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Introduction  

 A continuous complex-valued function =f u iv   defined 

in a simply connected domain D  is said to be harmonic in D  if 

both u  and v  are real-valued harmonic in D . In  any simply 

connected domain D C , f can be written in the form: 

= ,f h g  where h  and g are analytic in D . We call h  the 

analytic part and g the co-analytic part of f . A necessary and 

sufficient condition for f  to be locally univalent and orientation 

preserving in D  is that ( ) > ( )' 'h z g z  in D  (see [9]). Let H  

denote a class of harmonic functions = ,f h g  which are 

harmonic, univalent and orientation preserving in the open unit 

disc = { :| |<1}z z so that f is normalized by 

(0) = (0) = (0) 1= 0zf h f   

Note that the family H reduces to the well-known class S  

of normalized univalent functions if the co-analytic part of f  is 

identically zero, that is if 0g  . 

The concept of multivalent harmonic complex valued 

functions by using argument principle, was given by Duren, 

Hengartner and Laugesen [10]. Using this concept, Ahuja and 

Jahagiri [1], [2] introduced a class ( )H m  of m -valent harmonic 

and orientation preserving functions ( ) = ( ) ( ),f z h z g z   where 

( )h z  and ( )g z  are m -valent functions of the form: 

 
= 1 =

( ) = , ( ) = , < 1, 1,2,3....m n n

n n m
n m n m

h z z a z g z b z b m
 


  N=  (1.1)      

which are analytic in = { :| |<1}z z  

For  0, , , = 0 ,p q r s N N  complex parameters i  

 = 1,2,..., ,i p  = 1,2,...,i i r and i  ; =1,2,.., ,n i q   

i   0; =1,2,.., , ,n i s n  N a linear operator :    

  
                , ,

, , 1 11, 1, 1, 1,
 , ; , ; :p q p q

r s i i i i r sp q r s
H m H m            

is defined by  

                , , ,

, 1 1 1 1; =p q p q r s

r s m mf z H h z H g z              (1.2)            

where the operators  ,

1 ,p q

mH    ,

1

r s

mH   are the Dzoik-

Srivastava operators [11] defined for the functions ( )h z  and 

( )g z  of the form (1.1), respectively, by  

                     , ,

1 1= ; ; , = ; ;p q m r s m

m p q i i m r s i iH h z z F z h z H g z z F z g z        (1.3)                                                                               

We have for  ( ) = ( ) ( ) ,f z h z g z H m    

      
where 

 
   ( ) = ( ) 1 ( ), ( ) = ( ) 1 ( ).

d d
H z z h z m h z G z z g z m g z

dz dz
   

 

The function      1 1; ; = ( ,..., , ,..., ; )p q i i p q p pF z F z       is 

the generalized hypergeometric function defined by 

    
   
   

 
1

=0
1

...
   ; ; = 1;  

... !

pn nn

p q i i
n

qn n

F z z p q z
n

 
 

 



     (1.4)                 

which is analytic at 1z   if (in case 1p q   ) 

=1 =1 > 0,q p
i ii i    the symbol  

n
  is the Pochhammer symbol 

defined in terms of gamma function by 

 

 
 

      

1, = 0, 0
= = .

1 2 ... 1 ,n

nn

n n




   

   
 

      N
 

The series expression of      ,

, 1 1;p q

r s f z     defined by 

(1.2) is given by 

      ,

, 1 1
= 1 =

; =p q m n n

r s n n n n
n m n m

f z z a z b z   
 


               (1.5) 

where 

 
   

=1 =1

=1=1

1 1
= , = , .

( )! ( )!( )( )

p r

i in m n mi i

q sn n

i n mi n m
ii

n m
n m n m

 
 



 



 




 

          (1.6)

           1,0 1,0

1,0 1,01 ; 1 = ( ) ( ), 2 ; 2 = ( ) ( )f z h z g z f z H z G z         
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Note that the Dziok-Srivastava operator  ,

1 ,p q

mH   defined 

by (1.3) contains several well-known linear operators such as the 

Hohlov linear operator, the Carlson-Shaffer linear operator, the 

Ruscheweyh derivative operator etc. whose references may be 

found in [11]. 

