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1. Introduction  

Accurate quantitative rainfall forecasting is one of the most 

desired aspects of weather prediction to the general community. 

Rainfall is natural climatic phenomena whose prediction is 

challenging and demanding. Its forecast is of particular 

relevance to agriculture sector, which contributes significantly to 

the economy of the nation. On a worldwide scale, numerous 

attempts have been made to predict its behavioral pattern using 

various techniques ( Somvanishi et al., 2006). The numerical 

modeler is faced with the problem of predicting a physical 

process that could be sensitive to any of a number of factors, 

such as wind, temperature, and humidity, in highly nonlinear 

ways, including some ways that are not completely understood 

at the present(Rangno and Hobbs 1994). Another important 

factor is introduced in regions with highly variable physiography 

(surface features such as topography, land–water boundaries, 

vegetation, and soil moisture) on small scales, which can have a 

profound influence on any of the factors mentioned above. The 

general objective of this study was to simulate rainfall using 

autoregressive integrated moving average (ARIMA) and 

artificial neural network(ANN). Artificial neural networks are 

mathematical models, the architecture of which has been 

inspired by biological neural networks (Erzin et al., 2007). 

ANNs are very appropriate for the modeling of nonlinear 

processes, such as the case of rainfall. This paper convincingly 

demonstrates the advantages of using ANN over that of ARIMA 

technique to model the rainfall behavior. The study of rainfall 

time series is a topic of great interest in the field of climatology 

and hydrology. Some significant examples in such areas include 

Singh (1998). Both univariate (e.g. Soltani et al., 2007) and 

multivariate (Grimaldi et al., 2005) approaches have been 

attempted to model the rainfall time series. Impact of other 

atmospheric variables on rainfall has been discussed in various 

literatures (Chattopadhyay, 2007b). The association between 

rainfall and agrometeorological processes is well discussed (e.g. 

Jhajharia et al., 2009; Chattopadhyay et al., 2009). Several 

stochastic models were attempted to forecast the occurrence of 

rainfall, to investigate its seasonal variability and to forecast 

monthly/yearly rainfall over some given geographical area. 

Study of the rainfall is interesting because of the associated 

problems, such as forecasting, corrosion effects and climate 

variability and various literatures have discussed these issues 

(Tzanis and Varotsos, 2008). Chaotic features associated with 

the atmospheric phenomena have attracted the attention of 

modern scientists (Bandyopadhyay and Chattopadhyay, 2007). 

Mathematical tools based on the theoretical concepts underlying 

the methodologies for detection and modelling of dynamical and 

chaotic components within a hydrological time series have been 

studied extensively by various scientists like Islam and 

Sivakumar (2002) and Jayawardena and Lai (1994). Phase space 

reconstruction and artificial neural networks (ANN) are non-

linear predictive tools that have been proposed in the modern 

literature as effective mathematical methodologies to be useful 

to hydrological time series characterized by chaotic features 

(Chattopadhyay and Chattopadhyay, 2008a; Elsner and Tsonis, 

1992; Khan et al., 2005). Applicability of ANN to rainfall time 

series is well documented in the literature. Prediction of 

atmospheric events, especially rainfall, has benefited 

significantly by voluminous developments in the application 

field of ANN and rainfall events and quantities have been 

predicted statistically (e.g. DelSole and Shukla, 2002; Mohanty 

and Mohapatra, 2007). Guhathakurata (2008) generated an ANN 

based model that captured the input-output non-linear 

relationship and predicted the monsoon rainfall in India quite 

accurately. 
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weights and the regression coefficients respectively. The performance of the model was 

evaluated by using remaining 5 years of data. The study reveals that ANN model can be 

used as an appropriate forecasting tool to predict the rainfall, which out performs the 

ARIMA model. 
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2. Materials and methods  

2.1. Study area and rainfall data 

Khuzestan Province is in south-western Iran, it covers an 

area of 63633/6 km
2
 between latitudes 29

0
 57`-33

0 
4` N and 

longitudes 47
0
 40`- 50

0
 33` E. The climate of the province is 

affected by weather systems from the Mediterranean and the 

Persian Gulf so that the weather is typically that of a semi-

arid/temperate climate. Basically, the province of Khuzestan can 

be divided into two regions, the plains and mountainous regions. 

