Jaydeep H Parejiya et al./ Elixir Appl. Math. 55 (2013) 12967-12969

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

are any two positive term

© 2013 Elixir All rights reserved.

Elixir Appl. Math. 55 (2013) 12967-12969

Relation between infinite series and infinite sequence

Jaydeep H Parejiya¹ and Sarala Vaghasiya² ¹V.V.P Engineering College, Rajkot.

sequence. And also try to prove that if $\sum u_n$ and $\sum v_n$

examples which gives the support to the comparison test.

²R.K.University, Rajkot.

ABSTRACT

ARTICLE INFO

Article history: Received: 23 December 2012; Received in revised form: 2 February 2013; Accepted: 8 February 2013;

Keywords

Infinite series. Infinite sequence, Convergence series, Divergent series.

Introduction

We begin with infinite series. Here we use $\sum_{n=1}^{\infty} u_n$

denote infinite series whose n^{th} term is u_n . I have given brief summary of definitions which are useful for the present investigation.

Prilimaries:

Definition1.1 [1] (**Infinite sequence**): Any function $f: \mathbb{N} \to X$ is called infinite sequence in X. We use $\Box \{u_1 n - \} \Box_1 (n = 1)^{\dagger} \omega$ to denote infinite sequence whose n^{th} term is u_n .

Definition1.2 [2] (Series): Series is the sum of each term of sequence.

Definition 1.3 [2] (Infinite series): A series is called infinite series if it contains infinitely many terms.

Definition 1.4[2] (Convergent series): An infinite Series $\sum_{n=1}^{\infty} u_n$ is called convergent series if $\lim_{n \to \infty} s_n$ exist, where $s_{n=}\sum_{1}^{n} u_{n}$.

 $\sum_{n=1}^{\infty} u_n$ is called convergent series if $\lim_{n \to \infty} s_n = \pm \infty$, Definition 1.5 [2] (Divergent series): A infinite Series where $s_{n=}\sum u_n$

1.6 [1] (Convergence Definition sequence): Let $[u_n]_{[n=1]^{\uparrow}\infty}$ be any infinite sequence then it is called convergent to l if for $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}$ such that if $n > n_0$ then $|u_n - l| < \epsilon$.

(Divergent Definition 1.7 [1] sequence): Let $[u_1n +]_1(n = 1)^{\dagger}\infty$ be any infinite sequence then it is called divergent if for $\forall m > 0 \exists n_0 \in \mathbb{N}$ such that if $n > n_0$ then $|u_n| > m$.

Some Well-known Result

In this paper I try to prove some relation about convergence of infinite series and infinite

convergent series then $\sum_{u_n v_n}^{u_n v_n}$ are also convergent series. And also try to give some

Ratio Test[2]:

Let
$$\sum_{n=1}^{\infty} u_n$$
 be any positive term series and
 $\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = l$ then
(1) If $l > 1$ then $\sum u_n$ is convergent series
(2) If $l < 1$ then $\sum u_n$ is divergent series

(3) If
$$l = 1$$
 then test fail

P-series [2]:

Let
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 be any positive term series then
(1) If $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if $n > 1$

(2) If
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is divergent series if $p \le 1$.

Direct Comparison test [2]:

Let
$$\sum_{n=1}^{\infty} u_n$$
 and $\sum_{n=1}^{\infty} v_n$ be any two positive terms series,
and $u_n \leq v_n$ for every n after few terms. Then

$$\begin{array}{ccc} \operatorname{d} u_n \leq v_n & \text{for every n after few terms. Then} \\ (1) & \sum_{n=1}^{\infty} u_n & \text{is convergent if } \sum_{n=1}^{\infty} v_n & \text{is convergent.} \\ (2) & \sum_{n=1}^{\infty} v_n & \text{is divergent if } \sum_{n=1}^{\infty} u_n & \text{is divergent.} \\ \end{array}$$

Zero test [2]: Let $\sum u_n$ be any positive term series and if

 $\lim_{n \to \infty} u_n \neq \mathbf{0} \quad \text{then } \sum u_n \text{ is divergent.}$

Tele: E-mail addresses: parejiyajay@gmail.com

© 2013 Elixir All rights reserved

that

such

Main Theorem:

Theorem 1.If $\square \{u_1 n - \} \square_1 (n = 1)^{\dagger} \infty$ be any divergent sequence where every u_n is positive for every n. Then $\sum u_n$

is also divergent series.

