p. g, :max(nm‘L ML oL ,nw),nj =((j-1)q,+1), m =(j*)

apt el

8 8
wy, L Wip

w= M O M | the weights between neurons of the

Wy LWy :
input layer and output layer. b (k+t)=h (W(k+qs))+§wﬂl‘(k+qf)u‘(k+q5 s
X"y (k) %{k):xm(k)
xh(k): M the first hidden layer outputs of neural (12)
thhl(k) Where: .
model, n=p=q

p p p T, (13)
nf:znaj+zncj+znbj_p X(k):[xi(k)’K'Xn(k)] €l
i=1 =1 i=1 We can write equation (12) as follows:

The vector of the neural model parameters is as follows: x(k +1) = Ax(k)+ B[H (k+0,)+9g(k+q,)u(k+q _1)1
W:[Wlllll- 'Wlnhnr WL lenhlv {

k) =Cx(k)
Wy L 1W3pnh wh L ’W4pl'W511' (14)
T H .
Lowop Wop L wo Wi L wl g wPy L *ngpJ With: M, 0 L o
) ] ((g’)) A_| O © O M
w9 = (U (k=2))" (Y (k=2))" (% (k=2))' | =[wa(k).L v, ()] | Mmoo o o
The vector of the first hidden layer outputs is in the following O L 0 M,
form: Aci ™ (15)
Xhl(k) fl(Sl(k)) ovj :11’Lo, pL 0
x'(k)=| M |= M 7 0O 0 1 O
h
X", (k) fl(snh(k)) M,=|MO O O o
0O L 0 0O 1
Such as: oL o L o
5(K) Wk Ly (K) [ (k) wy(k) L v, (K) Xy(k=0) | |y (K)
Skj={ M=l M O M | M} MO M| M i M M. e o
]
5, (k) wlw(k) L wlm(k) xyﬂ'(k) wsﬂhl(k) L wﬁﬂnn’(k) x"nn(k—l) wznnl(k) b O L 0
®) 00O O M
The vector of neural model outputs ﬁk) is given by: B= MO O 0
B | [wa() L wy, ()][L(k-D] [walk) L wiy ()] 5 (k) 0O L 0 b,
M=l M 0 M M [+« M 0o M | M . onx 16
?L(k) W7pl(k) L W7pp(k) Ip(kfl) ngl(k) L Wapnﬁ(k) X"nh(k) Be‘ i ( )
Walk) LW, (K) . vi=iL p
1 In '/’1(k) Wll(k) WEM(U L Wslp(k) u1(k’1)
4 M o M M« M« M 0 M M 0
Wy (k) LWy (k) ||y, (K) ] (W (k)] [Wh(k) Ly () Jlu, (k1)
b. =
9) 1o
Assuming that: 1
RO [Wak) L Wik (0] [Wal) L v (] ¢ (K) N
M |=<f M 0 M M [+ M 0 M M i<i
hp(vl(k)) W7p1(k) L W7pp(k) Xp(k_l) Wapl(k) L Wspﬂ (k) thh(k) G 0 L 0
0 O O M
W511(k) L Wsln,(k) V/l(k) WAn(k) C= M O O 0
+ 5M 0 M M [+ ) 0 L 0 Cp (17)
W) L ()L ()] [ (6) Co
_ (10) vj=1L ,p
Equation (9) then becomes: 1
B(k) | [hp)] [Walk) L wy,(k)][u(k-1) . _|o
M |= M + M O M M !
k)| Le(w@)] [whlk) L wp(k)]lu,(k-1) °.
cC.ej ™

(11) :



