
Prabhakar et al./ Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682

13677

1. Introduction

One of the most important research areas of the software

measurement is software effort estimation. Software effort

estimation models are mainly categorized in to algorithmic and

non-algorithmic. The algorithmic models are mainly COCOMO,

Function Points and SLIM. Theses models are also known as

parametric models because they predict software development

effort using a formula of fixed form that is parameterized from

historical data.

The algorithmic model require as input attributes such as

experience of the development team, the required reliability of

the software, the programming language in which the software is

to be written, an estimate of the final number of delivered source

line of code (SLOC), complexity and so on which are difficult

to obtain during the early stage of a software development life

cycle (SDLC). They have also difficulty in modelling the

inherent complex relationships [9].

The limitations of algorithmic models compel us to the

exploitation of non-algorithmic techniques which are soft

computing based. These techniques have advantage of

1. Ability to learn from previous data.

2. Able to model complex relationship between the dependent

(effort) and independent variables (cost).

3. Ability to generalize from the training dataset thus enabling it

to produce acceptable result from previous unseen data.

2. Related Work

A lot of research has been done using machine learning

techniques like Artificial Neural Networks, Decision Tree,

Linear Regression, Support Vector Machine, Fuzzy Logic,

Genetic Algorithm, Empirical Techniques, and Theory based

techniques for predicting the software effort estimation.

The paper by FINNIE and WITTIG [4], has examined the

potential of two artificial intelligence approaches i.e. Artificial

Neural Networks (ANNs) and Case Based Reasoning (CBR), for

creating development effort estimation models using the dataset

Australian Software Metrics Association (ASMA). Also, the

potential of Artificial Neural Networks (ANNs) and Case Based

Reasoning (CBR), for providing the basis for development effort

estimation models in contrast to regression models is examined

by the same author [3]. The authors concluded that Artificial

Intelligence Models are capable of providing adequate

estimation models. Their performance is to a large degree

dependent on the data which they have trained, and the extent to

which suitable project data is available will determine the extent

to which adequate effort estimation models can be developed.

CBR allows the development of a dynamic case base with new

project data being automatically incorporated into the case base

as it becomes available while ANNs will require retraining to

incorporate new data.

The paper proposed by TOSUN, et.al. [1], a novel method

for assigning weights to features by taking their particular

importance on cost in to consideration. Two weight assignment

heuristics are implemented which are inspired by a widely used

statistical technique called Principal Component Analysis

(PCA).

The paper by ELISH [6], empirically evaluates the

potential and accuracy of MART as a novel software effort

estimation model when compared with recently published

models i.e. Radial Basis Function (RBF) neural networks, linear

regression, and Support Vector regression models with linear

and RBF kernels. The comparison is based on a well known

NASA software project dataset.

The paper based on machine learning by Braga, et.al. [11],

states the estimation of the effort together with a confidence

interval. The authors have proposed to employ robust confidence

intervals, which do not depend on the form of probability

distribution of the errors in the training set. A number of

experiments using two datasets aimed to compare machine

learning techniques for software effort estimation and to show

that robust confidence intervals for the effort estimation can be

successfully built.

Tele:

E-mail addresses: er_prabhakar@rediffmail.com

 © 2013 Elixir All rights reserved

Application of machine learning techniques for predicting software effort
Prabhakar and Maitreyee Dutta

Department of Computer Science, National Institute of Technical Teachers Training and Research, Chandigarh, India.

ABSTRACT

Software effort estimation is an important area in the field of software engineering. If the

software effort is over estimated it may lead to tight time schedules and thus quality and

testing of software may be compromised. In contrast, if the software development effort is

underestimated it may lead to over allocation of man power and resource. There are many

models for estimating software effort. The aim of the work is to estimate software effort

using various machine learning techniques like Artificial Neural Network (ANN), Adaptive

Neuro Fuzzy Inference System (ANFIS), and Decision Tree (DT). China dataset of software

projects has been used in order to compare the performance results obtained from these

models. The indices are Sum-Square-Error (SSE), Mean-Square-Error (MSE), Root-Mean-

Square-Error (RMSE), Mean-Magnitude-Relative-Error (MMRE), Relative-Absolute-Error

(RAE), Relative-Root-Square-Error (RRSE), Mean-Absolute-Error (MAE), Correlation

Coefficient (CC), and PRED (25).