For some kN  and for = 0,1,..., 1,k   the points: 

=z z  
2

= ,
i

ke z



 

 
 

 are the symmetric points. 

Corresponding to  = ,f h g H m   (where ( )h z  and ( )g z  

are of the form (1.1)), we consider = ( ),k k kf h g H m   where  

1

=0 = 1

1
( ) = ( ) = ( ) =  ,

(1 )

mk
m m k n

k n nk
n m

z
h z h z h z z a z z

k z

 


 

 



    


   (1.7)       

1

=0 =

1
( ) = ( ) = ( ) =   ,

(1 )

mk
m k n

k n nk
n m

z
g z g z g z b z z

k z

 


 

 


   


          (1.8)         

and for 1,n m    

 

1, = ,
= , = 1.

0, = , 0 , = 1,2,..., 1, 2

k k

n m

n m lk l

n m lk j l j k k

 
 

     

N

N
  (1.9) 

Two subclasses of S , namely, uniformly convex functions 

(UCV ) and uniformly starlike functions (UST ) were 

introduced by Goodman [12], [13], later Rønning [24] has given 

more applicable characterization of these classes. 

For the purpose of this paper, on applying the linear 

operator    ,

, 1 1;p q

r s      , we define a class     , 1 1, ,
, ; ;m k p q r s

R      

of functions  f H m  if it satisfy the Goodman-Rønning type 

class condition 

    
     

      
     

, ,

, 1 1 , 1 1

, ,

, 1 1 , 1 1

; ( ) ;
> ,

; ;

' '
p q p q

r s r s

' p q ' p q

r s k r s k

z f z z f z
m m

z f z z f z

   
 

   

           
          

(1.10)                                                                   

with respect to k -symmetric points, where = ( ),k k kf h g H m   

0,0 <1,   kN ,  = <1, ,iz re r  R  = ,'z z





  

         , ,

, 1 1 , 1 1; ( ) = ; ( ) .
'

p q p q

r s r sf z f z   



       

            

Observe that the functions  f H m  satisfying (1.10) must 

satisfy the condition given by  

 
      
     

,

, 1 1

,

, 1 1

;
1 > , .

;

'
p q

r si i

' p q

r s k

z f z
e m e m

z f z

 
 

   
 

                 

R    (1.11)                                                          

We also note that the Goodman-Rønning type class 

condition of the form (1.11) has been extensively studied earlier 

in several work. Some of them as follows: 

(i)        1,1 1 1 1, ,
, ;1; = ,Hp q p q

R G      studied by 

Murugusundaramoorthy et al. [22] (see also [18]) 

(ii)       ,1 1 1 1, ,
, ;0; = , ,m Hp q p q

R S m      studied by Omar and 

Halim [23] 

 (iii)       1,1 1 1 1, ,
, ;0; = ,Hp q p q

R S      investigated by Al-

Kharsani and Al-Khal [19] 

 (iv)          1, 1,0 1,0
1 , 1 ;0; =

k

k sR SH   studied by Shaqsi and 

Darus [26] 

 (v)       1,2 1,0 1,0
1 , 1 ;0; = sR SH   studied by Ahuja and 

Jahangiri in [7] (see also [14]) 

(vi)       ,1 1,0 1,0
1 , 1 ; ; = , ,mR R m    studied by El-Ashwah [8]. 

(vii)       ,1 1,0 1,0
1 , 1 ;1; = ,m HR G m  studied by Jahangiri et al. 