13053 Farouk Zouari/ Elixir Control Engg. 55A (2013) 13050-13064

2.3 Learning algorithm of neural network
hl(‘//(k + qs)) In this section, we propose a theorem 1 that can be used during
H(k+ qs) = M the learning phase of a neural network.
Theorem 1:
hp (‘//(k + qs)) 18 The learning procedure of a neural network may be given by the
Hk+g)e; " (18) following equation:
S
Vj=1L ,p 034 Rl oK)
h,(w(k+0q,)) e w(k+1)=| 1- L4 i w(k)+——- ?)5 ZwAw(k-i)
oK) )
Wo(k+a) L vy, (k+a) {“Zﬂ ol ] [ 2o J
g(k+a,)= MO 8 M (27)
wo(k+g) L w' (k+q,) (19) such as :
>
gk+g,) i m=l @
Vi1l ,p j=1L .p @, >0 Vle[O,m] (29)
m
ngj(k+qs)ei ZZUi:l (30)
Define the modeling errors by: i=0
& (K)=y (k)= (k). i=1L p (20) V>g i;’
and the modeling errors vector of all states is defined by: n> ) (32)
e(k)=, (k) -x(k) ey O<Aviclp] )
with: T B >0 Vie[lp] (34)
yy(k)=[y1(k),L (ke =D)Ly (k)L y, (k+g =)Ly, (k)L Y, (k+q —1)} e’ y<n (35)
Jl<j<p (22) :
Combining (14) and (21), the dynamic of modeling errors is then Z/l' <7 (36)
given by: .
e(k+1)=Ae(k)+B[-H (k+q,)-g(k+q,)u(k+0q, 1)+ y(k+q,)] | | the Euclidean norm.
€m0 (K)=CTe(k) T designates the transpose operator.
(23) Proof:
where - Using the following Lyapunov function:
2 A 2 &p 2y 2 7 2
€noo (K) =[ & (K) )]T (24) V(K)=275 (@ () + 275 (e (k) 2w+ S aw(i)]
Normalization technlques of data (37)
There are two techniques of normalization: with
-Min-Max normalization: _ o Ag, (k) =e (k) —e (k _1) (38)
This technique performs a linear transformation on the original
data so that all values are in the interval [a, b] . The formula of AW(k) = W(k)—W(k _1) (39)
the normalization min-max is the following: . . .
Y-Y_ The learning procedure of the neural network is stable if:
=y ——y _(P-a)+a (29) AV ()= 32 (o (k) (2 () + D2 (4 ()7 (wli)) (w()) +rfaw(i)f <0
with : o Using th _ _ _ (40)
. . sing the previous equation, we can write:
Y is the data value to normalize. ) ) . } )
Y is the new data value after the normalization, Y'' e [a, b]. Av(k)zgﬂi(ei(k))(Aei(k))+;ﬂi (2e,(K)) +(aw(k)) (W<k))+’7HAW(k)H =-q
Y,,and Y . are respectively the minimum and the (41)
maximum of data value to normalize . Suchas:ay 20.
Therefore:
- Normalization by decimal scaling: : a6, (k) . b o, (k)
The data are normalized by the following formula: [aw(k)| ’7+§ﬁi aw(k) +(Aw(k)) [Mk)@%(ei(k))(aN'(k)]]wa
Y
Y'= (26) _ _ o (42)
10* For equation (42) has a unique solution, it is necessary that:

where :
K is the smallest integer such as max (|Y|) <1
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yw(k)+i&(ei(k))[2§,gtnu (43)
“ oe, (K)

4[’“ aw(k)H]
The term AW(k) can be written as follows:

(7w(k)+i%(ei(k))[g\igtm (44)
w(k)=— = 2

2 oe, (k
z(mzﬂi el

Like:
IZiLTlIZzpz -
We can write:
Aw(k+1); [sz"lew(kﬂ)
:woAW(k)+ZzHiAW(k—
e, (oe (k)
-|- @57 _woizll/l'[m(k)}el(k)) 3 sw(k-i)
b e (k o e (k) el
bl
o3 oP(K) .
_ @y " ";i'[aw(k) &) +$ ow(k-)
) a%(k)z P 5??(")2 el
2[77+izl:ﬂi M ] [n"‘;ﬂi (?W(k) ]
(46)
therefore :
woi& Lk) ( i ( )) "
w(k+1)=|1- p%?ﬂ — |w( = [[M(Iﬁ)} 2 +;w, (k=i)
et o/
(47)

The choice of the initial synaptic weights and the bias can
influence the convergence speed of the learning algorithm of
neural network [35-46]. According to [47], the weights can be
initialized by a random number generator with a uniform
distribution ~ between -6 and for a normal

distribution N (0,02) .- If the weights are initialized by a random

N(0,6%).
- If the weights are initialized by a random number generator
with a uniform distribution:

0<s [ 3 (48)
\I(nr +1)[1+Zrl(l//m (O))Z]

- If the weights are initialized by a random number generator
with a normal distribution:
1 (49)

6<s ’
\l(nr +1)[1+2(Wm (o))ZJ

number generator with a uniform distribution:

Farouk Zouari/ Elixir Control Engg. 55A (2013) 13050-13064

where : S~ 2.29
Validation tests of the neural model

Most validation tests use a set of samples inputs-outputs
which have not been used in learning. Such a test set or
validation should if possible cover the same range operating as
the set of training samples.

ei(k) ,i=1LL ,p obtained from the

estimated model parameters represent non-measurable
disturbance presented within the system. The residues must
constitute independent random sequences thus assimilating the
prediction errors to white noise. Various tests called whiteness
tests residues were developed to validate this property. These
validation tests of a model are based on analysis of prediction
errors, on the Nash-Sutcliffe criterion, on the auto-correlation of
residues, on the cross-correlation function between the residues
and other inputs in the system [31, 48-52].

The Nash-Sutcliffe criterion relating to on each output is
given by the following relation:

> (vt - o)’

The residues

Q; =100%| 1— k=1 > i=1L ,p
N 1 N
Z(yi (k)[NZyi (k)ﬁ
k=1 k=1
(50)
The correlation functions are:
- Autocorrelation functions of the residues:
N-7 1 N 1 N
Z[ei(k)—[NZemk)]][ei(k—ﬂ—[NZei(k)]]
Ree (T): k=1 k=1 > k=1 i:l,L P
™ N 1
g ()-| = &k
Foo{igo)]
(51)
- Cross-correlation function between the residues and previous
inputs:
N-7 1 N 1 N
Z[ui(k)—[Zui(k)]][ej(k—r)—[NZe,-(k)D
Rye, (7) = ——— et = i-1L.p j-lL.p
N N
JZ[ui(k) [ S (k)]] Jz[e (k)—{:‘Zej(k)D
k=1 k=1 k=1 k=1
(52)

N is the number of samples.
Ideally, if the model is validated, the results of these correlation
tests and criterion Nash lead to the following results:

1r=0 _
Reiei(r)={oi¢o,Ruie,. (©)=0 vz and Q =100% ,

i=LL ,p, j=1L ,p (53)
Typically, it is verified that Q; =100% and the functions R are

null for the interval re[-20,20]

interval 95%, that is to say:
196 _ . 196 (54)

NN

- Average error on each output is defined as follows:

N
ARE, =12ei(k),
N =

with a confidence

i=1L ,p (55)
- Mean absolute error on each output is:

N
AARE, :%Z‘ei(k), i=1L ,p (56)
k=1
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- Root mean square error on each output:

N
RMS, = %Z(ei(k))z, i=L1L ,p (57)
k=1
- MAE (Mean Absolute Error):
MEA LI ol e (k)| (58)
(p*N) il

The desired value of ARE, , AARE, , RMS and MEA

is zero.

Neuronal indirect adaptive control

In this section, we propose a neuronal indirect adaptive control
structure of a complex dynamic multivariable system (with

Owlew caled@ion of da
Jacckamn waxtrm of the wunl
model

274 )
|22 (A-1)

4 r
Oulme ertanton of weaal model pamesetess of syriem I

wik Hikgikn

Figure 2. Structure of the neuronal indirect adaptive control

a D —
A\

)/
A
/. — ‘,?OI\‘QL,:
":’h 3
X/

Figure 3- Proposed architecture of the neural controller
Learning algorithm of neural controller
The learning algorithm of neural controller of a nonlinear
complex uncertain and perturbed multivariate system (with p

inputs and P outputs) can use Theorem 2.