 © 2013 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 28 February 2013;

Received in revised form:

21 March 2013;

Accepted: 23 March 2013;

Keywords

Software effort estimation,

Machine Learning Techniques,

Artificial Neural Network,

Adaptive Neuro Fuzzy Inference

System, and

Decision Tree.

Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Prabhakar et al./ Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682

13678

The paper by Martin, et. al., [10], describes an enhanced

Fuzzy Logic model for the estimation of software development

effort and proposed a new approach by applying Fuzzy Logic

for software effort estimates.

Genetic Algorithms (GA) are also widely used for accurate

effort estimation. The paper by BURGESS and LEFLEY [2],

evaluates the potential of Genetic Programming (GP) in

software effort estimation and comparison is made with the

Linear LSR, ANNs etc. The comparison is made on the

Desharnais dataset of 81 software projects.

In Ref. [13], comparative research has been done by using

three machine learning methods such as Artificial Neural

Networks (ANNs), Case-Based Reasoning (CBR) and Rule

Induction (RI) to build software effort prediction systems. The

paper compares the software effort prediction systems in terms

of three factors: accuracy, explanatory value and configurability.

The paper by Bibi Stamatia, et. al., [14], suggests the

several estimation guidelines for the choice of a suitable

machine learning techniques for software development effort

estimation.

In Ref. [9], the author’s presents that the one of the greatest

challenges for software developers is predicting the development

effort for a software system based on developer abilities, size,

complexity and other metrics for the last decades. The ability to

give a good estimation on software development efforts is

required by the project managers. Most of the traditional

techniques such as function points, regression models,

COCOMO, etc, require a long term estimation process. New

paradigms as Fuzzy Logic may offer an alternative for this

challenge.

The paper by Regolin, et. al. [12], explores the use of

machine learning techniques such as Genetic Programming (GP)

and Neural Networks (NNs) for software size estimation (LOC).

The paper by Parag C. Pendharkar [15], propose a

Probabilistic Neural Networks (PNN) approach for

simultaneously estimating values of software development

parameters (either software size or software effort) and

probability that the actual value of the parameter will be less

than its estimated value.

The paper by L. Radlinki and W. Hoffmann [16], analyses

the accuracy of predictions for software development effort

using various machine learning techniques. The main aim is to

investigate the stability of these predictions by analyzing if

particular techniques achieve a similar level of accuracy for

different datasets. The results show that the accuracy of

predictions for each technique varies depending on the dataset

used.

3. Research Methodology

The Artificial Neural Network (ANN), Adaptive Neuro

Fuzzy Inference System (ANFIS), and Decision Tree (DT)

machine learning techniques have been used for predicting the

software effort using China dataset of software projects in order

to compare the performance results obtained from these models.

(A) Empirical Data Collection

The data we have used is China Dataset. This data is

obtained from PROMISE (PROMISE = PRedictOr Models In

Software Engineering) Data Repository [7]. The mostly used

software data sets for software Effort Predictions are China,

Maxwell, NASA, Finnish, Telecom, Kemerer and Desharnais.

The China Dataset consists of 19 features, 18 independent

variable and 1 dependent variables. It has 499 instances

correspond to 499 projects. The independent variables are ID,

AFP, Input, Output, Enquiry, File, Interface, Added, Changed,

Deleted, PDR_AFP, PDR_UFP, NPDR_AFP, NPDR_UFP,

Resource, Dev. Type, Duration, and N_effort. The dependent

variable is Effort. The descriptive statistics of China data set is

appended at Table 1.

Set of independent variables decides the value of the

dependent variable. The dependent variable is effort in this

work. Some of the independent variables may be removed, if

they are not much important to predict the effort, thus making

the model much simpler and efficient. It has been observed from

the China data set that independent variables ID and Dev. Type

does not play any role in deciding the value of effort.

Hence, independent variables ID and Dev. Type have been

removed.

