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ABSTRACT

In this research work, Artificial Neural Network Model(ANN) for the composite circular steel
tubes- with re-cycled concrete infill with three different grades of concrete(M20,M40 and
M60) are tested for ultimate load capacity and axial shortening , under axial monotonic loading
for compression has been developed. Steel tubes are compared for different lengths, cross
sections and thickness, and specimens were tested separately. In this paper, authors have
developed a suitable artificial neural network model using feed forward back propagation network
having verified it for 11 hidden layers as per Kolmogorov’s theorem. The developed ANN model
has been verified with the experimental results conducted on composite steel columns (axial load)
using Tagauchi’s model. Being a flexible building method, the ANN is an ideal tool to
construct the complex relationship between the input and the output parameters accurately.
The ANN technique is used to predict the crushing behavior of axial shortening and
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network ultimate axial load in composite circular steel columns. Effects of parameters such as
Composite, network architecture and number of hidden layer neurons are considered. Predictions are
Concrete. compared to experimental results and are shown to be in good agreement.

1. Introduction

Columns occupy a vital place in the structural system.
Weakness or failure of a column destabilizes the entire structure.
Strength & ductility of steel columns need to be ensured through
adequate strengthening, repair & rehabilitation techniques to
maintain adequate structural performance. Recently, composite
columns are finding a lot of usage for seismic resistance. In
order to prevent shear failure of RC column resulting in storey
collapse of buildings, it is essential to make ductility of column
larger. Recently, most of the buildings utilize this CFT concept
as primary for lateral load resisting frames. The concrete used
for encasing the structural steel section not only enhance its
strength and stiffness, but also protects it from fire damages.
Recycled aggregate concrete is used as an infill in order to
achieve economy.

One way of including specimen irregularities in the model
is to use the results of the available experiments to predict the
behavior of composite tubes subjected to different loading. ANN
is a technique that uses existing experimental data to predict the
behavior of the same material under different testing conditions.
Using this method, details regarding bonding properties between
fiber and matrix, strength variation of fibers and any
manufacturing  —induced  imperfections are  implicitly
incorporated within the input parameters fed to neural network.
In the current work, the prediction of the load-carrying
capacities for axially-loaded rectangular composite tubes is
evaluated using ANN. To test the validity of using ANN in
determining the crushing behavior of these tubes, the study will
compare the predictions obtained to the experimental results
using the neural network tool in MATLAB v7.12 (R2011a).
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2. Artificial Neural Network
2.1 Introduction

ANN have emerged as a useful concept from the field of
artificial intelligence, and has been used successfully over the
past decade in modeling engineering problems in general, and
specifically those relating to the mechanism behavior of fiber-
reinforced composite materials.

ANN generally consists of a number of layers: the layer
where the patterns are applied is called input layer. This layer
could typically include the properties of the composite material
under consideration, its layup, the applied load, the tube aspect
ratio etc. The layer where the output is obtained is the output
layer which could, for example, contain the resulting
deformation of this tube under the given loading conditions. In
addition, there may be one or more layers between the input and
output layers called hidden layers, which are so named because
their outputs are not directly observable. The addition of hidden
layers enables the network to extract high-order statistics which
are particularly valuable when the size of the input is very large.
Neurons in each layer are interconnected to preceding and
subsequent layer neurons with each interconnection having an
associated weight.

A training algorithm is commonly used to iteratively
minimize a cost function with respect to the interconnection
weights and neuron thresholds. The training process is
terminated either when the mean square error(MSE) between the
observed data and the ANN outcomes for all elements in the
training set has reached a pre-specified threshold or after the
completion of a pre-specified number of learning epochs[1-4].
2.2 Kolmogorov’s Theorem:

e Any continuous real-valued functions f (x1, X2, ..., xn) defined

on [0, 1]n, F’IEE, can be represented in the form
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Given any function ¢ 1" —>RY, 4(x) = y, where | is the
closed unit interval [0,1], can be implemented exactly by a three
layer neural network with n input nodes, 2n+1 hidden layer
neurons and m output layer neurons, as represented in fig.1.
2.3 Multilayer Neural Network Architecture
2.3.1 Neuron Model

An elementary neuron with R inputs is shown below. Each
input is weighted with an appropriate w. The sum of the
weighted inputs and the bias forms the input to the transfer
function f. Neurons can use any differentiable transfer function f
to generate their output.

Input  General Neuron

Where
R = number of
elemeants in
Input vector

Y 0\ D P

a=fWp +b)
Fig 2.Neuron model
Fig.3a Fig.3b
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Multilayer networks represented in fig.2, can use the tan-
sigmoid transfer function tansig as shown in fig.3a. Sigmoid
output neurons are often used for pattern recognition problems,
while linear output neurons are used for function fitting
problems. The linear transfer function purelin as shown in
fig.3b.