Farouk Zouari/ Elixir Control Engg. 55A (2013) 13050-13064

Theorem 2:
The learning of the neural controller can be made by the
following equation:

we(k +1) =| 1- 1D'CDZ]/C -~ |we(k
Z[nc+§ Bc, gw?i((kk)) +; uC, a;i/v(ck(;;) ]
wCOZP:/ICi 3;,?';((:)) ec, (k) .
N : .=1§; " r +;mciAWC(k—i)
z[mgﬂ o] 2 ;iw(c(b)]
(59)
Such as:
mc>1 (60)
@, >0 Vie[0,mc] (61)
iwci =1 (62)
i=0
yc>0 (63)
nc>0 (64)
0<Ac Vie[l, p] (65)
Be,>0 Vie[l p] (66)
yc<nc (67)
P
D Ac <nc (68)
i=1
uc, 20 Vie(l, p] (69)
ec(k)=r(k)-y, (k)  Vie[lp] (70)
My = p(na+nb+nc) (71)

1 1 2 2
WC = |:WC ll’L ,WC Neclre ,WC ll’L ,WC nhcl,

wey Lowe? o wet Lowet g wedy,

Ppe * pl !

T
5 6 6 7 7
L ,wc wc'yq L ,we wc'yy,L we pp]

PN ?
is the weights vector of neural controller.

Ny IS the number of neurons in the hidden layer of neural
controller.

Proof:

From the following Lyapunov function:

V (k)= 325 e (k) +i":z‘1%(Aec, (K + 2w () + 2 Jawe () + 324 (au, (k-0

i=1 2 i=1
(72)
The adjustment parameters procedure of the neural controller is
stable if:

MMy !

n,

AV(k)=§:/1ci o ()2 )3 e )

+e(Awe(k)] (we(k))+nefme i) é} i (80, (k1)) =,
™
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Equation (73) then becomes:

2 & oec, (k
Jawe (k)| [nc+;ﬁc, Mczk

W fou (k-2
IR T }

+(ch(k))T {yc(wc(k))+i/lci (ec, (k)){gizgt;]}% =0

i=1

(74)
If the previous equation has a unique solution, the term ¢, is as

follows:
2

i(eci<k>)(§w‘“’;§t§}ye<wc<k>)

2 =
X Al k 1
4 77C+Zﬂci oec + D HC )
= =] ( )
(75)
The adjustment parameters equation of the controller neural can
be written:
& oec, (k)
[;/c(wc(k))+i2=1:/1ci (eci(k))[awc(k)jj
welk)=- n Jeec (k) & Jlau (k=)
s ec. u u. (k-
2 : i o |
[nuéﬂq awc(k)H 20 e (k) ]
(76)
Like:
Imszcz )
We can write:

Awc(k+1); [ch z" 1)ch(k+1)

i=1

a—
- 2 2 + 2.6 ( _)
i Cec, (k) it ou, (k _1) i1
Z(UH;’BC' owe(K) * 2 H owe(k) ]

i=1

(78)
therefore :
we(k+1)=we(k)+Awe(k+1)
at, [Zlc e, iweccit)]
! e () "
2[qc+;/}c, :ézt; +;yc‘ 8;,\,(:(;)1) J [ c+Zﬂc al +Zyc Gaw(k( )] J ‘7
(79)

If all conditions are met proper identification, the neural model

outputs ﬁk) are good approximations of the system
outputs y(k) , which allow writing:

k); W(k) Vi=1L ,p (80)

Equation (79) then becomes:

o, {i‘ e, (k))[;ﬁ(?)]]

. we (k) - B
| sy

)- @c,c

we(k+1)=|1 ﬁ >
Pk &
C
+§}I

iwc,ch(k—i)
Z{rzwiﬂc, (K]

&

(81)

ou, (k-1)
| awe(k)

ou, (k-1)
owe(k)

+ C;

d
i1

Farouk Zouari/ Elixir Control Engg. 55A (2013) 13050-13064

Rald)
owe (k)

the neural model as follows:

The calculation of the term

can be determined through

o) | [ B | ek [[au(k-1)]
owe(k) | | ou(k-1) ou, (k=1) || owc(k)
M = M @) M M
Bl | B | Bk [k
owe (k) | | ou, (k-1) ou, (k1) || owc(k) |

) o )
We c;( wr;te: ?;(k) §;(k 1)
oy, K . i — i\ ;
au, (k-1 U (k-D-u (k-2z) P
j=1K,p (83)

Robust neuronal adaptive control
The structure of the proposed robust neural adaptive control
is given in Figure 4.

