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Introduction  

Excessive and indiscriminate uses of organic fertilizers 

often lead to accumulation of nitrates in water. The phosphate, 

when enters into water bodies support luxuriant growths of 

algal, resulting in the depletion of dissolved oxygen content and 

deterioration of water resources  caused by eutrophication. 

Eutrophication is a process by which a waterbody becomes 

enriched in dissolved nutrients (e.g. nitrogen, phosphate etc.) 

that stimulate the growth of aquatic plant life and resulting in the 

depletion of dissolved oxygen (DO). 

In the recent years several investigators have studied the 

effect of nutrients in aquatic system such as a lake causing 

eutrophication [1, 2, 4, 9, 10, 11, 12]. Arnold and Voss [6] 

studied the eutrophication in lakes with numerical behaviour. 

Khare, Misra and Dhar [14] have studied the effect of soil 

pollutant on the plant-herbivore interacting system by 

considering nutrients, plant, herbivore and soil pollutant as 

variables. Some other ecological modeling studies involving 

phytoplankton, zooplankton and nutrients relevant to our work, 

have also been conducted by many researcher but they have not 

considered the concentration of  DO in the modeling process [5, 

6, 7, 13, 14, 15, 16]. Many scientists [2, 3, 4, 9, 13, 17] have 

studied the depletion of dissolved oxygen on planktonic 

ecosystem. Naik and Manjapp [17] have studied the prediction 

of dissolved oxygen through mathematical modeling but they 

have not considered the effect of oxygen deficit on the algae and 

zooplankton population.  

Keeping in view of the above, in this paper, we have studied 

the effect of the depleting dissolved oxygen on the existence of 

interacting planktonic population. 

Mathematical Model 

Let n be the cumulative concentration of various nutrients, a 

be the density of algae, P be the density of the zooplankton 

population, and C be the concentration of dissolved oxygen. We 

assume that the cumulative rate of discharge of nutrients into the 

aquatic system from outside in the water body is q, a constant 

which is depleted with rate (αn) due to natural factors. It is 

further assumed that the depletion of nutrients by algae is 

proportional to both the density of algae as well as the 

concentration of nutrient (i.e. na). It is further considered that the 

growth rate of algae is proportional to the terms na/(α1+Co-C). 

The natural depletion rate of algae and zooplankton are ν1, ν3 

respectively. α2 is rate of predation of algae by zooplankton. We 

consider that the rate of growth of dissolved oxygen by various 

sources is qo assumed to be a constant and ν2 is natural depletion 

rate of concentration C. It is further assumed that the growth rate 

of zooplankton is proportional to the terms aP/(α4+Co-C). α1, α4 

are half saturation constants, Co is DO saturation value and Co - 

C is oxygen deficit. 

In view of the above considerations, the system is governed 

by the differential equations:- 
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With the initial conditions n(0) = n10 > 0, a(0) = a10 > 0, 

C(0) = C10 > 0, P(0) = P10 > 0. 

Here α, ν1, ν2, ν3 are depletion rate coefficients, β1, β2, α2 

and α3 are proportionality constants which are positive.  
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Boundedness and Equilibria of the System 

In this section, we will establish that the system (2.2.1) – 

(2.2.4) is bounded. We begin with the following lemma. 

Lemma 1: The set 
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is a region of attraction for all solutions initiating in the 

interior of positive octant, where, δm = Min {α, ν1, ν3}. 

Proof: Let us consider the following function: 

      w(t) = n(t) + a(t) + P(t),               (5) 
     

,
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from model (1) – (4) and if δm = Min{α, ν1, ν3}, then we 

obtain the following expression:- 
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Now applying the theorem of differential inequalities [8], 

we obtain 
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From equation (3), we have 
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Hence, the solution of the system (1) – (4) is bounded in .  

The model (1) – (4) has three non-negative equilibria.  
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Thus, E2 exist if 

 α1ν2 + Coν2 - q0 > 0 ,  

qβ2ν2 - αν1(α1ν2 + C0ν2 - q0) >  

0,
1 0 0,C C    0 nq  , 

  03043  aCCv   

(iii) E3(n
*
, a

*
, C

*
, P

*
) , Where 

* 0

2

,
q

C
v

  * 3
4 2 0 2 0

3 2

,
v

a v C v q
v




  
 

 
* 3 2

3 2 1 3 4 2 0 2 0

,
q v

n
v v v C v q



  

    

   

2
* 3 2 2 1

22 1 2 0 2 0 3 2 1 3 4 2 0 2 0

,
q v

P
v C v q v v v C v q

  

    
 

      

Thus, E3 exist  

if   

α4ν2 + C0ν2 - q0 > 0, β2n
*
 - ν1(α1 + C0 - C

*
)> 0,   α4 + C0 - C

* 

 > 0, α1 + Co - C
*
 > 0 

Dynamical Behaviour of the System 

In this section, we will discuss the stability analysis of 

equilibria E1, E2 and E3. 