2.4 Train the Network

Once the network weights and biases are initialized, the
network is ready for training. The multilayer feedforward
network can be trained for function approximation (nonlinear
regression) or pattern recognition. The training process requires
a set of examples of proper network behavior—network inputs p
and target outputs t.

The process of training a neural network involves tuning the
values of the weights and biases of the network to optimize
network performance, as defined by the network performance
function net.performFcn. The default performance function for
feedforward networks is mean square error mse—the average
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squared error between the network outputs a and the target
outputs t. It is defined as follows:

1 i 2 1 i a
= ifi' == lt! - ﬂ-!']
N i=1 N i=1

There are two different ways in which training can be
implemented: incremental mode and batch mode. In incremental
mode, the gradient is computed and the weights are updated
after each input is applied to the network. In batch mode, all the
inputs in the training set are applied to the network before the
weights are updated. This chapter describes batch mode training
with the train command. Incremental training with the adapt
command is discussed in Incremental Training with adapt and in
Adaptive Filters and Adaptive Training. For most problems,
when using the Neural Network Toolbox software, batch
training is significantly faster and produces smaller errors than
incremental training.

For training multilayer feedforward networks, any standard
numerical optimization algorithm can be used to optimize the
performance function, but there are a few key ones that have
shown excellent performance for neural network training.

These optimization methods use either the gradient of the
network performance with respect to the network weights, or the
Jacobian of the network errors with respect to the weights.

The gradient and the Jacobian are calculated using a
technique called the backpropagation algorithm, which involves
performing computations backward through the network. The
backpropagation computation is derived using the chain rule of
calculus.

2.5 Network Properties

The network type is feed forward backpropagation. The
training function is levenberg-marquardt algorithm. The
performance function is mean square error. The transfer function
is tan-sigmoidal and purelin(Fig.4).

F=mse=
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Fig.4. Network Model
3. Work Flow
The work flow for the general neural network design process has
seven primary steps:
1. Collect data
2. Create the network
3. Configure the network
4. Initialize the weights and biases
5. Train the network
6. Validate the network (post-training analysis)
7. Use the network
4. Prediction and Experimental Results

Fig.4 depicts the Linear-Sigmoidal (linsig) and Tan-
Sigmoidal (tansig) functions used to build the model and train
the network. The output is trained separately for both ultimate
load and axial shortening load. Also the best values of prediction
are obtained for 11 layers.

The experimental results which are obtained are given as
the desired outputs to the feed forward backpropagation network
(Fig.5). These results were used to predict the output values and
were in good agreement with the Kolmogorov’s theorem. The
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output values and the deviations are obtained were tested and
validated from 3 hidden layers to 14 hidden layers.
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Fig.5 Block diagram of data obtained is implemented in feed
forward network

Fig.6a. Ultimate axial load prediction
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Fig.6b. Ultimate axial load deviation histogram

Fig.6¢c. Ultimate axial load for 11 hidden layers
The experimental values are obtained and verified for
ultimate axial load (Table-1). The ultimate axial load’s average
deviations are tabulated in Table-2. The best result is obtained
for 11 layers as per Kolmogorov principle and this is verified in
the ultimate axial load deviation histogram for all the layers
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(Fig.6b).The comparison of the best result(11 hidden layers) and
the experimental data are represented in fig.6¢c. A histogram is
"a representation of a frequency distribution by means of
rectangles whose widths represent class intervals and whose
areas are proportional to the corresponding frequencies." The
experimental data are obtained after training the model to 1000
number of epochs and assigning the transfer function as tansig
with the given inputs and predicted values. The input is trained
using Lavenberg-Marquardt algorithm. The performance is
measured

using mean square error (MSE).The predicted values are
tested, validated and plotted to obtain the best values on the
curve fit. The experimental inputs are tested from 3 hidden
layers to 14 hidden layers and it is verified that the deviations
obtained for the 11 hidden layers gives the best result, also with
the best regression fit.

| lll I’III i

Fig.7a. Axial Shortening prediction
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Fig.7b. Axial shortening deviation histogram
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Fig.7c. Axial shortening for 11 hidden layers

The experimental values are obtained and verified for axial
shortening load (Fig.7).The values are tabulated in Table-3. The
deviations are also tabulated to choose the the best results
(Table-4). Again it can be seen that the results obtained for 11as
the number of hidden layers as per Kolmogorov’s theorem and
this is verified again with axial load shortening .The deviation is
also represented in the histogram(Fig.7b). The comparision of
the experimental results and the predicted ultimate axial load for
11 hidden layers are shown in fig.7c. The same procedure is
repeated for axial shortening; The experimental data are
obtained after training the model to 1000 number of epochs and
assigning the transfer function as tansig with the given inputs
and predicted values. The input is trained using Lavenberg-
Marquardt algorithm. The performance is measured using mean
square error (MSE).The predicted values are tested, validated
and plotted to obtain the best values on the curve fit.
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Table 1: Ultimate Load Predicted Values
PU PREDICTED VALUES

