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1. Introduction  

One of the most important research areas of the software 

measurement is software effort estimation. Software effort 

estimation models are mainly categorized in to algorithmic and 

non-algorithmic. The algorithmic models are mainly COCOMO, 

Function Points and SLIM. Theses models are also known as 

parametric models because they predict software development 

effort using a formula of fixed form that is parameterized from 

historical data. 

The algorithmic model require as input attributes such as 

experience of the development team, the required reliability of 

the software, the programming language in which the software is 

to be written, an estimate of the final number of delivered source 

line of code (SLOC), complexity and so on which are  difficult  

to obtain during the early stage of a software development life 

cycle (SDLC). They have also difficulty in modelling the 

inherent complex relationships [9]. 

The limitations of algorithmic models compel us to the 

exploitation of non-algorithmic techniques which are soft 

computing based. These techniques have advantage of  

1. Ability to learn from previous data. 

2. Able to model complex relationship between the dependent 

(effort) and independent variables (cost). 

3. Ability to generalize from the training dataset thus enabling it 

to produce acceptable result from previous unseen data. 

2.   Related Work 

A lot of research has been done using machine learning 

techniques like Artificial Neural Networks, Decision Tree, 

Linear Regression, Support Vector Machine, Fuzzy Logic, 

Genetic Algorithm, Empirical Techniques, and Theory based 

techniques for predicting the software effort estimation.  

The paper by FINNIE and WITTIG [4], has examined the 

potential of two artificial intelligence approaches i.e. Artificial 

Neural Networks (ANNs) and Case Based Reasoning (CBR), for 

creating development effort estimation models using the dataset 

Australian Software Metrics Association (ASMA). Also, the 

potential of Artificial Neural Networks (ANNs) and Case Based 

Reasoning (CBR), for providing the basis for development effort 

estimation models in contrast to regression models is examined 

by the same author [3]. The authors concluded that Artificial 

Intelligence Models are capable of providing adequate 

estimation models. Their performance is to a large degree 

dependent on the data which they have trained, and the extent to 

which suitable project data is available will determine the extent 

to which adequate effort estimation models can be developed. 

CBR allows the development of a dynamic case base with new 

project data being automatically incorporated into the case base 

as it becomes available while ANNs will require retraining to 

incorporate new data. 

The paper proposed by TOSUN, et.al. [1], a novel method 

for assigning weights to features by taking their particular 

importance on cost in to consideration. Two weight assignment 

heuristics are implemented which are inspired by a widely used 

statistical technique called Principal Component Analysis 

(PCA).  

The paper by ELISH [6], empirically evaluates the 

potential and accuracy of MART as a novel software effort 

estimation model when compared with recently published 

models i.e. Radial Basis Function (RBF) neural networks, linear 

regression, and Support Vector regression models with linear 

and RBF kernels. The comparison is based on a well known 

NASA software project dataset. 

The paper based on machine learning by Braga, et.al. [11], 

states the estimation of the effort together with a confidence 

interval. The authors have proposed to employ robust confidence 

intervals, which do not depend on the form of probability 

distribution of the errors in the training set. A number of 

experiments using two datasets aimed to compare machine 

learning techniques for software effort estimation and to show 

that robust confidence intervals for the effort estimation can be 

successfully built. 
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The paper by Martin, et. al., [10], describes an enhanced 

Fuzzy Logic model for the estimation of software development 

effort and proposed a new approach by applying Fuzzy Logic 

for software effort estimates. 

Genetic Algorithms (GA) are also widely used for accurate 

effort estimation. The paper by BURGESS and LEFLEY [2], 

evaluates the potential of Genetic Programming (GP) in 

software effort estimation and comparison is made with the 

Linear LSR, ANNs etc. The comparison is made on the 

Desharnais dataset of 81 software projects. 

In Ref. [13], comparative research has been done by using 

three machine learning methods such as Artificial Neural 

Networks (ANNs), Case-Based Reasoning (CBR) and Rule 

Induction (RI) to build software effort prediction systems. The 

paper compares the software effort prediction systems in terms 

of three factors: accuracy, explanatory value and configurability. 

The paper by Bibi Stamatia, et. al., [14], suggests the 

several estimation guidelines for the choice of a suitable 

machine learning techniques for software development effort 

estimation. 