Winters in this zone are short and moderate, while the summers 

are long and hot. In this research, the rainfall data of stations 

Ahvaz , Abadan and Dezful of  Khuzestan province (Iran) has 

been used for studying the rainfall conditions of the province, 

and The data for the analysis are on a seasonal  basis for the 

period of 33 years from 1976 to 2008. In this study, the first 112 

seasonal of rainfall data were used for model training. The 

remaining 20 seasonal of rainfall data were used for verification 

of the model prediction results. 

2.2. ARIMA model 

The general form of the ARIMA model is (Vandaele 1983)  

 

where   is the non-

seasonal autoregressive polynomial; B is the backward shift 

operator; reprpesents the autoregressive parameters of the 

model; p is the order of autoregressive polynomial;  is the 

stationary series after differencing, ; d is the 

number of non-seasonal differencing;  is the dependent 

variable;  is the non-

seasonal moving average polynomial; is the moving 

average of the model; q is the order of moving average 

polynomial; and  is the white noise process. In an 

autoregressive integrated moving average model(ARIMA), the 

future value of a variable is assumed to be a linear function of 

several past observations and random errors. An ARIMA model 

can be explained as ARIMA(p, d, q)(P, D, Q)s, where (p, d, q) is 

the non seasonal part of the model and (P, D, Q)s is the seasonal 

part of the model which is mentioned below  

 

where p is the order of non-seasonal autoregression, d is the 

number of regular differencing, q is the order of non-seasonal 

MA, P is the order of seasonal autoregression, D is the number 

of seasonal differencing, Q is the order of seasonal MA, s is the 

length of season(periodicity),  is the AR operator of order 

p,  is the seasonal AR parameter of order P, is the 

differencing operator is the seasonal differencing operator, 

zt is the observed value at time point t, θ is the MA operator of 

order q, is the seasonal MA parameter of order Q and at is 

the noise component of the stochastic model assumed to be 

NID(0, ). The ARIMA modeling approach involves the 

following three steps: model identification, parameter 

estimation, diagnostic checking. Identification of the general 

form of a model includes two stages:(1) if it is necessary, 

appropriate differencing of the series is performed to achieve 

stationary and normality;(2) the temporal correlation structure of 

the transformed data is identified by examining its 

autocorrelation(ACF) and partial autocorrelation (PACF) 

functions (Mishra and Desai, 2005). The ACF is a useful 

statistical tool that measures if earlier values in the series have 

some relation to later values. PACF is the amount of correlation 

between a variable and a lag of itself that is not explained by 

correlations at all low order lags. Considering the ACF and 

PACF graphs of seasonal rainfall series, different ARIMA 

models are identified to model selection. The model that gives 

the minimum Akaike Information Criterion (AIC) is selected as 

the best fit model. The mathematical formulation for the AIC is 

developed as 
 

where m=(p+q+P+Q) is the number of terms estimated in the 

model and RSS denotes the sum of squared residuals(Hirotugu, 

1974). After the functions of the ARIMA model have been 

specified, the parameters of these functions must be estimated. 