[16] (see also [17]) 

 (viii)       1,1 1,0 1,0
1 , 1 ; ; = ,HR R     studied by Ahuja et al. [3] 

(ix)       1,1 1,0 1,0
1 , 1 ; ;0 = HR R   studied by Rosy et al. [29] 

(x)       ,1 1,0 1,0
1 , 1 ;0; = ,mR SH m   studied by Ahuja and 

Jahangiri [1] (see also [6], [5]) 

 (xi)       1,1 1,0 1,0
1 , 1 ;0; =R SH   studied by Jahangiri [15] 

 (xii)     1,1 1,0 1,0
1 , 1 ;0;0 =R SH  studied by Silverman [27] (see 

also [28]).  

Harmonic functions, associated with more generalized 

linear operators defined by convolutions, are also considered in 

[4], [20], [21], [25]. 

Let ° H m  be a subclass of ( )H m  whose members 

= ,f h g  are such that, h  and g  are of the form 

    
= 1 =

( ) = , ( ) = , < 1.m n n

n n m
n m n m

h z z a z g z b z b
 


             (1.12) 

We further let  

     °           ° ,
1 1 , 1 1, , , ,

 , ; ; = , ; ; .m k
m kp q r s p q r s

R R H m          

In this paper, an equivalent convolution class condition is 

derived and a coefficient inequality is obtained for the functions 

= ( )f h g H m   to be in the class     , 1 1, ,
, ; ;m k p q r s

R     . It 

is also proved that this inequality is necessary for = ,f h g  to 

be in °     , 1 1, ,
, ; ;m k

p q r s
R      class. As an application of 

coefficient inequality a necessary and sufficient hypergeometric 

inequality is also given. Further, based on the coefficient 

inequality, results on bounds, extreme points, convolution and 

convex combination and on an integral operator are obtained. 

Throughout the paper, we consider that the parameters 

involved in the operator    ,

, 1 1;p q

r s       such as   = 1 , 2 , . . . , ,i i p  

 = 1,2,...,i i r
i  = 1, 2,.., ,i q  = 1, 2,..,i i s  are positive real and 

,n  n  given by (1.6) are such that ,n

n

m
     ,n

n
n m

m
    

and k

n  is given by (1.9). 

2 Convolution Class Condition 

In this section, we obtain another class condition equivalent 

to (1.11) for functions belonging to the class 

    , 1 1, ,
, ; ;m k p q r s

R      with the use of convolutions. 

Theorem 1 Let 0,0 <1, ,m k   N  and 

 = ,f h g H m   (where h  and g  are of the form (1.1)). If 

    , 1 1, ,
, ; ; ,m k p q r s

f R      then  

     
       , ,

1 1( ) ( )
0,

p q r s

m m

m

H z H h z G z H g z

z

   
       (2.1) 
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where for 
 1

  = 1, 1, , 1, ,
1

ie
z

   
  



  
    


R  

     1 1 ( ) 1 2 1
1( ) = = ...

2(1 )

m

i i

k
m

z
e A z e

zH z z

      



      
 


 

     1 1 ( ) 1 2 1
1( ) =

2(1 )

m

i i

k

z
e A z e

zG z

      



       



 

 
 1

= ...
1

i

m
e

z

   



  



 

Proof. Let      , 1 1, ,
, ; ; ,m k p q r s

f R      then we have 

 

 
      
     

,

, 1 1

,

, 1 1

;
1 > 0, , .

;

'
p q

r s
i i

' p q

r s k

z f z
e m e m z

z f z

 
 

   
 

            
      

R  

Since, at 0z   

 
      
     

,

, 1 1

,

, 1 1

;1
1 = 1,

(1 ) ;

'
p q

r s
i i

' p q

r s k

z f z
e m e m

m z f z

 
 

  
  

         
       

 

we get an equivalent class condition       

 
      
     

 
,

, 1 1

,

, 1 1

;1 1
1

(1 ) 1;

'
p q

r si i

' p q

r s k

z f z
e m e

m z f z

 
  

  
  

                   

   (2.2) 

( =1, 1, 0 < <1).z     Using (1.2), (1.7) and (1.8) for 

 = ,f h g H m   we have 

      
   

,

, 1 1 , ,

1 1

;
= ( ) ( ),

'
p q

r s p q r s

m m'

z f z d d
z H h z z H g z

z dz dz

 
 

   
  

         , , ,

, 1 1 1 1
; = ( ) ( )

1 1

m m

p q p q r s

r s k m mk k

z z
f z H h z H g z

z z
          

 

and also,  

   , ,

1 12

1
( ) = ( ),

1 (1 )

p q m p q

m m

d z
z H h z mz H h z

dz z m z
 

 
  

  

 

     , ,

1 12

1
( ) = .