In Ref. [9], the author’s presents that the one of the greatest 

challenges for software developers is predicting the development 

effort for a software system based on developer abilities, size, 

complexity and other metrics for the last decades. The ability to 

give a good estimation on software development efforts is 

required by the project managers. Most of the traditional 

techniques such as function points, regression models, 

COCOMO, etc, require a long term estimation process. New 

paradigms as Fuzzy Logic may offer an alternative for this 

challenge.  

The paper by Regolin, et. al. [12], explores the use of 

machine learning techniques such as Genetic Programming (GP) 

and Neural Networks (NNs) for software size estimation (LOC).  

The paper by Parag C. Pendharkar [15], propose a 

Probabilistic Neural Networks (PNN) approach for 

simultaneously estimating values of software development 

parameters (either software size or software effort) and 

probability that the actual value of the parameter will be less 

than its estimated value. 

The paper by L. Radlinki and W. Hoffmann [16], analyses 

the accuracy of predictions for software development effort 

using various machine learning techniques. The main aim is to 

investigate the stability of these predictions by analyzing if 

particular techniques achieve a similar level of accuracy for 

different datasets. The results show that the accuracy of 

predictions for each technique varies depending on the dataset 

used. 

3.   Research Methodology 

The Artificial Neural Network (ANN), Adaptive Neuro 

Fuzzy Inference System (ANFIS), and Decision Tree (DT) 

machine learning techniques have been used for predicting the 

software effort using China dataset of software projects in order 

to compare the performance results obtained from these models. 

(A)  Empirical Data Collection 

The data we have used is China Dataset. This data is 

obtained from PROMISE (PROMISE = PRedictOr Models In 

Software Engineering) Data Repository [7]. The mostly used 

software data sets for software Effort Predictions are China, 

Maxwell, NASA, Finnish, Telecom, Kemerer and Desharnais. 

The China Dataset consists of 19 features, 18 independent 

variable and 1 dependent variables. It has 499 instances 

correspond to 499 projects. The independent variables are ID, 

AFP, Input, Output, Enquiry, File, Interface, Added, Changed, 

Deleted, PDR_AFP, PDR_UFP, NPDR_AFP, NPDR_UFP, 

Resource, Dev. Type, Duration, and N_effort. The dependent 

variable is Effort. The descriptive statistics of China data set is 

appended at Table 1.  

Set of independent variables decides the value of the 

dependent variable. The dependent variable is effort in this 

work. Some of the independent variables may be removed, if 

they are not much important to predict the effort, thus making 

the model much simpler and efficient. It has been observed from 

the China data set that independent variables ID and Dev. Type 

does not play any role in deciding the value of effort.  

Hence, independent variables ID and Dev. Type have been 

removed. 

The China data set was divided into two parts, i.e. training 

and testing set in a ratio of 4:1. Thus, 80% of the data was used 

for the purpose of training the model and remaining 20% was 

used for testing purpose. 

MATLAB programs were developed for training and testing 

of various models with 16 independent variables- AFP, Input, 

Output, Enquiry, File, Interface, Added, Changed, Deleted, 

PDR_AFP, PDR_UFP, NPDR_AFP, NPDR_UFP, Resource, 

Duration, and N_effort for computation of dependent variable 

effort. 

(B)   Machine Learning Techniques 

Machine Learning is considered as a subfield of Artificial 

Intelligence and it is concerned with the development of 

techniques and methods which enable the computer to learn. In 

simple terms development of algorithms which enable the 

machine to learn and perform tasks and activities. Over the 

period of time many techniques and methodologies were 

developed for machine learning tasks. 

(1) Artificial Neural Networks (ANN) 

A neural network is a simplified model of the biological 

neuron system. It is a massively parallel distributed processing 

system made up of highly interconnected neural computing 

elements that have ability to learn and thereby acquire 

knowledge and make it available for use. 

McCulloch and Pitts (1943) proposed the first 

computational model of a neuron, namely the binary threshold 

unit, whose output was either 0 or 1 depending on whether its 

net input exceeded a given threshold.  

An Artificial Neural Network is an information-processing 

paradigm that is inspired by the way biological nervous systems, 

such as the brain, process the information. In common with 

biological neural networks, ANN can accommodate many inputs 

in parallel and encode the information in a distributed fashion. 