The China data set was divided into two parts, i.e. training

and testing set in a ratio of 4:1. Thus, 80% of the data was used

for the purpose of training the model and remaining 20% was

used for testing purpose.

MATLAB programs were developed for training and testing

of various models with 16 independent variables- AFP, Input,

Output, Enquiry, File, Interface, Added, Changed, Deleted,

PDR_AFP, PDR_UFP, NPDR_AFP, NPDR_UFP, Resource,

Duration, and N_effort for computation of dependent variable

effort.

(B) Machine Learning Techniques

Machine Learning is considered as a subfield of Artificial

Intelligence and it is concerned with the development of

techniques and methods which enable the computer to learn. In

simple terms development of algorithms which enable the

machine to learn and perform tasks and activities. Over the

period of time many techniques and methodologies were

developed for machine learning tasks.

(1) Artificial Neural Networks (ANN)

A neural network is a simplified model of the biological

neuron system. It is a massively parallel distributed processing

system made up of highly interconnected neural computing

elements that have ability to learn and thereby acquire

knowledge and make it available for use.

McCulloch and Pitts (1943) proposed the first

computational model of a neuron, namely the binary threshold

unit, whose output was either 0 or 1 depending on whether its

net input exceeded a given threshold.

An Artificial Neural Network is an information-processing

paradigm that is inspired by the way biological nervous systems,

such as the brain, process the information. In common with

biological neural networks, ANN can accommodate many inputs

in parallel and encode the information in a distributed fashion.

The most common algorithm for training or learning is

known as error back-propagation algorithm. The error back-

propagation learning consists of two phases: a forward pass and

a backward pass, an input is presented to the neural network, and

its effect is propagated through the network layer by layer. This

is also called Testing Phase. During the forward pass the weights

of the network are all fixed. During the backward pass or

“Training Phase”, the weights are all updated and adjusted

according to the error computed. An error is composed from the

difference between the desired response and the system output.

This error information is feedback to the system and adjusts the

system parameters in a learning rule. The process is repeated

until the performance is acceptable [8].

Prabhakar et al./ Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682

13679

(2) Adaptive Neuro Fuzzy Inference System (ANFIS)

Adaptive Neuro Fuzzy Inference System (ANFIS) is a kind

of neural network that is based on takagi–sugeno fuzzy inference

system. ANFIS is an adaptive network that is functionally

equivalent to fuzzy inference system. Since, it integrates both

neural networks and fuzzy logic principles; it has potential to

capture the benefits of both in a single framework. Its inference

system corresponds to a set of fuzzy if–then rules that have

learning capability to approximate nonlinear functions. Hence,

ANFIS is considered to be universal approximator [17]. ANFIS

is a model that maps input characteristics to input membership

functions, input membership function to rules, rules to a set of

output characteristics, output characteristics to output

membership functions, and the output membership function to a

single-valued output, or a decision associated with the output.

The parameters can be automatically adjusted depending on the

data that we try to model.

(i) Grid Partitioning

Grid partitioning generates rules by enumerating all

possible combinations of membership functions of all inputs;

this leads to an exponential explosion even when the number of

inputs is moderately large. For instance, for a fuzzy inference

system with 10 inputs, each with two membership functions, the

grid partitioning leads to 1024 (=210) rules, which is inhibitive

large for any practical learning methods. This leads to curse of

dimensionality which refers to such situation where the number

of fuzzy rules, when the grid partitioning is used, increases

exponentially with the number of input variables.

(ii) Subtractive Clustering

Subtractive clustering is a fast one-pass algorithm for

estimating the number of clusters and the cluster centers in a set

of data if we don't have a clear idea how many clusters there

should be for a given set of data. The cluster estimates obtained

from the Subtractive clustering can be used in model

identification methods (like ANFIS). It is a one-pass method to

take input-output training data and generate a Sugeno-type fuzzy

inference system that models the data behaviour.

(3) Decision Tree (DT)

Decision trees are powerful and popular tools for

classification and prediction. The attractiveness of decision trees

is due to the fact that, in contrast to neural networks, decision

trees represent rules. Rules can readily be expressed so that

humans can understand them or even directly used in a database

access language like SQL so that records falling into a particular

category may be retrieved. Decision tree is a classifier in the

form of a tree structure, where each node is either:

(a) Leaf Node - Indicates the value of the target attribute.