1 (1 )

r s m r s

m m

d z
z H g z mz H g z

dz z m z
 

 
  

  

 

Thus, by simple calculations and by denoting 

2

1
= ( )

1 (1 )

m z
z A z

z m z

 
 

  
, from (2.2), we get 

   
   

      , ,

1 1

1 1
( ) ( ) ( )

2(1 )

i

p q r s

m mm

e
A z H h z A z H g z

z

 
 



 
  


 

     
   , ,

1 1

1 1 (1 )
( ) ( ) 0

2(1 ) 1 1

i m m

p q r s

m mm k k

e z z
H h z H g z

z z z

    
 



     
     

   

  

or, 

     
   ,

1

1 1 ( ) 1 2 1
1

2(1 )

m

i i

k

p q

mm

z
e A z e

z
H h z

z

      




 
       

 



  

     
   ,

1

1 1 ( ) 1 2 1
1 0

2(1 )

m

i i

k
r s

mm

z
e A z e

z H g z
z

      




      
  


 

which equivalently be expressed by (2.1). This proves the result.  

 

3  Coefficient Inequality 

Theorem 2 Let 0,0 <1, ,m k   N  If the function 

 = ,f h g H m   (where h  and g  are of the form (1.1)). 

satisfies 

   

 

   

 = 1 =

1 1
1,

1 1

k k

n n

n n n n
n m n m

n m n m
a b

m m

     
 

 

 


 

       
 

 
     (3.1) 

 then f is sense-preserving, harmonic multivalent in  and 

    , 1 1, ,
, ; ; ,m k p q r s

f R     The inequality (3.1) may equivalently be 

given by  

 
    

 

    

 =1

1 1

1 1
m lk m lk m lk m lk

l

m lk m m lk m
a a

m m

     
 

 



   
       

 
 

                              

 

  

 
 

1

=1 =0

1(1 2 )
1.

1 1

k

m m lk j m lk j m lk j m lk j
j l

m lk j
b a a

m

 
 

 

 

        
   

  
 

     (3.2) 

Proof. Under the given parametric constraints, we have 

    

 

   

 

1 1
, , .

1 1

k k

n n

n n

n m n mn n
n m

m m m m

     
 

 

          
            

   (3.3)                                    

Thus, for  = ,f h g H m   where h  and g  are of the form 

(1.1), we get 

1 1 1

= 1 = 1

( ) 1
m n m

'

n n
n m n m

n
h z m z n a z m z a

m

   

 

 
 

    
 

   

 

1

= 1

1
1

1

k

m n

n n
n m

n m
m z a

m

  









     

       

   

 

1 1

= =

1
>

1

k

m nn

n n n
n m n m

n m
m z b n b z

m

  




  

 
     

       

 

( )'g z  

which proves that ( )f z is sense preserving in  . Now to show 

that     , 1 1, ,
, ; ; ,m k p q r s

f R      we need to show (1.10), that is  

          

   

, ,

, 1 1 , 1 1

,

, 1 1

, ( ) , ( )

; ( )

'
p q p q

r s r s k'

p q

r s k

z
f z m f z

z

f z

    

 

 
   

  
    

 

                                                                                          

        

   

, ,

, 1 1 , 1 1

,

, 1 1

, ( ) , ( )

0, ,
; ( )

'
i p q p q

r s r s k'

p q

r s k

z
e f z m f z

z
z

f z

    

 

 
         

   
    
 
 

   (3.4) 

where        

   

,

, 1 1

,

, 1 1

; ( )
= , .