Once an appropriate model is chosen and its parameters are 

estimated, the Box–Jenkins methodology requires examining the 

residuals of the model to verify that the model is an adequate 

one for the series. Several tests are employed for diagnostic 

check to determine whether the residuals of the selected ARIMA 

models from the ACF and PACF graphs are in dependent, 

homoscedastic and normally distributed. If the homoscedasticity 

and normality assumptions are not provided, the observations 

are transformed by a Box–Cox transformation (Wei, 1990). For 

a good forecasting model, the residuals, left over after fitting the 

model, must satisfy the requirements of a white noise process 

(uncorrelated and normally distributed around a zero mean). In 

order to determine whether seasonal rainfall time series are 

independent, the residual autocorrelation (RACF) function of the 

series is studied. There are several useful tests related to RACF 

for the independence of residuals. The first one is the 

correlograms drawn by plotting the residual ACF function 

against lag number. If the ARIMA model is correct, the 

estimated autocorrelations of the residuals are uncorrelated and 

distributed approximately normally about zero. The second one 

is Ljung–Box–Pierce statistics. In order to test the null 

hypothesis that a current set of autocorrelations is white noise, 

test statistics are calculated for different total numbers of 

successive lagged autocorrelations using the Ljung–Box–Pierce 

statistics (Q(r) test) to test the adequacy of the model. Q(r) 

values are compared to a critical test value ( ) distribution 

with respective degree of freedom at a 5% significant level. The 

third one is the cumulative periodogram, employed to diagnose 

the residuals for a white noise sequence. When modeling 

seasonal time series line the one in the present study, the 

periodic characteristics of seasonal rainfall time series might not 

be taken into account, therefore, the periodicities in the residuals 

should be investigated(El-Din andSmith, 2002). 

2.3. Neural network model 

An ANN is a massively parallel-distributed processor that 

has a natural propensity for storing the experimental knowledge 

and making it available for further use. It resembles the human 

brain whose speed and efficiency has been always fascinating to 

researchers for quite a long time. The quest to understand these 

processes and to solve the associated problems has led to the 

development of ANN technique. Neural networks essentially 

involve a nonlinear modeling approach that provides a fairly 

accurate universal approximation to any function. Its power 

comes from the parallel processing of the information from data. 

No prior assumption of the model form is required in the model 

building process. Instead, the network model is largely 

determined by the characteristics of the data. Single hidden layer 

feedforward network is the most widely used model form for 

time series modeling and forecasting. The backpropagation 

network (BPN) is one of the neural network algorithm which is 

formalized by Parker,(1986), Lippmann (1987) and Rummelhart 
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& McClelland (1986 ) etc. It has been extensively used for 

inversion, prediction. An example of a network topology is 

shown in Figure 1. 

 

Figure 1. An example of an artificial neural network 

topology with one input layer, one hidden layer and one 

output layer 

A neural network must be trained to determine the values of 

the weights that will produce the correct outputs. In a training 

step, a set of input data is used for training and presented to the 

network many times. The performance of the network is tested 

after the training step is stopped. The backpropagation algorithm 

adjusts the weights in the steepest descent direction (negative of 

the gradient). This is the direction in which the performance 

function is decreasing most rapidly. It turns out that although the 

function decreases most trapidly along the negative of the 

gradient, this does not necessarily produce the fastest 

convergence. Therefore, the basic gradient descent training 

algorithm is inefficient owing to its slow convergent speed and 

at times the poor accuracy in model predictions (Huang et al., 

2004).  From an optimization point of view, training a neural 

network can be considered as equivalent to minimizing a 

multivariable global error function of the network weights. 

There are several optimized training algorithms, as described by 

Haykin (1999), such as resilient backpropagation,  Levenberg– 

Marquardt and conjugated gradient backpropagation. On of the 

optimized methods  developed by Moller (1993) is the scaled 

conjugate gradient (SCG) algorithm. The SCG training 

algorithm was developed to avoid the time-consuming line 

search. In the conjugate gradient algorithm a search is performed 

along conjugate directions, which produces faster convergence 

than steepest descent directions. The standard backpropagation 

algorithm, traditionally employed in neural network learning, 

evaluates the gradient of the global error function with respect to 

the weights, f (Wk), at each iteration k, and updates the weights 

according to  

 

