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ABSTRACT

A Goodman-Rgnning type class of multivalent harmonic functions involving Dziok-
Srivastava operators with respect to k-symmetric points is studied. An equivalent
convolution class condition and a sufficient coefficient condition for this class is obtained. It
is proved that this coefficient condition is necessary for its subclass. As an application of
coefficient condition, a necessary and sufficient hypergeometric inequality is also given.
Further, results on bounds, extreme points, a convolution property and a result based on the
integral operator are obtained.
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Introduction
A continuous complex-valued function f =u+iv defined

in a simply connected domain D is said to be harmonic in D if
both u and v are real-valued harmonic in D. In any simply

O [[aJ:[1]]7(2) = Ha[as]n(2)+ Hi? [1] 9 (2) (1.2)
where the operators H"%[ey], H.°[5n] are the Dzoik-
Srivastava operators [11] defined for the functions h(z) and
g(z) of the form (1.1), respectively, by
Hat[an(z)=2"F, (o )i (4 ):2)#h(2). My []o (2) =
We have for f(z)=h(z)+g(z) e H (m),

2J;

O[] f (2)=h2)+9(@), e [[2L:[2]] f (2)
where

connected domain DcC, f can be written in the form:
f :h+§, where h and g are analytic in D. We call h the
analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and orientation

preserving in D is that | (z)| >|g'(2)] in D (see [9]). Let H

Fllnha)iz)o(z) (1.3)

=H(2)+G(z)

4 4
H(z)—z&h(z)—(m—l)h(z),G(z)—zag(z)—(m—l)g(z).

by The function ,F, (()i(8):2)= ,Fy (@, By By 2) S

denote a class of harmonic functions f = h+§, which are
harmonic, univalent and orientation preserving in the open unit
disc A={z:|z|<1}so that f is normalized

f(0)=h()= f,(0)-1=0

Note that the family H reduces to the well-known class S
of normalized univalent functions if the co-analytic part of f is
identically zero, that is if g =0.

The concept of multivalent harmonic complex valued
functions by using argument principle, was given by Duren,
Hengartner and Laugesen [10]. Using this concept, Ahuja and
Jahagiri [1], [2] introduced a class H(m) of m-valent harmonic

and orientation preserving functions f(z) = h(z)+@, where
h(z) and g(z) are m-valent functions of the form:
h(z) = 2" +n-§+1a“ 2", g(2) = nimbn 2" b, <1, meN£1,2,3..) (1.2)
={z:z|<1}

For p,q,r,seN,=NuU{0}, complex parameters ¢
(i=1,2,...p), % (i=1,2,..,r)and B, (-1;i=1,2,...q),
8, (#-mi=1,2,.,5),neN,, alinear operator :

O (@), (B)rgi (1), (8),,) =02 [[an ][] H (m) = H (m)
is defined by

which are analytic in A
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the generalized hypergeometric function defined by

= (al)n...(ap)n
oFo ((ai):(/”i):z)-gomz
analytic at z=1 if (in case p=q+1 )
LB —xle; >0, the symbol (1) is the Pochhammer symbol
defined in terms of gamma function by

"(p<g+l;zeA) (1.4)

which is

B _T(A+n) _ 1, n=0,4#0
()= r(2) |A(A+1)(A+2)..(A+n-1),neN|
The series expression of ©F7|[e ][ ]f z) defined by
(1.2) is given by
O [[ali[n]]f(z)=2"+ S Gaz"+ 3 4bz"  (15)
where
11« 1
0 = 'j;( o1 @ = '?(y')”’m 1 ,n=m. (1.6)
[e8).. (=my " i) (h-m)!
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Note that the Dziok-Srivastava operator H"[e; ], defined

by (1.3) contains several well-known linear operators such as the
Hohlov linear operator, the Carlson-Shaffer linear operator, the
Ruscheweyh derivative operator etc. whose references may be
found in [11].

For some keN and for x=0,1,..,k-1, the points:

27i
z2=¢"z2 (5 zek,ze AJ are the symmetric points.