; ( )

p q

r s ki

p q

r s k

f z
e

f z


 


 

   


   

R  

On writing the corresponding series expansions, (3.4) is 

equivalent to  

 
   

= 1 =

= 1 =

(1 )
0

m k n k n i

n n n n n n
n m n m

m k n k n

n n n n n n
n m n m

m z n m a z n m b z e K

z a z b z

     

 

 



 



 

 

        
 

 
 

    
 

  (3.5) 

where  

    
= 1 =

= .k n k n

n n n n n n
n m n m

K n m a z n m b z 
 



       

At 0z  , the condition (3.5) is trivial. For 0 z  , the left 

hand side of (3.5) can be expressed as 

 
 

1 ( ) 1 ( )
= 1

1 ( ) 1 ( )

m A z w z
m

B z w z




    
     

   
          (3.6) 

where  

   
= 1 =

( ) = k n m k n m i m

n n n n n n
n m n m

A z n m a z n m b z z e Kz    
 

  


           

= 1 =

( ) = .k n m k n m

n n n n n n
n m n m

B z a z b z z 
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Now, we only need to show ( ) 1.w z   From (3.6) we get for 

0 = <1,z r  

 

( ) (1 ) ( )
( ) =

2 (1 ) ( ) 1 ( )

A z m B z
w z

m A z m B z



 

 

   
         

     

     
= 1 =

= 1 =

1

2 (1 ) 2 2

k k

n n n n n n
n m n m

k k k k k k

n n n n n n n n n n
n m n m

n m a n m b

m n m m n m a n m m n m b

    

      

 



 



 

 

      
 


                

1  

if (3.1) holds. On putting values of ,k

n n m   from (1.9), we get 

the equivalent coefficient condition (3.2). This proves Theorem 

2.  

We next show that the above sufficient coefficient condition 

is also necessary for functions in the class 

°     , 1 1, ,
, ; ;m k

p q r s
R      

Theorem 3 Let 0,0 <1, ,m k   N  and let the 

function  = ,f h g H m   be such that h  and g are given by 

(1.12). Then °     , 1 1, ,
, ; ; ,m k

p q r s
f R      if and only if (3.1) 

holds. The inequality (3.1) is sharp for the function given by   

 
 

       = 1 =

1 1
= ,

1 1

m n n

n nk k
n m n m

n n

m
f z z x z y z

n m n m

 

     

 


 

 
 

       
 (3.7)  

== 1 =1.n mn m n nx y 
                                                 

Proof. The if part, follows from Theorem 2. To prove the 

"only if part" let  = ,f h g H m   be such that h  and g are 

given by (1.12) and °     , 1 1, ,
, ; ; ,m k

p q r s
f R      then from 

(1.11) on writing the corresponding series expansions, we 

get

     
= 1 =

= 1 =

1 m k n k n

n n n n n n
n m n m

m k n k n

n n n n n n
n m n m

m z n m a z n m b z

z a z b z

    

 

 



 



 

 

       



   



    
= 1 =

= 1 =

0, ,

k n k n

n n n n n n
i n m n m

m k n k n

n n n n n n
n m n m

n m a z n m b z
e

z a z b z


   

 
 

 



 



 

 

    


  
    



R  

from which on choosing z  to be real and 1 ,z   and using the 

fact that   = 1,i ie e    we obtain 

           
= 1 =

= 1 = 1

1 1 1
0

1

k k

n n n n n n
n m n m

k k

n n n n n n
n m n m

m n m a n m b

a b

        

 

 



 

 

 

 

          


   

 

which yields the required condition (3.1). Sharpness of the result 

can easily be verified for the function given by (3.7).  

On applying coefficient inequality (3.1), we get a sufficient 

condition in the form of hypergeometric inequality for certain 

function  = ,f h g H m   to be in     , 1 1, ,
, ; ;m k p q r s

R      

class and it is proved that this inequality is necessary for certain 

°     , 1 1, ,
, ; ; ,m k

p q r s
f R     . 