The step size is a user-selected learning rate 

parameter, which affects the performance of the learning 

algorithm to a great extent. In all cases, the backpropagation 

algorithm may follow a zigzag  path to the minimum, typical for 

a steepest gradient descent method (Falas and Stafylopatis, 

2005). A conjugate gradient algorithm avoids the zigzag 

approach to the minimum point by incorporating a special 

relationship between the direction and gradient vector at each 

iteration. If D
k
 represents the direction vector at iteration k of 

thealgorithm, then the weight vector is updated according to the 

rule  
 

Given values of W
k 

and D
k
, a particular values of  that 

reduce the objective function as much as possible needs to be 

found. After a small number of iterations, the search along the 

line direction to find the optimum step size for the actual 

minimum should stop . Estimating the optimum step size with 

scaled conjugate gradient(SCG) training algorithm increases the 

learning speed and eliminates the dependence on critical user-

selected parameters. The main idea behind the algorithm is the 

use of a factor  which is raised or lowered with in each 

iteration during the execution of the algorithm, looking at the 

sign of the quantity ,  which reveals if the Hessian matrix is 

not positive definite. A brief algorithm of SCG in neural 

network is given as follows (Falas and Stafylopatis, 2005). 

1.Initialization: At k=0, choose an initial weight vector W
o
, and 

set the initial direction vector to the negative gradient vector  
  

Set the scalars , set the 

boolean success=true.  

2. If success=true, then calculate second order information: 

 

transpose  

3. Scale , look at the sign of  

for each iteration adjusting . If  then  and Sk is 

estimated again.  

4. If   then make the Hessian positive definite  

 

5. Calculate the step size: , 

the values of  directly scale the step size in the way, that the 

bigger , the smaller the step size.  

6. Calculate the comparison parameter 

 

7. Weight and direction update:If , then a successful 

update can be made:  

, success= 

true. If k mod N=0 then restart algorithm with 

 then reduce the scale parameter to 

success= false.  

8. If then increase the scale parameter 

to . 

 9. Repetition: If the steepest descent direction ; set k = 

k+1 and go back to step 2 else terminate and return W
k+1 

as the 

desired minimum. 

2.5. Model verification and comparison methods 

Three different forecast consistency measures are used in 

order to compare the performances of obtained ARIMA and 

artificial neural network (ANN): root mean square error 

(RMSE), the mean absolute percentage error (MAE) and the 

correlation coefficient (r). 
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Here Pi and Oi are the predicted and observed values, 

respectively. And n is the total number of observations. 

3. Results and discussion 

3.1. ARIMA modeling  

In the present study, several trails were made to choose the 

optimal ARIMA model parameters. The model parameters that 

satisfy the statistical residual diagnostic checking were chosen in 

the ARIMA forecasting model. The ARIMA models were used 

to predict seasonal rainfall time series over the period between 

1976 and 2008. The seasonal rainfall data for the period between 

1976 and 2003 were used for model calibration and to obtain the 

best model fit for each station. The data for the period between 

2004 and 2008 were used for model verification and 

comparisons for prediction purposes. In the ARIMA modeling 

process, the input and output seasonal rainfall data sets were 

normalized to the range of [0, 1]. To fit ARIMA model to the 

available seasonal rainfall time series data, three-stage procedure 

of model identification, estimation of model parameters and 

diagnostic checking of the estimated parameters was employed. 

In the identification stage, to determine the possible persistence 

structure in the time series data, the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF) were 