Figure 4. Proposed structure of robust neuronal adaptive
control
With:
TDL : designates delays.
The vectors of reference signals are:

K)=[r(k).K,r, (k)] (84)

[ koK AR kot K s 1], 2]

(85)
The command applied to the system is given by:
U, (k-1)=u(k-1)+u, (k-1) (86)
The architecture of the neuronal controller (Figure 5) is deduced

from the architecture of the neural model (Figure 1).
From equation (23), we can write:
Ke(k)+y(k+q,))

u(k+g, -1)=(g(k+q,)) (-H(k+q,)-
87)

For equation (87) is realizable, the matrix g(k)must be

invertible.

Such as:

The matrix —[KoL K, J e; P is calculated so that
! i -]

the matrix (A— BK) has all its eigenvalues strictly less than
1.
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The neural controller equation is then:

u(k=1)=(g (k)" (r(k)-H (k)-Ke,(k-0,)) (8)

It is also assumed:

(9(k))" =[G, (k).L .G, (k)] (89)

Figure 5- Proposed Architecture of the neural controller
In reality, there are always modeling errors during the
identification phase and disturbance which may affect the
system. The equation of the dynamics of tracking errors without
the additive component of control may be as follows:

e, (k+1-g,)=(A-BK)e,(k—q,)+B[ 5 (k-q,)] (90)

With &, (k) represents the set of disturbances and uncertainty

estimates
& (K); € (K) (91)
If we put:
A, =A-BK (92)
e (k)=C'e, (k) (93)

The transfer function between the term & (Z) and prosecution
errors €, (Z) is as follows:

T -1
H, . (2)=C'(21-A) B (94)

Theorem 3:
The additive component U, can be calculated using techniques

based on optimization H_ . It can be given by:

u(k-)=-(g(K) ' B P(e(k-q)) 9
where : i
H,..(2)], <7

o, is a positive scalar and P a symmetric positive definite
matrix verifying the following Riccati equation:

suchas y, >0 (96)

P(A)—I)+(AD—I)TP+CCT—[ 12—2]PBBTP+Q=0 (97)
72 Q
With: Q > Oand 1 . _igo
(72)" @
Proof:

The dynamic of the  system prosecution errors  with the

additive command U, is in the following form:
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e (k+1-q,)=(A-BK)e, (k-q,)+B[ & (k-q,)+g(k)u, (k-1)]
=Ae (k-0,)+Bg(k-q,)+Bg(k)u, (k-1)
(98)
To verify the stability of the system, define the following
candidate Lyapunov function:

1 T
V(k)zi(ec(k_qs)) P(GC(k_qS)) (99)
The term AV (k) is given by:
v (k):%(AGC(k_qS))T P(eC(k_qS))+%(ec(k_qS))T P(AEC(k_qS))

(e -0 ) (A1) PP 1) k-, k-0, PB[ koo, g -]

(100)
Using the Riccati equation (97), we obtain:
AV (k)= =5 (e, (k=0)] Q(ec(k—qs))—%(ec(k—qs)f[

1 2 _i]pBBTP(eC(k—qs))
(72) %

7%(e0(k7qs))T ccr (ec (k7qs))+(ec(k7qs))T PBg(k)ur (kfl)
+(eC (k—qs))T PB((»;I (k —qs))

(101)
Replacing the value of ur(k—l) in (95), equation (101)
becomes:

W)= () Qe () e (-0 ) PBBTPle (-0
~3(e(k=0,))" cC" (e, (k=0,))+ (e (k-0,)) PB4 (k-0,)
(102)
If we assume:

B 1
2(7,)

2

(e, (k-0,))" PBBTP (e, (k~0,))

a:—%(ec(k—qs))T Q(eC(k_qS))
-%(ec(k -0,))' CC7 (e (k-0.))+(e.(k-a,)) PB(zi(k-a,)
= _%(ec (k _qS))T Q(ec (k -0, ))_%(ec (k _qs))T cc’ (ec (k _qs))‘*'%(}’z )z H‘EI (k s )Hz