Corollary 1 Let 0,0 <1, ,m k   N  and let the 

function  = ,f h g H m   where h  and g are of the form 

(1.1) be such that 

 
 

   

1
, 1

1
n k

n

m
a n m

n m



  


  

   
           (3.8)       

 
 

   

1
, .

1
n k

n

m
b n m

n m



  


 

   
           (3.9) 

If (in case = 1p q ) =1 =1 > 0,q p
i ii i    and (in case = 1r s  ) 

=1 =1 > 0,s r
i ii i    the hypergeometric inequality  

          ; ;1 ; ;1 2p q i i r s i iF F              (3.10) 

holds, then     , 1 1, ,
, ; ; .m k p q r s

f R      Further, if  

 

   

 

   = 1 =

1 1
( ) =

1 1

m n n

k k
n m n m

n n

m m
f z z z z

n m n m

 

     

 


 

 
 

       
     (3.11) 

 °     , 1 1, ,
, ; ; ,m k

p q r s
R     then (3.10) holds.  

Proof. To prove the result, we need to show by Theorem 2 

the inequality:  

   

 

   

 
1

= 1 =

1 1
:= 1.

1 1

k k

n n

n n n n

n m n m

n m n m
S a b

m m

     
 

 

 



       
 

 
 

 
On using  (3.8) and (3.9), and then  (3.10), we get 

 1
= 1 =

n n
n m n m

S  
 


    

              = ; ;1 1 ; ;1 1p q i i r s i iF F       

where, under the given conditions  

 
 

    =1

= 1 =0

=1

1
= 1 = ; ;1 1

!( )

p

i n
i

n p q i iq
n m n

i n
i

F
n


  



 





 



   

 
 

    =1

= =0

=1

1
= = ; ;1 .

!( )

r

i n
i

n r s i is
n m n

i n
i

F
n


  



 


 



 

Further, (3.10) holds by Theorem 3, if ( )f z  of the form (3.11) 

belongs to the class °     , 1 1, ,
, ; ; .m k

p q r s
R      This proves the 

result.  

4  Bounds 
Our next theorems provide the bounds for the function in 

the class °     , 1 1, ,
, ; ;m k

p q r s
R     which are followed by a covering 

result for this class. 

Theorem 4 Let 0,0 <1, ,m k   N  if 

° =f h g H m   where h  and g are of the form (1.12) 

belongs to the class °     , 1 1, ,
, ; ;m k

p q r s
R      then for 

= < 1,z r  

     , 1
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; ( ) 1 1 ,

1 1
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   (4.2) 

The result is sharp.  

Proof. Let °     , 1 1, ,
, ; ; ,m k

p q r s
f R     then on using (3.1), 

related to (1.12), by (1.5), we get for = < 1,z r   
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which proves the result (4.1). The result (4.2) can similarly be 

obtained. The bounds (4.1) and (4.2) are sharp for the function 

given by 
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Corollary 2 Let 0,0 <1, ,m k   N  If 

° =f h g H m   with  h  and g are of the form (1.12) 

belongs to the class °     , 1 1, ,
, ; ;m k

p q r s
R     , then  
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Theorem 5 Let 0,0 <1, ,m k   N  and let 

 1 min , ,m n n     1n m  . If ° =f h g H m  , where h  

and g are of the form (1.12), belongs to the class 

°     , 1 1, ,
, ; ;m k

p q r s
R      then for = < 1,z r  
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         (4.4) 

The result is sharp.  

Proof. Let °     , 1 1, ,
, ; ; ,m k

p q r s
f R     then on using (3.1), 

from (1.12), we get for = < 1,z r  
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which proves (4.3). The result (4.4) can similarly be obtained. 