used(Figs. 2, 3, 4, 5, 6,7). Using Akaike Information Criteria 

(AIC), the best fitted model has been identified out of the 

various competing models. As demonstrated in Table1, the 

seasonal components (P, D, Q) of best fit ARIMA models are 

(2,1,0) for seasonal rainfall of station Ahvaz, (0,1,1) for station 

Abadan and (0,1,1) for station Dezful. The nonseasonal 

components (p, d, q) are (0,1,2),(0,1,2) and (0,1,1) for stations 

Ahvaz, Abadan and Dezful, respectively. The AICs for the best 

fit ARIMA models are -81.5, -35.22 and -51.9 for station Ahvaz, 

station Abadan and station Dezful, respectively (Table1). In the 

estimation of model parameters stage, the best fit ARIMA model 

statistical parameters were estimated. The computational method 

outlined by Box and Jenkins (1976) was employed to estimate 

model parameters. In the diagnostic checking of the estimated 

parameters stage, diagnostic checks were done to insure that the 

best fit model was selected by checking that assumptions of 

ARIMA modeling such as independence, homoscedastic 

(constant variance) and normality of the residual at were 

satisfied. In order to check the independence of residuals, the 

residual autocorrelation function (RACF), Ljung–Box–Pierce 

statistics and cumulative periodograms were used. The values of 

residual autocorrelation functions (RACF) were well settled 

within confidence limits except very few individual correlations 

appear large compared to the confidence limits, which were 

acceptable among 48 lags. The results exhibited no significant 

correlation between the residuals of the each seasonal rainfall. 

The values of Ljung–Box–Pierce Q(r) statistic is shown in 

Table1 and has avalue of 26.53, 29.45 and 22.6 for seasonal 

rainfall of stations Ahvaz, Abadan and Dezful, respectively. The 

values of Q(r) were compared to a critical test value ( ) 

distribution with respective degree of freedom at a 5% 

significant level. It was obvious that the computed values were 

less than the actual ( ) values, which indicated that the 

residuals from the best models were white noise (Table1). 

Cumulative periodograms confirmed that no significant 

periodicity was available in the residual series at 95% 

confidence level and indicated that the points were clustering 

closely about the theoretical line and there was no evidence of 

periodic characteristics buried in the residual series. In order to 

check the normality of residuals, the histograms and normal 

probability plot of residuals were investigated and they clearly 

supported the assumption of normality. In order to investigate 

homoscedasticity of the residuals, a plot of residuals versus 

fitted values were examined and the plots showed a random 

scatter around zero. In other words, the residuals were evenly 

distributed around mean, which explains the models were 

adequate.                                                                      

The trained ARIMA model was then tested using season 

rainfall data set for the period of 20 seasonals. As shown in Figs. 

8, 9, 10, although the ARIMA models generally vary with the 

range of most of the seasonal rainfall data, the model predictions 

are not quite satisfied. The correlation coefficient values 

between models predicted values and observed data for stations 

Ahvaz, Abadan and dezful are 0.874, 0.852 and 0.935, 

respectively, which are not satisfactory in common model 

applications (Figs. 11, 12, 13). Although the ARIMA models 

were able to show the cycles of the high and low seasonal 

rainfall values, they were not able to provide good predictions of 

the seasonal rainfall value magnitudes, which changed from 

seasonal to seasonal. This limitation was due mainly to the 

limitations of the linear modeling algorithm in the ARIMA 

model, the performance of which was generally not quite 

satisfactory in recognizing and reproducing the nonlinear time 

series of seasonal rainfall data.             
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Fig.2. Plot of ACF for seasonal rainfall data for station 

Ahvaz. 
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Fig.3. Plot of  PACF for seasonal rainfall data for station 

Ahvaz. 
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Fig.4. Plot of ACF for seasonal rainfall data for station 

Abadan 
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Fig.5. Plot of PACF for seasonal rainfall data for station 

Abadan 
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Fig.6. Plot of ACF for seasonal rainfall data for station 

Dezful. 
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Fig.7. Plot of PACF for seasonal rainfall data for station 

Dezful. 
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Fig. 8. ARIMA model verification for station Ahvaz 
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Fig. 9. ARIMA model verification for station Abadan 
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Fig. 10. ARIMA model verification for station Dezful 
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Fig. 11. Observed versus ARIMA predicted data for station 

Ahvaz 

correlation,r= 0.852

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

rainfall prediction

r
a
in

fa
ll

 o
b

s
e
r
v
a
ti

o
n

 

Fig. 12. Observed versus ARIMA predicted data for station 

Abadan 

correlation, r=0.934
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Fig. 13. Observed versus ARIMA predicted data for station 