Corresponding to f =h+geH (m), (where h(z) and g(z)

are of the form (1.1)), we consider f, =h, +g, e H(m), where

m

k-1 )
h(2) :% Y & "h(e"z) = h(z) * ="+ ¥ ¥a " zer (L7)
u=0 =m+

(1-79) n=m+1
m

z
(1-2°)

k-1 o
gk(z):%z eMg(e"7) = g(z)* =yh V" zeA (1.8)
1=0 n=m

and for n>m+1,
{1, n-m=1lk,leN

PE = ,
0, n-m=lk+jleNu0},j=12,.k-1k>2

n

Two subclasses of S, namely, uniformly convex functions

(UCV) and uniformly starlike functions (UST) were
introduced by Goodman [12], [13], later Rgnning [24] has given
more applicable characterization of these classes.

For the purpose of this paper, on applying the linear

operator ©P¢[[ay];[5,]], we define a class Rmvk([al]pyq,[;/1]“5;/7;05)

of functions f e H(m) if it satisfy the Goodman-Renning type
class condition

dfor [l l)i@) | e ledbellt@) | g,
m[ Zv@f,ysq [[%L[?ﬁﬂ f, (Z) p‘ z 93‘5 I:[al];[}/l]] e (Z) '

with respect to k -symmetric points, where f, =h +g, e H(m),

p>0,0<a<l keN, z:re”(r<1,9eR),Z'=%(Z),

)
(72 [[a]i[n]] @) = S5(08 [ ][n]] f @)-

Observe that the functions f e H (m) satisfying (1.10) must
satisfy the condition given by

2(020[[a ][] (2))
207! [[a}[n]]f (2)
We also note that the Goodman-Rgnning type class

condition of the form (1.11) has been extensively studied earlier
in several work. Some of them as follows:

(0 R ([al]p‘q '[al]p,q L a) =Gy ([a] )
Murugusundaramoorthy et al. [22] (see also [18])
(ii) Rm,l([al]plq,[al]p’q;o;a):s}:(m,al,a) studied by Omar and
Halim [23]

(iii) Rl,l([al]p,q AN ;O;a): S, (. @) investigated by Al-
Kharsani and Al-Khal [19]

(V) Ry ([l [1],4:0:r)= SHY () studied by Shagsi and
Darus [26]

—-mpe” t >ma,¢eR.

R4 (1+pe*) (1.11)

studied by
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W) R ([t [t],:0:e) = SH, (@) studied by Ahuja and
Jahangiri in [7] (see also [14])
(vi) Rm,l([l]m (2, ;p;a) = R(m, p, ) studied by El-Ashwah [8].

(vii) Rmyl([l]lvo,[1]L0;1;a):GH(m,a)studied by Jahangiri et al.
[16] (see also [17])
(viil) R, ([1],,.[1],,: i) = Ry () studied by Ahuja et al. [3]

(ix) Rm([l]l,o (1, ;p;O) =R, (p) studied by Rosy et al. [29]

(X) Rmyl([l]lvo [, ;O;a) =SH(m,a) studied by Ahuja and
Jahangiri [1] (see also [6], [5])

(xi) Rlvl([l]l‘0 ’[1]1,0 ;O;a) =SH () studied by Jahangiri [15]

0c) Ry ([ [1,i0:0)=SH stuied by Siverman (27] (se

also [28]).

Harmonic functions, associated with more generalized
linear operators defined by convolutions, are also considered in
[4], [20], [21], [25].

Let ﬁ(m) be a subclass of H(m) whose members

f= h+§, are such that, h and g are of the form

h(z)=2"- ﬁ l|ah|z”, 9(z) = § |b,|z",|b,| <1. (1.12)

We further let
Ros([a],, [). i) =R, ([],, [7], i pia)  H (m).

In this paper, an equivalent convolution class condition is
derived and a coefficient inequality is obtained for the functions

f =h+geH(m) to be in the class R,, ([%]pq [l ;p;a). It
is also proved that this inequality is necessary for f = h+§, to

be in ﬁm,k([al]pyq,[j/l]rys;p;a) class. As an application of

coefficient inequality a necessary and sufficient hypergeometric
inequality is also given. Further, based on the coefficient
inequality, results on bounds, extreme points, convolution and
convex combination and on an integral operator are obtained.
Throughout the paper, we consider that the parameters

involved in the operator ©7¢[[a]i[;]] such as o (i=1,2,.p)
7(1=1,2,.1) B (i=12..,9), & (i =1,2,..,s) are positive real and
n

b, ZE(an),

n

6., ¢, given by (1.6) are such that 9, zﬂ,
m

and ¥ is given by (1.9).
2 Convolution Class Condition

In this section, we obtain another class condition equivalent
to (1.11) for functions belonging to the class