Proof: Here, $\Box \{u_1 n - \} \Box_1 (n = 1)^{\dagger} \infty$ is divergent So, for $\forall m > 0 \exists n_0 \in \mathbb{N}$ if $n > n_0$ then $|u_n| > m$. In particular if we take m=1, then

 $\exists n_0 \in \mathbb{N}$ Such that if $n > n_0$ then $|u_n| > 1$ $\Rightarrow |u_n| > 1$, $\forall n > n_0$ $\Rightarrow u_n > 1 , \forall n > n_0 \text{ as all } u_n \text{ are positive}$ Now, consider the series $\sum_{n=1}^{\infty} 1$ Then $\lim_{n \to \infty} u_n = \lim_{n \to \infty} 1$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$$

So, by Cauchy's test for divergent $\sum_{n=1}^{\infty} \mathbf{1}$ is divergent And so, by comparison test $\sum_{n=n_0}^{\infty} u_n$ is divergent.

Hence, $\sum_{n=1}^{\infty} u_n$ is also divergent because we know that if we

add some finite number of terms in series then its nature remains unaltered.

Remarks:

Converse of the following theorem may not be true in general. See the following example

Example:

mple: Consider the series $\sum_{n=1}^{\infty} \frac{1}{n}$ Then by p-test we have $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent. But , $\{\frac{1}{n}\}_{n=1}^{\infty}$

is convergent and infact it is convergent to 0.

 $\sum_{n=1}^{\infty} u_n$ be any positive terms convergent Theorem 2. Let

series then $\Box \{u_1 n \mid] \Box_1 (n = 1)^{\dagger} \infty$ is also convergent and indeed it is convergent to 0.

Proof:

Here, $\sum_{n=1}^{\infty} u_n$ is convergent series,

 $\lim_{n \to \infty} u_n = \mathbf{0}$

So, by the definition of convergence of sequence we have $[u_1n +]_1(n = 1)^{\dagger}\infty$ is convergent and in fact it is convergent to 0.

Remarks: Converse of the theorem may not be true in general. See the following example

Example:

Consider the series $\sum_{n=1}^{\infty} \frac{1}{n}$

Then by p-test we have
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent. But, $\{\frac{1}{n}\}_{n=1}^{\infty}$ is convergent and in fact it is convergent to 0.

Theorem 3.

 $\sum u_n$ and $\sum v_n$ be any two positive term series

and if
$$\sum u_n$$
 and $\sum v_n$ are convergent then $\sum u_n v_n$ is

also convergent.

Proof:
Let
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} u_n v_n$$

Now,

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}}$$

$$= \lim_{n \to \infty} \frac{u_n v_n}{u_{n+1} v_{n+1}}$$

$$= \lim_{n \to \infty} \frac{u_n}{u_{n+1}} \times \lim_{n \to \infty} \frac{v_n}{v_{n+1}}$$

$$> 1 \qquad \text{as} \lim_{n \to \infty} \frac{u_n}{u_{n+1}} > 1 \quad \text{and}$$

$$\lim_{n \to \infty} \frac{v_n}{v_{n+1}} > 1 \quad \text{Because} \sum u_n \text{ and } \sum v_n \text{ are}$$
Convergent series.

So, by using D'Alembert's Ratio test

 $\sum a_n = \sum u_n v_n$ is also convergent.