The bounds (4.3) and (4.4) are sharp for the function given by 
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         Corollary 3 Let 0,0 <1, ,m k   N and 

 1 min , ,m n n    1.n m   If ° =f h g H m   with h and 

g are of the form (1.12) belongs to the class 

°     , 1 1, ,
, ; ;m k

p q r s
R     , then  
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5  Extreme Points 
In this section, we determine the extreme points for the 

class °     , 1 1, ,
, ; ;m k

p q r s
R      

Theorem 6 Let 0,0 <1, ,m k   N  let 

° =f h g H m   and  
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then the function °     , 1 1, ,
, ; ; ,m k

p q r s
f R      if and only if it 

can be expressed as  =( ) = ( ) ( )n m n n n nf z x h z y g z   

where 0, 0n nx y   and  = = 1.n m n nx y   In particular, the 

extreme points of °     , 1 1, ,
, ; ;m k
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R      are  nh  and  ng   
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This proves Theorem 6.  

6  Convolution and Convex Combinations 

In this section, we show that the class °     , 1 1, ,
, ; ;m k

p q r s
R      

is invariant under convolution and convex combinations of its 

members. 

Let the function ° =f h g H m   where h  and g are of 

the form (1.12) and  

° 
= 1 =

( ) = .m n n

n n n n
n m n m

F z z A z B z H m 
 


               (6.1) 
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The convolution between the functions of the class ° H m  

is defined by  

      
= 1 =

= = m n n

n n n n n n
n m n m

f F z f z F z z a A z b B z 
 


    

   Theorem 7 Let 0,0 <1, ,m k   N  if  

°     , 1 1, ,
, ; ; ,m k
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f R     and °     , 1 1, ,

, ; ; ,m k
p q r s

F R     then

°     , 1 1, ,
, ; ; .m k

p q r s
f F R        

Proof. Let ° =f h g H m   where h  and g are of  the 

form (1.12) and ° F H m  of the form (6.1) be in 

°     , 1 1, ,
, ; ;m k

p q r s
R      class. Then by Theorem 3, we have 

   

 

   

 = 1 =

1 1
1

1 1

k k

n n

n n n n
n m n m

n m n m
A B

m m

     
 

 

 


 

       
 

 
 

which in view of (3.3), yields  
 

    
 

    

1
1, 1

1

1
1, .

1

n k

n n

n k

n n

m m
A n m

nn m

m m
B n m

nn m



   



   


    

   


   

   

 

Hence, again by Theorem 3,  
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which proves that °     , 1 1, ,
, ; ; .m k

p q r s
f F R        

We prove next that the class °     , 1 1, ,
, ; ;m k

p q r s
R      is 

closed under convex combination of its members. 

Theorem 8 Let 0,0 <1, ,m k   N  the class 

°     , 1 1, ,
, ; ;m k

p q r s
R      is closed under convex combination.  

Proof. Let °     , 1 1, ,
, ; ; ,m kj p q r s

f R      jN  be of the form  
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For some 0 1,jt   let =1 = 1,j jt  the convex combination of 

 jf z  may be written as  
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and so again by Theorem 3, we get 

  °     ,=1 1 1, ,
, ; ; .m kj j j p q r s

t f z R       This proves the result.  

Remark 1 Our results of Theorems 2-8 coincide with the 

results obtained in [1] and [15] for the classes  ,SH m   and 

  ,SH   respectively. Also, by taking 
1

1 < 1,
m

   = ,n nA  

= ,n nB n m   in the Theorems 2-8, our results coincide with 

the results of Ahuja et al. obtained in [4].  

 

7  Integral Operator 
Now we examine a closure property of the class 

°     , 1 1, ,
, ; ;m k

p q r s
R      involving the generalized Bernardi 

Libera-Livingston Integral operator 
,m cL  which is defined for 

° =f h g H m   by  
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Theorem 9 Let 0,0 <1, ,m k   N  if 

°     , 1 1, ,
, ; ; ,m k
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f R      then °     ,, 1 1, ,

( ) , ; ; .m km c p q r s
L f R      

Proof. Let ° =f h g H m   where h  and g are of the form 

(1.12), belongs to the class °     , 1 1, ,
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by (3.1), since,  
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This proves the result.  
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