Rk ([ozl]p 7l ;p;a) with the use of convolutions.
Theorem 1  Let p20,0<a<lmkeN and
f =h+geH(m), (where h and g are of the form (1.1)). If

fe Rm,k ([al]p’q ’[yl]r,s ,p,Ol), then

H(z)*HM [eq]h(2)-G(z)*H. " [n]a(z)
Zm

#0, (2.1)
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where for |g[=1¢%-1gc R,|(§+1);1)e”’ +§+“| <lzeA,
—-a

(£+1)(1+ pe ) A(2) - {(£ +1) pe* + &+ 20 -1}

H(z) = 1-2 -y
2(1-a)

(E+1)(1+pe ") A@) +{(£+1) pe* + E+2a -1} z ;

G(2) = 1-z
2(l-a)
_ (E+1)pe* +é+a -
l-o

Proof. Let feR,, ([al]p’q [l ;p;a), then we have

*R{(Hpe")[z(@f: [Tl ! (Z)) J—mpe'“’ —ma; >0,4eR,zeA.

20" [[a]i[7]]1.(2)
al];[y‘]] f (Z))) J—mpe” —ma} =1,

Since,at z=0
1 [z(e ]
(1+pe")| —
JHFAIRA:
equivalent class condition

m(1l-ca) 70" [,

we get an
S P | A AT LC)) A R B P
m<1-a>|(1 ’ )[zer:nalmn <)} o “)} a0

(£]=1,£#-1,0<|z/<1). Using (1.2), (1.7) and (1.8) for

f =h+geH(m), we have
2(0::[[e] [7]]f ) _

d H”[ h(z) - z—H [»]o(2),

o [[a]i[r]]1.(z ]h(z)* +H* [7.]9@)* Hk
and also,

d 1
2z e e In@ = mer [r+ﬁJ Rl ]ne.

ziH ‘[7]9(2) =mz" [ 1

Z rs
1-z m(l—z)zj*Hm [.19(2).

dz
Thus, by simple calculations and by denoting
z" {i+ﬁ} = A(z) , from (2.2), we get

(E+1)(1+ pe) g

W{A(Z)*Hm [%]h(z)—A(Z)*Hm [71]9(2)}
—(&l)(pemzzla)a)(f Hes a){ e ]h(z)* +H;5[}’1]9(Z)*1EMZK}¢O
or,

((§+1)(l+pe‘”)A(Z)—{(§+1)pe'”‘+§+2a—l}lz J

—E2xH [ ]n(2)
21-a)z"

(§+1)(1+pe'“)@+{(§+1)pe‘“+§+2a—1} z -
1=2 «H[5]9(z) 20
2(1-a)z"

which equivalently be expressed by (2.1). This proves the result.

3 Coefficient Inequality
Theorem 2 Let p>0,0<a<1,mkeN If the function

f=h+geH (m), (where h and g are of the form (1.1)).
satisfies

Poonam Sharma et al./ Elixir Appl. Math. 55C (2013) 12947-12953

(1+p)n+m(a+p)
m(l-a)

harmonic multivalent

© (1+p)n m(a+p)
n=m+l (1 (1)

then f is sense-preserving,

"4 p<t, (31

0o+ £

inAand
feR,, ([al]p,q '[71]r,s ;p;a), The inequality (3.1) may equivalently be
given by

§(1+p)(m+|k)—m(a+p) a ‘+(l+p)(m+|k)+m(a+p) 2|+

1=1 m(l—a) m+lk [“m-+lk m(l—a) mlk [Fm+lk
l+a+2 k1o (1+p)(m+1K+ j

( (lOia),D)‘ m‘ izllzo%( mlk+ j am+lk+j +¢m+lk+j anwlk-j‘)Sl' (32)

Proof. Under the given parametric constraints, we have
n<[(1+p)n—m(a+p)‘y:]0 n<[(l+p)n+m(a+p)\l’ﬁ]¢ sm (33)

m- m(l-a) "m” m(l-a)