The most common algorithm for training or learning is 

known as error back-propagation algorithm. The error back-

propagation learning consists of two phases: a forward pass and 

a backward pass, an input is presented to the neural network, and 

its effect is propagated through the network layer by layer. This 

is also called Testing Phase. During the forward pass the weights 

of the network are all fixed. During the backward pass or 

“Training Phase”, the weights are all updated and adjusted 

according to the error computed. An error is composed from the 

difference between the desired response and the system output. 

This error information is feedback to the system and adjusts the 

system parameters in a learning rule. The process is repeated 

until the performance is acceptable [8].  

 

 



Prabhakar et al./ Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682 
 

13679 

(2) Adaptive Neuro Fuzzy Inference System (ANFIS) 

Adaptive Neuro Fuzzy Inference System (ANFIS) is a kind 

of neural network that is based on takagi–sugeno fuzzy inference 

system. ANFIS is an adaptive network that is functionally 

equivalent to fuzzy inference system. Since, it integrates both 

neural networks and fuzzy logic principles; it has potential to 

capture the benefits of both in a single framework. Its inference 

system corresponds to a set of fuzzy if–then rules that have 

learning capability to approximate nonlinear functions. Hence, 

ANFIS is considered to be universal approximator [17]. ANFIS 

is a model that maps input characteristics to input membership 

functions, input membership function to rules, rules to a set of 

output characteristics, output characteristics to output 

membership functions, and the output membership function to a 

single-valued output, or a decision associated with the output. 

The parameters can be automatically adjusted depending on the 

data that we try to model. 

( i ) Grid Partitioning 

Grid partitioning generates rules by enumerating all 

possible combinations of membership functions of all inputs; 

this leads to an exponential explosion even when the number of 

inputs is moderately large. For instance, for a fuzzy inference 

system with 10 inputs, each with two membership functions, the 

grid partitioning leads to 1024 (=210) rules, which is inhibitive 

large for any practical learning methods. This leads to curse of 

dimensionality which refers to such situation where the number 

of fuzzy rules, when the grid partitioning is used, increases 

exponentially with the number of input variables.  

( ii )  Subtractive Clustering  

Subtractive clustering is a fast one-pass algorithm for 

estimating the number of clusters and the cluster centers in a set 

of data if we don't have a clear idea how many clusters there 

should be for a given set of data. The cluster estimates obtained 

from the Subtractive clustering can be used in model 

identification methods (like ANFIS). It is a one-pass method to 

take input-output training data and generate a Sugeno-type fuzzy 

inference system that models the data behaviour.  

(3) Decision Tree (DT) 

Decision trees are powerful and popular tools for 

classification and prediction. The attractiveness of decision trees 

is due to the fact that, in contrast to neural networks, decision 

trees represent rules. Rules can readily be expressed so that 

humans can understand them or even directly used in a database 

access language like SQL so that records falling into a particular 

category may be retrieved. Decision tree is a classifier in the 

form of a tree structure, where each node is either:  

(a) Leaf Node - Indicates the value of the target attribute. 

(b) Decision Node - Specifies some test to be carried out on a 

single attribute-value, with one branch and sub-tree for each 

possible outcome of the test. 

A decision tree can be used to classify an example by 

starting at the root of the tree and moving through it until a leaf 

node, which provides the classification of the instance.  

(C) Evaluating the Performance of the Models 

The main measures used for evaluating the performance of 

machine learning techniques for predicting the software effort 

are as follows:- 

1. Sum Squared Error (SSE) 

The sum squared error is defined as 
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Where   Pi = Predicted value for data point i; 

Ai =Actual value for the data point i;    

n = Total number of data points. 

If   Pi = Ai,   i = 1, 2… n; then E=0 (ideal case). 

Thus, range of E is from 0 to infinity. SSE gives high 

importance to large errors because the errors are squared before 

they are averaged. Thus, SSE is used the most when large errors 

are undesirable. 

2.  Mean Squared Error (MSE) 

The mean squared error is defined as 
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Where  Pi = Predicted value for data point i; 

             Ai =Actual value for the data point i;    

             n = Total number of data points. 

If   Pi = Ai,   i = 1, 2… n; then E=0 (ideal case). 

Thus, range of E is from 0 to infinity. MSE gives high 

importance to large errors because the errors are squared before 

they are averaged. Thus, MSE is used the most when large errors 

are undesirable. 