2= (ec(k‘qs))TPBBTP(eC(k-qS))_zw

2| (5 P 72(& (k=0.))+ () o (k=0 )

(103)

According to the previous equation, we can write:
1 1
AV (K)sas-Z(e, (k-q,))' cC (e, (k=a,))+5 (7. )& (x-a,)

2

(104)
then:
v (K)-V (o)g_%g(ec(i_qs)f oC” (e, (i-0.))+5 (7. e i-a)
(105)
AsV (k)=0, in this case inequality (105) can be written as
follows:
%;(ec (i _qS))T cc’ (ec (i _qs)) < %(7/2 )2 ;”gl (i — 0 )”2 +V (0)
(106)
If v (0)=0,wecan write:
k
Z er (I - qs) i
=0 <(7,) (107)

> i-a)f

Finally, we can write:
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‘ Her,sl (Z)HOO = 72

Numerical results and discussion:
Either the nonlinear system described by the equations system:
)q‘: X,

& = —0,%, —0,%, +(915in(u1)—92x1)2 +e

(108)

&:XA
& = (6, + 268+ 8 0,6,) % + 0, (6,sin(u,) - 6,%, ) +(268+ 26, - 0,6, ) x,
— % =3, +(0, + 26+ B)u, + (268+ 20, ) &+ 0,8+ 2,

i=X
Yo =X3

(109)
with :

U,and U, are the system inputs.

y,and Y, are the system outputs.

g and &, are noises such as:

& < max (|y,|) (110)

|82| =10max (lyll) (111)
Figure 6 shows the evolution of the system parameters.

] Qﬁ‘
| ¥ - i
— ] Nl ]
(@ (b)
\
(© (d)
y / )
. / »
\ YA L
: 1 A
b i
: i/ s
V ¥

me(s) x10° x10°

© ®

Figure 6 — Evolution of system parameters: (a) parameter
6, ; (b) parameter 6, ; (c) parameter 6, ;

(d) parameter 6, ; (e) parameter 6 ; (f) parameter &,

The figures 7 and 8 represent respectively the training
sequences and assessment performance sequences (or test
sequences) which are normalized by the technical of Min-Max
normalization. The  neural model structure of the studied
system is given in Figure 2. For online learning of this model we
used Theorem 1. The maximum number of iterations is 1000
during this learning phase.
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Figure 7 — Training sequences: (a) control input U, ; (b)

control inputU, ; (c) desired output Y, ; (d) desired output
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Tables 1 and 2 show the obtained test results from different
candidate neural models. Note that to obtain a neural model
Tables 1 and 2 show the of the system studied of a satisfactory

accuracy, it requires thatm=2, n,=2,n,=2,
n,=2,n,=2, n,=1 n,=1, n =8, 4=07,
4=08 B=2, B,=24 1n=18, @,=096,

@, =0.025, p=2, y=0.4and @, =0.015.
Tableau 1. Evolution of MEA of different candidate neural
models inthe case m=1
The autocorrelation functions of residuals and cross-correlation

functions between inputs and residues (figure 9) are within the
confidence intervals, validating the use of neural network of

characteristics (n,, =2,n,,=2, n,=2,n,=2, n, =1,
N, =1, N, =8) as amodel of the studied system.
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Figure 9 — Validation tests of the chosen neural model: (a)
Autocorrelation function of the prediction error €,; (b)
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Autocorrelation function of the prediction error €, ; (c) Cross-
correlation function between the input U, and the residues€, ;
(d) Cross-correlation function between the input U, and the
residues €,; (e) Cross-correlation function between the input
U, and the residues €, ; (f) Cross-correlation function between

the input U, and the residues €, .

After the determination phase of a neural network capable
to best approximate the desired relationships of inputs-outputs of
the studied system, the proposed structures of neural adaptive
control (indirect adaptive control and robust neural adaptive

control by the technique H ) are applied to this system.