Thus, for f =h+geH (m), where h and g are of the form

(1.1), we get
2" [1_ Lla, @
n=m+1 m

|h'(z)|_
Jou

> mf2[ {1 M[(l+p)n m(a+p)¥
]«s b |}> Snb "

2" - snfalz" >

m(i-a)

wi| o[ (I+p)n+m(a+p) ¥
H m(i-a)

>m

z

2|9 (2)]
which proves that f (z) is sense preserving in A. Now to show

that feR ([al]p,q '[71]r,s ;p;a), we need to show (1.10), that is

o 2@ ()] f@) -meez: (] () 1@ |
CHICAHrAIING:

pe (00 [ [1]] 1@) -m0gs ([ ][] .2
R >0zea (34)
O/ [[a1];[7/1]] f (2)
where _orflal[]]f@
AS
o [[a]:[~]]f.@)
On writing the corresponding series expansions, (3.4) is
equivalent to
>0 (3.5)

[m(l—a)z“+ i (n—ma‘lfk)é)a z"—f(n+ma‘1/k)¢n@—pe”’K
m n=

"+ Z ‘i’nﬁnanz +z‘}’ ¢bz
where
=[5 (n-m¥)gaz -5 (nrmw)gbz .

At z=0, the condition (3.5) is trivial. For 0=z e A, the left
hand side of (3.5) can be expressed as

g{wJ - m(l—a)‘ﬁ(lJr—W(Z)j (3.6)
1+B(2) 1-w(2)

where

A(Z) = ﬁ 1(n—moz‘I’E)Hnanz"’m - f (n+ma‘I",‘])¢nbn?z"" —peKz ™"

B(z)= ¥ Wg,a,z""+ z‘P" $b 2"z
n=m+1
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Now, we only need to show |w(z)|<1. From (3.6) we get for
O0=xz=r<1,
W) = | A(z) -m(1-a)B(z) |

|2m(1- ) + A(z) +m(1-a) B(2)|

(1+p)[z(n ma¥: ) 9‘a~‘+,§ n+makP")¢"\bﬂ

,,,,,,

<1
if (3.1) holds. On putting values of ¥¥,n>m from (1.9), we get

the equivalent coefficient condition (3.2). This proves Theorem
2.

We next show that the above sufficient coefficient condition
is also necessary for functions in the class

Rk ([ozl]pvq ). ;p;a)

Theorem 3 Let p>0,0<a<1l,mkeN and let the
function f =h+geH (m), besuchthat h and g are given by
(1.12). Then feﬁm,k([al]pvq,[}/1]rys;p;a), if and only if (3.1)
holds. The inequality (3.1) is sharp for the function given by

“ m(l-a) 1-a
f(z)=7" - - 3.7
(z)=2 n%+1(1+p)n m(a+p)‘{‘k‘ 7' (1+p)n+m(a+p)‘{’k‘y" @7
Z?IO:erl|Xn|"'Zn:m|yn|: .

Proof. The if part, follows from Theorem 2. To prove the
“only if part” let f =h+geH (m), be such that h and gare

given by (1.12) and f e R« ([al]p’q ,[yl]rvs;p;a), then from
(1.11) on writing the corresponding series expansions, we
get

o m(l-ca)z" —nﬁmﬂ{n—ma‘{fﬁ}en |a,| 2" —ém{n+ma‘lfﬁ}¢n lb,| 2"

"= 3 Wi6,|a[2"+ S Wid o, |2"

> {n-ma¥;}0,la,|z" - g {(n+ma‘1’ﬁ)}¢n\bn\27

i n=m+1

—pe >0,4eR,

2"~ I W6, |a|2"+ £ W |b| 2"
n=m+1 n=m

from which on choosing z to be real and z —1", and using the
fact that %(e” ) <|e¥|=1, we obtain
m(l-a)- 5 1{(l+p)n—m(01+p)kl";}6’n‘an‘— > {(1+p)n+m(a+p)‘l—";}¢n b, |
>0
1- 3 ¥, |a|+ = ¥4 b,

n=m+1 n=m+1

which yields the required condition (3.1). Sharpness of the result
can easily be verified for the function given by (3.7).