actual ipredicted)  |53[predicted) |7 predicted) |9 predicted)| 12| predicted) L2 PREDICTED) {13 (P REDICTED) |14 [ PREDNCTED)
199 233.6305 2118325 2069884 2340382 199, 1686 159.0001 363.7933 150,000
262 2432424 204 8739 238.4452 264.7444 266.6815 150.0001 211.9805 150.0038
412 360,007 2 2555873 218.67 402 4654 164.231 1700743 451.9993
158 172.8064 447.9101 05,8314 160,832 158 355.7029 150
210 2207455 430.7538 4510193 2114295 4169132 4122523
249 360,097 2 3159174 2010688 276.1102 158.0005 376.15374
164 172.8064 447 8504 451.2845 166.4306 162.8696 4047779
189 159 4488279 187.01149 173.73 150 4250457
383 360.0071 2841186 2360635 347.8355 162.4306 4444275
206 2334752 2058147 188.4331 11,5537 150.0001 241.3338 150.0003
305 243.2419 207.3034 213,353 26L.0242 150 2353156 150.6780
436 452173 2473623 2092533 430.7385 230.4 208, 7419 449 1042
169 172.8064 444,696 2751210 1724795 154 3004453 154
220 230 .6634 380.7538 4506073 219.5610 1619234 300,338 447 5326
314 360,007 2 3015798 105, 8645 3268270 159.0012 435,8169 452
164 172.8064 4458301 4512105 65,8605 160.9575 431.7476 150.0321
185 1850025 444,964 1933495 105 5450 150 424.3452 168.3617
-~ 360.0971 2674380 2366314 479,124 165.7788 4241639 451 9958
225 2333178 2022298 177.7021 2241006 158.0001 2028527 154
307 452 2127628 1951536 307.2524 159.0002 247.5257 162.1663
5 452 4199855 201.8250 4249833 283.0060 352.4627 4192114
188 172.8065 3250678 2532737 201150 150 203.0059 1500183
191 452 2BR.5271 4495074 100,8547 191.6071 150 8556 3B5.2445 160,321
302 452 442,566 1915932 450.8003 3575305 1500023 4454359 452
1 178,001 4123017 4505187 177.7664 161.856 159.454 4031332 450,273
195 181.7283 277495 1964267 1951604 2028715 154 401,532 163.0621
452 452 ZB0.6754 238,798 450.6812 443 6997 211716 4049, 36590 452
Table 2 : Deviation Values (Pu)
PU DEVIATION
IFdeviation |S5dewviation 7P*deviati|9%deviati|11?adevial 1220deviall32ad evia| 14 deviation
-14.82250147| 64484028 401427 178071 -0.08472| 20010045 -82.8107| 20.10005025
7711484511 21s03sss| 5000382 -Loaras| -17se83| 3031204 10.00141| 3931152672
1441255279 27.0642476| 46.092476| 6 7a208| 2.314223] 6013811 S6.53536| -0 FOBSE 7061
70805 18007| -181.70447 -se0s7s| -oossa03|  -1.1s22 of -123. 789 0
4. BE0115758] 10512086 114771 14.0es0| -oes07e| 085301 06 32106| -115.2350045
-30.85200328| -26.874458) 1924048 -33.2401| -10.8876| 3614438 51,0502 815251004
E.0oe107ss2| 1vaovosl| 1vsa73| ooozesz| -1.485207| 0.e80268| -146.816| -6 1457092683
o| -137a7s0s| Losioos| 024407 5079368 1587302 124,893 1587301587
£.360201179| 25 8175079 238.36462| 0.oos042| 0.1813322| s7.88002| 160385 -18.0151436
11767920581 0osoos1de| s.s527621| oo13s0z| -2eosoy| 2281549 -17.1523| 22.81538835
25389558132 32.0316721] 300807 188850 14.9183| 47 ses85| 2612603 476462623
-3.57EE15131| 432655275 s1.00047| 0.04264| 1.206766| 4715506 52,12342| -3, 005550450
2. 2026961596| -163.13414| -2 793s| -0o3o231| -zoss03| so171s 7a3| so1715o7e3
0200628802 771608168 104822 0.478000] 0.199136| 2630845 4264 | -101.151 1815
-12.80122142| 295847771 3762274 -anass7| -4.08532| 4036268 o52| <43 canng4ss
5096107552 17184762 -17s.128| cpooss0a]| -1.13445| 1840085 .261| 3.029207317
-0.001251333| 149082108 45133 0.534 14, 05405 .376| &
23.02237369| 396300451 46.88433[ 0201106 6257815 1941 -2,
-3.5EE0057SE| 10.1200880) 2102129 0473vz| ol 33| 29.33320 2244| 20
-32.07964602| 206061564 3610632 0 338733 -008221| 48 2084 27274 47
-1, 5486 72566| 5.62123506) 5464587 -0o02229] 4498135 3640294 EEEIE
5. 702203007 -72008404| -34.7201| -1.7o771| esooosz| 1542853 156
S57.743362583| 500188 -135.344| 0oo7s073]| -031785| 16 30897 1,509 1134968586
-33.18584071| 46545033 2645021 40.2716] -18.3570| 4735023 47,4953 | - 40.6ERE 7417
S0.0D0EE17EE| 13163017 -153.1| 0.131236| 9069663 1040225 126 479] -152. 0623506
730204526 42205128 0.72164| 0o08226| 403667 18.46154] -105.014] 1637841026
o| 3s.o125221| 4716888 020177 1s3s3s| s31e018| 9431438 0
SN -134 5067582 12398611 -sesa0s| -1s1.763| -7.23882| 6843682 -1317 48| -204. 2630463
AVG -1.981731787| -45.92078| -20078| -6.73195| -0.2681| 25.34697| -48.7957| - 10.89863134
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Table 3 : Axial Shortening Predicted Values
AXIAL SHORTEMING PREDICTED VALUES