3.  Root Mean Squared Error (RMSE) 

The root mean squared error is defined as 
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Where   Pi = Predicted value for data point i; 

      Ai =Actual value for the data point i;    

       n = Total number of data points. 

If   Pi = Ai,   i = 1, 2… n; then E=0 (ideal case). 

Thus, range of E is from 0 to infinity. RMSE gives high 

importance to large errors because the errors are squared before 

they are averaged. Thus, RMSE is used the most when large 

errors are undesirable. 

4. Mean Magnitude of Relative Error (MMRE) [3, 5] 

MMRE = 



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)(1  

Where Pi = Predicted value for data point i 

           Ai = Actual value for data point i 

            n = Total number of data points. 

5.  Relative Absolute Error (RAE) 

The Relative absolute error is defined as the summation of 

the difference between predictive value and given value for the 

sample case j to that divide it by the summation of the difference 

between the given value  and average of the given value. 

The relative absolute error of individual data set j is defined as                                   

Ej   =  
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Where Pij = Predicted value by the individual data set j for data 

point i. 

             Ai = Actual value for data point; 

               n = Total number of data points; 

            Am = Mean of all Ai 

For ideal case, the numerator is equal to zero and Ej = 0. 

Thus Ej ranges from 0 to infinity. 
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6.  Root Relative Squared Error (RRSE) 

The root relative squared error of individual data set j is 

defined as 
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Where Pij = Predicted value by the individual dataset j for data 

point in i; 

          Ai = Actual value for the data point i ; 

             n  = Total number of data points; 

           Am =Mean of all Ai; 

For ideal case, the numerator is equal to 0 and Ej =0. Thus, 

the Ej ranges from 0 to infinity.  

7.   Mean Absolute Error (MAE)  

The mean absolute error measures of how far the estimates 

are from actual values. It could be applied to any two pairs of 

numbers, where one set is “actual” and the other is an estimate 

prediction. 

MAE = 





n

i

AiPi
n 1

1  

Where Pi = Predicted value for data point i 

           Ai = Actual value for data point i 

            n = Total number of data points. 

8.  Correlation Coefficient 

Correlation measures of the strength of the relationship 

between two variables. The strength of the relationship is 

indicated by the correlation coefficient. The larger the value of 

correlation coefficient, the stronger the relationship. 

9.  PRED (A)  

It is calculated from the relative error. It is defined as the 

ratio of data points with error less than equal to A to the total 

number of data points. Thus, higher the value of PRED (A), the 

better it is considered. 

PRED (A) = 

n

d  

d = value of MRE where data points have less than or equal to A 

error. 

The commonly used value of A is 25% in the literature.  

4.   Result Analysis 

China Dataset was used to carry out the prediction of 

software effort estimation model. The data set was divided into 

two parts, i.e. training and testing set in a ratio of 4:1. Thus, 80% 

of the data was used for the purpose of training the model and 

remaining 20% was used for testing purpose.  

The Artificial Neural Network (ANN), Adaptive Neuro 

Fuzzy Inference System (ANFIS), and Decision Tree (DT) 

machine learning techniques have been used for predicting the 

software efforts. Nine performance indices have been used in 

order to compare the results obtained from these models. These 

indices are Sum-Square-Error (SSE), Mean-Square-Error 

(MSE), Root-Mean-Square-Error (RMSE), Mean-Magnitude-

Relative-Error (MMRE), Relative-Absolute-Error (RAE), 

Relative-Root-Square-Error (RRSE), Mean-Absolute-Error 

(MAE), Correlation Coefficient (CC), and PRED(25). The 

model possessing the lower values of SSE, MSE, MMRE, 

RMSE, RAE, MAE, and RRSE and the higher values of 

correlation coefficient and PRED (25) is considered to be the 

best among others.  

MATLAB programs were developed for training and testing 

of various models and also for computation of performance 

indices. The results are tabulated in Table 4 and plotted in 

Figures 4.1-4.4. In these plots, the blue curve represents the 

curve for the actual value and red curve represents the curve for 

the predicted values. The more the closeness between the curves 

for actual and predicted output values, the lesser is the error and 

hence better is the model.  
 