On applying coefficient inequality (3.1), we get a sufficient
condition in the form of hypergeometric inequality for certain

function f =h+geH(m), to be in Rm.k([al]p,q (7, ;p;a)

class and it is proved that this inequality is necessary for certain
fe ﬁm,k ([al]p,q ’[}/l]r,s yp,a), .

Corollary 1 Let p>0,0<a<1l,mkeN and let the

function f =h+geH(m), where h and gare of the form
(1.1) be such that
m(l-a)

L+ p)n-m(a+p)¥’

|a,| < n>m+1 (3.8)
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b, < m(l-a)

“Wepnsm(aspywr "™ (39)

If incase p=q+1) L8 -3 >0, and (incase r =s+1)
0, — Xy >0, the hypergeometric inequality

JF((@)i(B)i1)+ F((r)i(8):1)<2 (3.10)
holds, then f e Rm‘k ([al]p'q ,[7/1]“5 ;p;a), Further, if
ta)=1"- 3 m(l-a) 3 ml-a) = (3.11)

Al p)n-m(at ) - (L p)nemias p) P

e Run ([al]pyq AN p;a), then (3.10) holds.
Proof. To prove the result, we need to show by Theorem 2
the inequality:
_ (1+p)n-m(a+p)¥s (1+p)n+m(a+p) ¥y
s 3 ey > mia) b=t
Onusing (3.8) and (3.9), and then (3.10), we get

§ < Z€+Z¢n

n=m+1

= oFa((@):(A8):1) -1+ F(():(5):1) <1

where, under the given conditions

S, 550 E((1)i(0)).

Further, (3.10) holds by Theorem 3, if f(z) of the form (3.11)
belongs to the class ﬁm,k([al]pq,[]/1]”;/);&). This proves the

result.
4 Bounds
Our next theorems provide the bounds for the function in

the class R ([“1]p,q '[71]r,s ;p;a)which are followed by a covering

result for this class.
Theorem 4 Let p>0,0<a<lmkeN if

f:h+§eﬁ(m) where h and gare of the form (1.12)

belongs to the class ﬁm,k([a’l]pvq,[]/1]r’s;p;0!) then for

|lz|=r<1,
®ﬁ’§[[al];[71]}f(z)s(1+bm)rm+mr21[1 1+2p+av‘b j 1)
al e =

The result is sharp.
Proof. Let feﬁm‘k([al]pvq,[71]rvs;p;a),then on using (3.1),

related to (1.12), by (1.5), we get for |z|=r <1,
©r [ ]:[1]] T @)

(@) + 2 (Gl dilo)rm < @)+ 3 (6,]a,]+ b))
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< . mrm+1( « (L+p)n-m(a+p) W (1+p)n+m(a+p)¥
<(1+[o,|)r +m+an:m+1 m(i-a) 6,[a|+ m(l-a) ¢‘b ‘J
m+1
(1+|b |)r N mr [1_1+2p+a|bm|)
m+1 l-a

which proves the result (4.1). The result (4.2) can similarly be
obtained. The bounds (4.1) and (4.2) are sharp for the function
given by

m ™y m 1+2p+a o
f(z)= b 1- b
()=27+ ]2 +(m+1)¢m+1[ o | ')Z
for p=0,0<a <1, |o|<——%
1+2p+a

Corollary 2 Let p20,0<a<lmkeN If
f=h+geH(m) with h and gare of the form (1.12)

belongs to the class R ([al]p,q nl . ;p;a) , then

l]bm}c f(A).

p=20,0<a<lmkeN and let

ol <1 M L m(l+2p+a)
{ o <1 m+1 ((m+l)(1—a)

Theorem 5 Let

Spa <Min(6,,¢,), n=m+1. If f=h+geH(m), where h
andgare of the form (1.12), belongs to the class

Rk ([al]p’q [l ;p;a) then for |z| = r <1,

|f(z)|s(1+|bm|)rm+( m [1 1+12'0+a|b |} (4.3)