The variational matrix of the system (1) - (4) is given as 

follow:- 
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Now, corresponding to the equilibrium point E1, Jacobean J1 is - 
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J1 has the Eigen-values λ1 = -α, λ2 = -ν2, λ3 = -ν3 and 
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Hence, E1 is stable if  

(112 + C012) > (β2qν2+ 1q0). 

Variation matrix corresponding to the equilibrium point E2 

is, 
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Characteristic equation corresponding to the above 

Jacobean is 
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Now, using Routh-hurwitz criterion we have shown that E2 

is asymptotically stable. 

Now, we will examine the local behavior of the equilibrium 

point E3(n
*
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*
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*
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*
). The Jacobean matrix corresponding to 

the equilibrium point E3 as, 

 

     

      






































3*

04

*

3

2*

04

**

3

*

04

*

3

2

*

22*

01

**

2*

21*

01

*

2

*

01

*

2

*

1

*

1

3

0

000

00

v
CC

a

CC

Pa

CC

P

v

a
CC

an
Pv

CC

n

CC

a

na

J



























  

using (1) – (4), above Jacobean converts to 































00

000

0

00

43*

*

3

2

*

22321

*

111

3

a
a

Pv

v

aaa

na

J



  

Where,

 

 

* * * *
1 2* 2

11 1 21 23* 2
*

1 0

, , ,
a v P n a

a a a a
n C C

 
 




   

 

 2*

04

**

3
43

CC

Pa
a





  

Characteristic equation corresponding to the above 

Jacobean is – 
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From the matrix J3, it is easy to note that the one Eigen-

value of J3 is -ν2 and other three Eigen-values are obtained by 

the following equation   
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point E3 is asymptotically stable. 

Now, form the following theorem we will discuss the 

nonlinear stability analysis of the equilibrium E3 which has been 

studied by Lyapunovs direct method. 
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Proof: We consider the following positive definite function:  
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Hence, V is a lyapunov's function with respect to E3 whose 

domain contains the region of attraction , proving the theorem. 

Numerical Simulation 

To check the feasibility of our analysis regarding stability 

conditions, we have conducted some numerical computation 

using MATLAB by choosing the following set of parameter 

values in model system (1) – (4). 

 q = 3, β1 = 0.5, β2 = 0.35, α1 = 0.51, α = 0.1, ν1 = 0.009, α2 = 

0.41, ν2 = 3, α3 = 0.33, α4 = 0.3, q0 = 24, C0 = 30, ν3 = 0.01. 

 It is found that under the above set of parameters, 

conditions for the existence of interior equilibrium E3(n*, a*, 

C*, P*) are satisfied and E3 is given by 
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n* = 6.8191, a* = 0.6799, C* = 7.9994, 

 P* = 0.2367 . 

With the above values of parameters, we have seen that all 

the conditions of nonlinear stability analysis are satisfied.  

In figure1, we observed that the interior equilibrium point is 

asymptotically stable. Form figure1, concentration of dissolved 

oxygen are fixed, nutrients increases, while density of algae and 

zooplankton population decreases, due to the oxygen deficit. It is 

further noted that all the stability conditions satisfied for the 

above values of parameters showing the local and nonlinear 

stability behavior of E3. 

Time Series Graph  
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Figure 1 

Conclusion  

In this paper, we have proposed and analyzed the 

mathematical model of the algal bloom in aquatic system. The 

model exhibits three non-zero equilibria  E1, E2 and E3. From the 

stability analysis of E1, we have seen that E1 is locally stable if 

equilibrium point E2 does not exist. From the stability analysis 

of the system (1) – (4), we have observed that all the feasible 

equilibria has been locally stable under certain conditions. We 

have studied the nonlinear stability analysis of interior 

equilibrium E3 by Lyapunovs direct method. 

    By numerical solution of the model, It has been shown 

that concentration of dissolved oxygen are fixed, while the 

cumulative rate of input of nutrients increases. Due to the 

oxygen deficit, density of algae and zooplankton population will 

be decreases. Finally, dissolved oxygen, nutrients, algae and 

zooplankton will make a stable relationship. 

From the figure 1, it can be seen that the concentration of 

nutrient, density of algae, concentration of DO and zooplankton 

populations all reach to their equilibrium values as time passes. 
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