First, we will control the system by neural indirect adaptive
control. The structure of this command is that presented in
Figure 2. The architecture of the neural controller is that given
by Figure 3. The online calculation procedure of the controller
parameters uses the theorem 2. The maximum number of
iterations is 1000 during the phase of the calculation of the
parameters. The evolution of mean values of the absolute
differences between reference signals and outputs of the system

as a function to the parameters (n,, n,,Nn, and N, ) are

presented in Tables 3 and 4.
From the results of these evolutions, the chosen neural
controller has the characteristics:
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n,=2
n,=2 (112)
n,=1
N,=7

and during learning of this controller, the chosen parameters
(Ac,, Ac,, Bc,, pc,, nc, @wc,, @C,, @C,,M) are as
follows:
Ac, =0.8
Ac, =0.9
pc, =21
Bc, =2.7 (113)
nc =18
yc=1.7
m=2
wc, =0.96
@c, =0.021
wc, =0.019
The average value of absolute differences between reference

signals and the outputs of the system is given by the following
equation;

VME :%g(ﬁgm (k)|j

L3380 90

The results obtained by the proposed neural indirect
adaptive control applied to the system are defined in Figures

(114)

10, 11 and 12.
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Figure 10 — Results of neuronal indirect adaptive control
where I, and I,are respectively a signal with random
uniformly distributed amplitudes and a triangular signal: (a)
control signal U, applied to the system ; (b) control signal U,

applied to the system; (c) reference signal I and the system
output Yy, ; (d) reference signal I, and the system output Y, ;
(e) Evolution of the difference between the reference signal Iy
and the system outputy, ; (f) Evolution of the difference

between the reference signal I, and the system output Y, .

3
Time(s) «16® Time(s) o1

€)) (b)

— o]
—— system cuputy2 |

5 A A A AP
A ANA AN

—— Signal reference 1 0 “
System output y1

Signal ref
d System output y1
I
—
et
[
—

VL

<_
o
<
L]
L
v
|
]

and the system output y2

Time(

x10° ) X 10S

© M

Figure 11 — Results of neuronal indirect adaptive control
where I and I, are respectively a sinusoidal signal and a

sinusoidal signal : (a) Control signal U, applied to the system ;
(b) Control signal U, applied to the system; (c) reference
signal I and the system output Y, ; (d) reference signal I, and
the system output Y, ; (e) Evolution of the difference between
the reference signal I} and the system output Y, ; (f) Evolution
of the difference between the reference signal I, and the system

output Y,
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Figure 12 — Results of neuronal indirect adaptive control
where Fand I, are respectively a triangular signal and a

triangular signal: (a) control signal U, applied to the system; (b)
Control signal U, applied to the system; (c) reference signal
I and the system output Y, ; (d) reference signal I,and the
system output Y, ; (e) Evolution of the difference between the
reference signal I, and the system output Y, ; (f) Evolution of
the difference between the reference signal I, and the system
output Y, .

Secondly, the proposed robust neural adaptive control by

the technique H _ is applied to the system using the following

procedure:
- We chose:

7,=0.1
a,=0.02
- The offline calculation of the matrix A, B ,C ,K, P,Q :

Based on the neural identification results of the system, we
have:

(115)

01 00 00 10

0 010 10 0 0| (116)
A= , B = , C=

0 00 1 00 0 1

0 00O 0 1 00

So that all the eigenvalues of matrix A, are less than 1:
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-0.002 005 1 0.01 =]
K= (117) s | = 1
0 0.007 0 0.003 ; T 7 =" ‘
The resolution of the Riccati equation (97) gives: TN A i il K d ¥ !
10 0 0 0 ALl AN i
I I : |
0 10 0 0 i L
P= (118) I
0O 0 10 O C T SR
0 0 0 10 © @
If:
10 -102 0 0 ‘
102 21 0 017 L — i
Q= (119) 1 T
0 0 19 -10 5
0 017 -10 206 e | e
The figures (13), (14) and (15) show the results of the robust M(’e) 0
neural adaptive control by technical H . We notice that the  Figure 13 — Results of the robust neural adaptive control by
specified constraint of attenuation is verified: technique H_ where r and r, are respectively a signal with
- where I, andl, are respectively a signal with random  random uniformly distributed amplitudes and a triangular
uniformly distributed amplitudes and a triangular signal: signal : (a) control signal U, applied to the system; (b) Control
N
Z e (,)Hz =450.37 (120) signal U, applied to the system; (c) reference signal I, and the
i=0