+1)3
m 1+ 2p+a
(m+1)g, (1 1- n 0 44

m+1

|t (@)= (1-|b,|)r" -

The result is sharp.
Proof. Let f eRux ([0’1]p,q’[71],,55/";0‘)"‘“9” on using (3.1),

from (1.12), we get for |z| =r <1,

|f(2)] <(1+[o,])r" +n=z+1(\an\ +[b,[)r" < (1+]b, )™ +rm*1n=%+1(\an\+\bn\)

m+1

(e )rm+5— 5 (G fa]+a,lb,)
1

mr [ g (l+p)n m(a+p)
(m+1)8,,, (= m(l-a)
mr ( 1+ 2p+a|b 0
(m +1)5m+l 1-
which proves (4.3). The result (4.4) can similarly be obtained.
The bounds (4.3) and (4.4) are sharp for the function given by

<(1+]b,)rm+

B\aH (1+p)n+m(a+p)¥ ¢‘b ‘J

m(l-a)

<(1+]b,[)r™ +

m ™y m 1+2p+a
f =
(z)=2"+b,|z +(m+l)5m+1( T |b,, |j
for |bm|<1_—a.
1+2p+a

Corollary 3 Let p20,0<a<l,mkeNand
Spa <Min(6,,¢,), n2m+1. If f=h+geH(m) with hand
gare of the form (1.12) belongs to the class

Rk ([al]p’q [l ;p;a), then
1J|bm|}c f(A).

(1+2p+a)

{ww (m+1)s m+1+[(m+1) Spu(l-a)
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5 Extreme Points
In this section, we determine the extreme points for the

class R ([%]p,q [l ;p;a)
Theorem 6  Let
f =h+geH(m) and

p>0,0<a<lmkeN let

m(l-a)

((1+p)n—m(a+p)¥h)6,
m(1—a) ZT](

(1+p)n+m(a+p)‘~PE)¢n
then the function f e Rk ([al]p‘q ,[7/1]“S ;p;a), if and only if it

f (Z) = Z?1O:m(xnhn (Z) + yngn(z))
wherex, >0,y, >0 and Xin(X,+Y,)=1. In particular, the

h.(2)=2",h,(2)=2"-

2" (n=m+1),

n=m),

0,()=2"+
(

can be expressed as

extreme points of R« ([al]p,q '[71]r,s;p;“) are {h,} and {g,}

Proof. Suppose that f(z) = f (xnhn (2)+Y,9,(2)). Then,

@= £ (xry)"- £ miza) e,z _mie) =
EAC RS n=ms: 1((1+p)n m(a+p)lyk)9 n “=m((1+p)n+m(a+p)l}"k‘)¢" n

2 m(1- - 1- _

= % m(l-a) 2"+ m(l-a) -

((1+p)n m(a+p) Pk )Hn "gm((1+p)n+m(a+p)‘i‘ﬁ)¢"

e Rux ([al]p,q nl ;p;a) by Theorem 3, since,

= (L+p)n-m(a+p)¥:6, m(l-«)

> X,
n=m+l m(l-a) ((l+p)n—m(a+p)‘P';)9n
L% (1+p)n+m(a+p)Pid, m(l-a)

m(l-a) (W p)nsm(a+p)¥h)g, "
= Z Xt gyn =1-x,, <1. Conversely, let
f Eﬁm,k([al]p‘q,[yl]r’s;p;a), and let

_ m(l-a)x, m(l-a)y,

] ((1+p)n—m(a+p)‘}’k)9 bl = ((1+p)n+m(oc+p)‘{’ﬁ)¢n

and x, =1— 3 x — zyn, then, we get

n=m+1 n=
f(z)—z —n%1|a|z + Z|b|z
m(1-a) y
((1+p)n m(a+p)‘Pk)9 "

=h, (2)+ _z (hn(Z)—hm(Z))Xﬁém(

2 m(l-a) T
= (14 p)n+m(a+p) W) g,

ynz
9.(2)-h,(2)y,

=h,(2)-

=h (z)(l— Y X, — zy )+ _f lhn(Z)anr :fgn(Z)yn

n=m+1
= 3 (%h,(2+Y,8,(2)).