Dezful 

3.2. Neural network modeling  

A three-layer feedforward neural network model was 

developed for the prediction of seasonal rainfall using an 

optimized back-propagation training algorithm. In the present 

study, the scaled conjugated gradient algorithm was selected as 

the optimized training method. In the following part, artificial 

neural network model performances were validated for rainfall 

prediction under seasonaly time-step condition. The data for the 

period between1976 and 2008 were available for the modeling 

purposes. seasonal rainfall time series data were divided into 

two independent data sets. The first data set was used for model 

training, and the second data set was used for model verification 

purposes. In the ANN modeling process, the input and output 

seasonal rainfall data sets for each station were normalized to 

the range of [0,1]. Figs. 14, 15, 16 compares the model 

predictions for seasonal rainfall with the observations. The 

verifications stage indicate that the model prediction results 

reasonably match the observed seasonal rainfall. The correlation 

coefficient between the ANN model predicted values and 

observed data for stations Ahvaz, Abadan and Dezful are 0.949, 

0.922 and 0.945, respectively, which are satisfactory in common 

model applications (Figs. 17, 18, 19). These results indicate that 

the neural network model is able to recognize the pattern of the 

seasonal rainfall to provide good predictions of the seasonaly 
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variations of seasonal rainfall data of the Khozestan Province 

(Iran).                                                                                                     
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Fig. 14. ANN model verification for station Ahvaz 
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Fig. 15. ANN model verification for station Abadan 
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Fig. 16. ANN model verification for station Dezful 
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Fig. 17. Observed versus ANN predicted data for station 

Ahvaz. 
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Fig. 18. Observed versus ANN predicted data for station 

Abadan. 

 

 

 

Fig. 19. Observed versus ANN predicted data for station 

Dezful 

3.4.Comparison of model performances   

Figures. 20, 21, 22 shows the plot of predicted models vs. 

observed values of the seasonal rainfall data from year 1976 to 

2003 by both the ANN and ARIMA. The ANN model fits 

extremely well with the actual data values as compared to the 

ARIMA model. Both the models were tested using the test data 

set for the period 2004 to 2008, which is shown in Figs.23, 24, 

25. From this figure it can be observed that the seasonal rainfall 

values predicted by the ANN model are quite closer to observed 

seasonal rainfall as compared to the ARIMA model. Employing 

accuracy measures (RMSE, MAE and R
2
), the observed data and 

predicted data from the ANN and ARIMA models were 

compared  to determine the best performed model. The predicted 

seasonal rainfall using the ARIMA models were not found to be 

in reasonable agreement with the observed data. However, the 

ANN approache provided reasonable precision for all stations. 

Tables 2, 3 ,4 gives the error estimates of the three different 

approaches used in the study for predicting seasonal rainfall. 

The RMSEs between observed and predicted data were 

calculated in ARIMA models as 25.66, 23.97 and 30.44 for 

stations Ahvaz, Abadan and Dezful, respectively. In the case of 

ANN modeling approach, the RMSEs between observed and 

predicted data were computed as 16.13, 19.31 and 26.53 for 

stations Ahvaz, Abadan and Dezful, respectively. Furthermore, 

the MAEs between observed and predicted data for stations 

Ahvaz, Abadan and Dezful were appeared to be slightly lower 

for the ANN modeling approach. Prediction error statistics for 

the ANN approach produced MAEs of 37.63, 33.15 and 35.11 

for stations Ahvaz, Abadan and Dezful, respectively. These 

results indicated that the ANN model performed well for 

adequate predicting of seasonal rainfall. Therefore, it can be 

concluded that the ANN modeling approach can give more 

reliable predictions of seasonal rainfall time series of Khozestan 

Province (Iran) than the ARIMA modeling approach.                                                                                           
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Fig.20. A linear scale plot of the predicted and observed 

seasonal rainfall for model data set using ANN and ARIMA 

model for station Ahvaz. 
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Fig.21. A linear scale plot of the predicted and observed 

seasonal rainfall for model data set using ANN and ARIMA 

model for station Abadan. 