Figure 4.1(A1):  Target and Predicted values using Artificial 

Neural Networks with One hidden layers 
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Figure 4.1(B1):  Target and Predicted values using Artificial 

Neural Networks with Two Hidden layers 
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Figure 4.2(A1):  Target and Predicted values using Adaptive 

Neuro Fuzzy Inference System (ANFIS) with Grid 

Partitioning 
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Figure 4.2(B1):  Target and Predicted values   using 

Adaptive Neuro Fuzzy Inference System (ANFIS) with 

Subtractive Clustering 
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Figure 4.3:  Target and Predicted values using Decision Tree 

In case of Adaptive Neuro Fuzzy Inference System 

(ANFIS) with Grid Partitioning, the original data is too large to 

be handled. The dimensionality reduction has been performed 

based on Principal Component Analysis (PCA) in order to apply 

the ANFIS effectively. Because of the error involved during pre- 

processing, the overall error in this method is high. However, the 

above method of dimensionality reduction is not required in case 

of ANFIS with Subtractive Clustering, as a result of which the 

Table 1China Data Set Statistics 

S  N Variables Min Max Mean Standard Deviation 

1 ID 1 499 250 144 

2 AFP 9 17518 487 1059 

3 Input 0 9404 167 486 

4 Output 0 2455 114 221 

5 Enquiry 0 952 62 105 

6 File 0 2955 91 210 

7 Interface 0 1572 24 85 

8 Added 0 13580 360 830 

9 Changed 0 5193 85 291 

10 Deleted 0 2657 12 124 

11 PDR_AFP 0.3 83.8 12 12 

12 PDR_UFP 0.3 96.6 12 13 

13 NPDR_AFP 0.4 101 13 14 

14 NPDU_UFP 0.4 108 14 15 

15 Resource 1 4 1 1 

16 Dev. Type 0 0 0 0 

17 Duration 1 84 9 7 

18 N_effort 31 54620 4278 7071 

19 Effort 26 54620 3921 6481 

 
Table 2 Comparison of Performance indices with various Machine Learning Techniques 

 

S N 

 

Performance  

Measures 

Artificial Neural Network 

 (ANN) 

Adaptive Neuro Fuzzy  

Inference System  (ANFIS) 

 

Decision Tree   (DT) 

One Hidden Layer Two Hidden 

Layer 

Grid Partitioning  

(with PCA) 

Subtractive 

Clustering 

1 Sum Square Error (SSE) 0.04490 0.06440 7.09360 0.01460 0.14190 

2 Mean Square Error (MSE) 0.00045 0.00064 0.07090 0.00015 0.00140 

3 Root Mean Square Error (RMSE) 0.02120 0.02540 0.26630 0.01210 0.03770 

4 Mean Magnitude Relative Error 

(MMRE) 

0.07630 

 

0.11120 

 

0.64090 

 

0.14500 

 

0.13440 

 

5 Relative Absolute Error (RAE) 0.05650 0.08710 0.84200 0.07480 0.14510 

6 Root Relative Squared Error 

(RRSE) 

0.02180 

 

0.03120 

 

3.43950 

 

0.00710 

 

0.06880 

 

7 Mean Absolute Error (MAE) 0.00460 0.00710 0.06890 0.00610 0.01190 

8 Pred(25) 0.92000 0.90000 0.37000 0.84000 0.90000 

9 Correlation Coefficient 0.99350 0.99370 0.02450 0.99680 0.97100 
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results in this case are comparable with other methods. As 

shown in Table 2, the artificial neural network with one hidden 

layer shows the best results. 

5.   Conclusion 

The Artificial Neural Network (ANN), Adaptive Neuro 

Fuzzy Inference System (ANFIS), and Decision Tree (DT) 

learning techniques have been used to analyze the results using 

China dataset for predicting software development effort.  

The model with the lower Sum-Square-Error (SSE), Mean-

Square-Error (MSE), Root-Mean-Square-Error (RMSE), Mean-

Magnitude-Relative-Error (MMRE), Relative-Absolute-

Error(RAE), Relative-Root-Square-Error(RRSE), Mean-

Absolute-Error (MAE), and the higher Correlation Coefficient 

and PRED (25) has been considered to be the best among others. 

Our work will benefit to Software Testers and Managers in 

selecting best models for predicting software efforts in early 

phases of Software Development Life Cycle (SDLC).   

A similar study can be carried out to predict software effort 

using prediction models based on other machine learning 

algorithms such as Genetic Algorithms (GA) and Random 

Forest (RF) techniques.  Cost benefit analysis of models may be 

carried out to determine whether a given effort prediction model 

would be economically viable. 
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