Question: Is above theorem is true for divergent series that means if $\sum u_n$ and $\sum v_n$ are two divergent series then does it implies that $\sum_{u_n v_n} v_n$ is divergent.

Answer: It is not true in general, see below two example. Example 1.

Consider
$$\sum u_n = \sum \frac{1}{n} = \sum v_n$$
 then $\sum u_n v_n = \sum \frac{1}{n^2}$.
then $\sum u_n$ and $\sum v_n$ are divergent series but $\sum u_n v_n$ is

convergent series using P-test.

Example 2.

Consider
$$\sum u_n = \sum \frac{1}{\sqrt{n}} = \sum v_n$$
 then $\sum u_n v_n = \sum \frac{1}{n}$ then
 $\sum u_n$ and $\sum v_n$ are divergent series and $\sum u_n v_n$ is also

divergent series using P-test.

Remark: The following example shows that if
$$\sum u_n$$
 is

convergent and
$$\sum v_n$$
 is divergent series then $\sum u_n v_n$ is

convergent.

Consider
$$\sum u_n = \sum \frac{1}{n}$$
, $\sum v_n = \sum \frac{1}{n^2}$ then
 $\sum u_n v_n = \sum \frac{1}{n^2}$.then $\sum u_n$ is divegent and $\sum v_n$ is

convergent series and $\sum u_n v_n$ is convergent series using P-

test.

Remark: The following example shows that if $\sum u_n$ is convergent and $\sum v_n$ is divergent series then $\sum u_n v_n$ is

divergent.

Example 2.4 Consider
$$\sum u_n = \sum \frac{\ln n}{n^{\frac{5}{2}}}$$
, $\sum v_n = \sum n^{\frac{5}{2}}$
then $\sum u_n = \sum \frac{\ln n}{n^{\frac{5}{2}}}$, $\sum v_n = \sum n^{\frac{5}{2}}$

 $\sum u_n v_n = \sum \ln n \sum u_n$ is convergent series

and $\sum v_n$ is divergent series and $\sum u_n v_n$ is divergent series

using zero test.

Now, Let us first write the limit form of comparison test Limit form of comparison test:

Let $\sum u_n$ and $\sum v_n$ are two positive term series then

(1) If $\lim_{n \to \infty} \frac{u_n}{v_n} = l$ (finite and nonzero) then both series

convergent and divergent together.

^{(2) if}
$$\lim_{n \to \infty} \frac{u_n}{v_n} = 0$$
 and $\sum v_n$ is convergent then $\sum u_n$ is

also converger

(3) if $\lim_{n \to \infty} \frac{u_n}{v_n} = \infty$ and $\sum v_n$ is divergent then $\sum u_n$ is also divergent.

Question: In case (2) in above comparison test if $\sum v_n$ is

divergent does it implies that $\sum u_n$ is also divergent.

Answer is no. It is not true in general. See following example.

Example: the series $\sum u_n = \sum \frac{1}{n^2}$ consider and $\sum v_n = \sum \ln n$ then using zero test we have $\sum v_n$ is divergent and using P-test we have $\sum u_n$ is convergent.

But,
$$\lim_{n \to \infty} \frac{u_n}{v_n}$$
$$= \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\ln n}$$
$$= 0.$$

Question: In case (3) in above comparison test if $\sum v_n$ is convergent then does it implies that $\sum u_n$ is also convergent. Answer is no. It is not true in general. See following example.

Example:

Consider the series $\sum u_n = \sum 1$ and $\sum v_n = \sum \frac{1}{n^2}$ then

using zero test we have $\sum u_n$ is divergent and using P-test we

have
$$\sum v_n$$
 is converge.
But, $\lim_{n \to \infty} \frac{u_n}{v_n}$
 $= \lim_{n \to \infty} \frac{1}{\frac{1}{n^2}}$
 $= \infty$.

ł

References: 1. Principles of Mathematical analysis (Third edition) by Walter Rudin

2. Calculus (Fifth Edition) by Dr. R.C.Shah