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91 10 111

Time

s
e
a
s
o

n
a
l 

ra
in

fa
ll

observed ANN ARIMA  

Fig. 22. A linear scale plot of the predicted and observed 

seasonal rainfall for model data set using ANN and ARIMA 

model for station Dezful 
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Fig. 23. A linear scale plot of the predicted and observed 

seasonal rainfall for test data (1976 -2003) set using ANN 

and ARIMA model for station Ahvaz. 
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Fig. 24. A linear scale plot of the predicted and observed 

seasonal rainfall for test data (1976 -2003) set using ANN 

and ARIMA model for station Abadan. 
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Fig.25. A linear scale plot of the predicted and observed 

seasonal rainfall for test data (1976 -2003) set using ANN 

and ARIMA model for station Dezful. 

Table 2- Statistical comparison of observed and predicted 

data from the ANN and ARIMA modeling approaches for 

station Ahvaz. 

Techniques Error Measures for 

seasonal rainfall model 

data set 

Error Measures for 

seasonal rainfall test data 

set 

ANN RMSE MAE R
2
 RMSE MAE R

2
 

0.62 0.94 0.935 16.13 37.63 0.902 

ARIMA 3.66 21.16 0.791 25.66 45.32 0.7648 

Table 3- Statistical comparison of observed and predicted 

data from the ANN and ARIMA modeling approaches for 

station Abadan 

Techniques Error Measures for 

seasonal rainfall model 

data set 

Error Measures for 

seasonal rainfall test data 

set 

ANN RMSE MAE R
2
 RMSE MAE R

2
 

0.74 0.83 0.892 19.31 37.15 0.8502 

ARIMA 3.42 21.3 0.751 23.97 40.12 0.7261 

Table 4- Statistical comparison of observed and predicted 

data from the ANN and ARIMA modeling approaches for 

station Dezful. 

Techniques Error Measures for 

seasonal rainfall model 

data set 

Error Measures for 

seasonal rainfall test data 

set 

ANN RMSE MAE R
2
 RMSE MAE R

2
 

0.98 0.87 0.943 26.53 35.11 0.8942 

ARIMA 3.8 19.2 0.891 30.44 42.14 0.8739 

4. Conclusions 

An empirical comparative evaluation of the performance of 

ANN model to the ARIMA modeling approach was presented 

for seasonal rainfall predictions. Investigations were conducted 

to examine the ANN model performance for predicting rainfall 

in seasonaly time steps. The results from the ARIMA models 

poorly represented the pattern of seasonal rainfall data for 

stations Ahvaz and Abadan, but the model produced acceptable 

results for station Dezful. The results from the ANN model 

indicated that the modeling approach gave more reliable 

predictions of seasonal rainfall time series data. The predictions 

from ANN model were compared with that obtained from the 

ARIMA traditional time series approaches. Owing to its ability 

in recognizing time series patterns and nonlinear characteristics, 

the accuracy measures RMSE and MAE and R
2
 demonstrated 

that the ANN model provided much better accuracy over the 

ARIMA methods for seasonal rainfall predictions. Therefore, the 

proposed ANN algorithm can be used for the Khozestan 

Province. 
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Table 1- Summary of the statistical parameters of the best fitted multiplicative ARIMA models fitted to seasonal rainfall 

AIC   Q                 Model Station 

-81.5 32.67 26.53 -  -  -0.8 -0.83 -0.1394 0.9347 - - (0,1,2)(2,1,0)12 Ahvaz 

-35.22  32.67 29.45 -  0.5576  -  -   -0.2535 1.065   - -  (0,1,2)(0,1,1)12 Abadan 

-51.9   32.67 22.6 -  0.7138  -  -  0.4643  0.1883  -  -0.73   (1,1,2)(0,1,1)12 Dezful 

 