This proves Theorem 6.
6 Convolution and Convex Combinations

In this section, we show that the class Rn. ([o:l]pvq (. ;p;a)

is invariant under convolution and convex combinations of its
members.
Let the function f =h+ge ﬁ(m) where h and g are of

the form (1.12) and
F@=2"- % g|Alz"+ 24 B[z eH(m). (6.1)
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The convolution between the functions of the class ﬁ(m)
is defined by

(f+F)(z)=f(z)*F(2)=z —n=%+10n|anAq|z + 14, Ib,B, |z
Theorem 7 Let
f R[], [1],. ;o) and F eRui([ar],  [1], s ) then

f*F e R ([ozl]pvq nl . ;p;a).
Proof. Let f :h+§eﬁ(m) where h and gare of the
form (1.12) andF e ﬁ(m) of the form (6.1) be in

p>0,0<a<l,mkeN if

Rk ([%]pq [n],. ;p;a) class. Then by Theorem 3, we have

© (1+p)n m(a+p n l+p)n+m(a+p) E
B, <1
5 O P ol P o <
which in view of (3.3), yields
|A]= m-e) <M <inzm+1
“(A+p)n-m(a+p)¥i)e, 0 T
‘B‘ m(l a) <m<1 n>m
" (A+p)nem(a+p)Pi)o, 0T
Hence, again by Theorem 3,
s (14—p)n—m(ot+p)‘Pk (l+p)n+m(a+p)‘l’
nema m(l-a) m(l-ca)
sn_;f“p)':nz:"fz;”“‘"aan+g<1+p);zrfzf bl

which proves that f *F e Rk ([al]p,q [l ;p;a).

We prove next that the class Rmk ([al]p’q,[yl]r’s;p;a) is

closed under convex combination of its members.

Theorem 8 Let p>0,0<a<lmkeN the class
Rns ([%]M [l ;p;a) is closed under convex combination.

Proof. Let e ﬁm,k([a’l]pvq,[}’Jrvs;p;a), j €N be of the form

fj (Z) - Zm _n:%ﬂ Aj'n Zn +n§m|ijn Zn’ J < N
Then by Theorem 3, we have for jeN,
¢ (14 p)n-m(a+p) P (l+p)n+m(a+p)‘1‘ st (6.2)

n=ml m(l-a) m(l-a)
For some 0<t, <1, let ¥7.t; =1, the convex combination of

f,(z) may be written as

letj f ( )_Z _n%+ljzltJ|Aj n=mj=. l]|ijn z
Now by (6.2),
o (1+p)n—-m(a+p) ¥k (1+p)n+m(a+p) N
n=m+1 m(l_a) 6 Zt (1 C() ¢n J.Zzllti ‘Bi,n
= ® (1+p)n—m(a+p)‘~l"f| ® (l+p)n+m(a+p)‘}‘h ©,
- Elt’ L m1 m(l-a) K m(l-a) n }S Elt’ =1
and S0 again by Theorem 3, we get

ot f (2) e Rux ([al]p,q,[}/l]rys;p;a). This proves the result.

I |
Remark 1 Our results of Theorems 2-8 coincide with the
results obtained in [1] and [15] for the classes SH (m,«r) and

Poonam Sharma et al./ Elixir Appl. Math. 55C (2013) 12947-12953

SH (), respectively. Also, by taking 1—£3a <1, 6, =A,
m

¢, =B,,n>m in the Theorems 2-8, our results coincide with
the results of Ahuja et al. obtained in [4].

7 Integral Operator
Now we examine a closure property of the class
ﬁm,k([al]p’q,[}’1]r’s;p;0() involving the generalized Bernardi

Libera-Livingston Integral operator L . which is defined for

f=h+gef(m)b
C+mjt° hydt+ e gdt, e > -mzed (7.0)
z°

0

me(f) -
Theorem 9 Let p=>0,0<a<lmkeN if

f Eﬁm,k([al]pyq,[}/l]rys;p;(l), then L, (f)eRn ([al]p‘q [n], ;p;a).
Proof. Let f =h+ge(m) where h and g are of the form

(1.12), belongs to the class ﬁm‘k([al]pvq,[yl]rvs;p;a) Then, it follows
from (7.1) that
Lm (f) = Z n= m+1(

by (3.1), since,
2 (1+p)n—m(a + p)Pt [c+m]6" af+ 5 (1+p)n+m(a+p)‘i’ﬁ(c+mj¢ b,
n=mel m(l-a) c+n =m m(l-a) c+n
< & (1+p)n—m(a+p) (1+p)n+m(a+p)
n=mil m(l-ea) m(l-a)
This proves the result.

e+ 5 (S0 Jo 2 € Rus (el  [1],.iie)

c+n

=0+

4, |b,<1.
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