; system output Y, ; (d) reference signal I, and the system output
ZHE, (I)H2 =5629.82 (121) Y, ; (e) Evolution of the difference between the reference signal
=0 I, and the system output Y, ; (f) Evolution of the difference

3
ime(s)

HHe,,g| (Z)Hoo , 0.08<0.1 (122) between the reference signal I, and the system output y, .
- Where I, and[, are respectively a sinusoidal signal and a
sinusoidal signal: . A /ﬂ ~ N //\\
N § o
> e (i) =516.23 (123) e 1 A1 S o
i—0 i V/ \/‘\ \AV R
k2 . LI IR VRN AR
> |& (i) =5735.82 (124) - (ERVAIRVIERVEIRY
i=0 ime(s) <108 Time(s) <10
[H.... (2)]. : 0.09<0.1 (125) (b)
- Wherel, andr, are respectively a triangular signal and a ﬂ::%;&m\ﬁ "
triangular signal: /\ /\ /\ il
> Je. (i) =325.17 (126) YR
Y/ VALV R O VALV VAR
;Hg,(u)u =5419.82 (127) . @
|H... (2)], ; 0.06<01 (128)
[
: Lo : 1
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J Figure 14 — Results of the robust neural adaptive control by

technique H_ where I and I, are respectively a sinusoidal

LA ARCHTR T

@ (b) signal and a sinusoidal signal : (a) Control signal U, applied to
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the system; (b) Control signal U, applied to the system; (c)
reference signal I and system output Y, ; (d) reference signal
I,and system output Y, ; (e) Evolution of the difference
between the reference signall; and system output Y, ; (f)
Evolution of the difference between the reference signal I, and

the system output Y,
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Figure 15 — Results of the robust neural adaptive control by
technique H_ where [ and I, are respectively a triangular

3
Time(s)

signal and a triangular signal : (a) Control signal U, applied to
the system; (b) Control signal U, applied to the system; (c)
Reference signal 1) and system output Y, ; (d) Reference signal
I,and system output Y, ; (e) Evolution of the difference
between the reference signal I, and the system output Y, ; (f)
Evolution of the difference between the reference signal I, and

the system output Y, .

Based on the results of the proposed neural adaptive controls, we
can conclude:

- The control signals are bounded.

- Abrupt changes of system parameters involve sudden changes
of the amplitudes of commands laws and the outputs of the
controlled system.

- The proposed neural adaptive control guarantees the stability
of control structures and show robustness in the presence of
parameter changes of the controlled system.

- Robust neural adaptive control by technique H_ reduces the

effect of disturbances and / or uncertainties compared with
neural indirect adaptive control.
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Conclusion

In this work, the purpose of the command is solving
problems tracking given trajectories. The principal contribution
of this work lies in developing new methodologies of adaptive
control based on neural network. Two techniques of neural
adaptive control have been proposed, developed and tested
successfully. The first technique which is indirect neural
adaptive control has the advantage of being simple to the use. It
uses the neural model of the system to be controlled and
Lyapunov theory for make online learning of neural controller
and to maintain stability of the controlled system. On the other
hand, this technique risks not to mitigate the effects of
disturbance and therefore the controlled system cannot follow
the trajectories of references of good performance. To solve this
problem, we propose a robust neural adaptive control by the

technique H_ . In the second technique, the control law

implemented is the sum of two terms. Indeed, the first term is an
approximation of the inputs-outputs linearization control of the
system to be controlled based on neural network. On the other
hand, the second term is a term of robustification. The two
proposed techniques of neural adaptive control ensure the
stability of control structure and present robustness in the
presence of parameter changes of the system to be controlled.

Robust neural adaptive control by the technique H_ reduces

the effect of disturbances and / or uncertainties compared with
the neuronal indirect adaptive control. The robust neuronal

adaptive control by the technigue H_ allows to the

controlled system outputs to follow correctly the reference
signals relative to the adaptive control neuronal indirect.
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