actual

3 predicted)

Slpredicted)

fpredicted )

9 predicted)

1l{predicted)

12} predicle

13[predid

14| predicted]

100,32

125.0807

240170927

104. 9680

B9.BIB2

a4, 2782

9702 L1E. 094

10181407

40,8159

106.5¢

105, 1405

EE. 5017

BE.EX06

105.4284

100.57

1332868

1000808

103,669

100,85

109 4811

99 4819

10L.832 3

117.97 99,9005

L11E. 7075

5283

oL 237

BE.0001

94.99

132.3399

24b. b5

1021

90.0949

101.39

106.2393

146,65

BB.0215

1703404

i) dE.5EL

EE.0001

1029253

95,87

BE.0001

EB.0486

84.1 108 9058

EE.0001

98.16 95,1827

§4.22

1095208

92,1038

88.002

96.38

101.2871

EB.3476

FELISS Y

G9a8.05

10244805

106. 2636

98.41

112 5405

B8.0003

ED.3452

10261

11084597

1031378

107.18 a5 3462

B8.0002

2310928

9803 107 9152

a9 4063

BE.0E74

LB SEEE

95.87

109.5436

2204555

BE. 2045

99.05 92,3513

124.0614

91.8B38

96.54

1089.3001

2374611

92.26EE

95.11 98,3242

B8.5379

29,0603

94,2738

95,54 99,5635

100.4911

BE.0491

Table 4 : Deviation Values(As)
AXIAL SHORTENING DEVIATION

| Sadeviation

s deviation 11%dey

1410214

14024123

138.51073

02562341

SUM

21178

AVE

-5.50755958

-2 0B6E64 5%

-7.8438333

1176482006

b.612435605

- 153309736

-1.503426775
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Table-5: Experimental results from which the ANN model has developed by the authors

Le ngthimm} Diameter{mm} |Thickness {mm) % RCA Pu{20) |Puw{d0) PudeOpEN) | As (200mm) As(40)
300 424 29 0 199 206 25 10032 101 34
300 453 3.2 S 262 305 307 a97.02 24665
300 60,3 4 100 412 436 445 106554 88
500 424 3.2 100 159 159 158 10057 o587
500 453 4 0 210 220 191 10085 a1
500 60,3 29 S0 249 314 302 11797 516
&0 424 4 S0 154 154 178 9283 o422
&0 453 29 100 159 155 155 94.99 95,38
&0 60,3 3.2 0 383 443 452 1021 299,05

Pu(20)- Ultimate axial load of steel tubes in filled with M20

Pu(40)- Ultimate axial load of steel tubes in filled with M40

Pu(60)- Ultimate axial load of steel tubes in filled with M60
As(20)- Axial shortening at ultimate point of steel tubes in filled with M20
As(40)- Axial shortening at ultimate point of steel tubes in filled with M40
As(60)- Axial shortening at ultimate point of steel tubes in filled with M60

The experimental inputs are tested from 3 hidden layers to
14 hidden layers and it is verified that the deviations obtained
for the 11 hidden layers gives the best result, also with the best
regression fit.

5. Conclusion
The experimental behavior and corresponding ANN
predictions of circular composite tube subjected axial

compressive load were presented and discussed. The ANN has
been shown to successfully predict the crushing behavior of
wide range of circular tubes. The predicted results obtained, are
showed that the feed forward back propagation network with 11
hidden neurons consistently provided the best predictions of the
experimental data. From the current work it can be concluded
that ANN techniques can be used to effectively predict the
response of ultimate axial load and axial shortening on
composite tubes.
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