(b) Decision Node - Specifies some test to be carried out on a

single attribute-value, with one branch and sub-tree for each

possible outcome of the test.

A decision tree can be used to classify an example by

starting at the root of the tree and moving through it until a leaf

node, which provides the classification of the instance.

(C) Evaluating the Performance of the Models

The main measures used for evaluating the performance of

machine learning techniques for predicting the software effort

are as follows:-

1. Sum Squared Error (SSE)

The sum squared error is defined as

  







 



n

i

AiPi
1

2
E

Where Pi = Predicted value for data point i;

Ai =Actual value for the data point i;

n = Total number of data points.

If Pi = Ai,  i = 1, 2… n; then E=0 (ideal case).

Thus, range of E is from 0 to infinity. SSE gives high

importance to large errors because the errors are squared before

they are averaged. Thus, SSE is used the most when large errors

are undesirable.

2. Mean Squared Error (MSE)

The mean squared error is defined as

  







 



n

i

AiPi
n 1

21
E

Where Pi = Predicted value for data point i;

 Ai =Actual value for the data point i;

 n = Total number of data points.

If Pi = Ai,  i = 1, 2… n; then E=0 (ideal case).

Thus, range of E is from 0 to infinity. MSE gives high

importance to large errors because the errors are squared before

they are averaged. Thus, MSE is used the most when large errors

are undesirable.

3. Root Mean Squared Error (RMSE)

The root mean squared error is defined as

 













 



n

i

AiPi
n 1

21
E

Where Pi = Predicted value for data point i;

 Ai =Actual value for the data point i;

 n = Total number of data points.

If Pi = Ai,  i = 1, 2… n; then E=0 (ideal case).

Thus, range of E is from 0 to infinity. RMSE gives high

importance to large errors because the errors are squared before

they are averaged. Thus, RMSE is used the most when large

errors are undesirable.

4. Mean Magnitude of Relative Error (MMRE) [3, 5]

MMRE =




n

i Ai

AiPi

n 1

)(1

Where Pi = Predicted value for data point i

 Ai = Actual value for data point i

 n = Total number of data points.

5. Relative Absolute Error (RAE)

The Relative absolute error is defined as the summation of

the difference between predictive value and given value for the

sample case j to that divide it by the summation of the difference

between the given value and average of the given value.

The relative absolute error of individual data set j is defined as

Ej =













n

i

n

i

AmAi

AiPij

1

1

Where Pij = Predicted value by the individual data set j for data

point i.

 Ai = Actual value for data point;

 n = Total number of data points;

 Am = Mean of all Ai

For ideal case, the numerator is equal to zero and Ej = 0.

Thus Ej ranges from 0 to infinity.

Prabhakar et al./ Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682

13680

6. Root Relative Squared Error (RRSE)

The root relative squared error of individual data set j is

defined as

 

 


































2

1

2

1Error Squared RelativeRoot

AmAi

AiPij

n

i

n

i

Where Pij = Predicted value by the individual dataset j for data

point in i;

 Ai = Actual value for the data point i ;

 n = Total number of data points;

 Am =Mean of all Ai;

For ideal case, the numerator is equal to 0 and Ej =0. Thus,

the Ej ranges from 0 to infinity.

7. Mean Absolute Error (MAE)

The mean absolute error measures of how far the estimates

are from actual values. It could be applied to any two pairs of

numbers, where one set is “actual” and the other is an estimate

prediction.

MAE =





n

i

AiPi
n 1

1

Where Pi = Predicted value for data point i

 Ai = Actual value for data point i

 n = Total number of data points.

8. Correlation Coefficient

Correlation measures of the strength of the relationship

between two variables. The strength of the relationship is

indicated by the correlation coefficient. The larger the value of

correlation coefficient, the stronger the relationship.

9. PRED (A)

It is calculated from the relative error. It is defined as the

ratio of data points with error less than equal to A to the total

number of data points. Thus, higher the value of PRED (A), the

better it is considered.

PRED (A) =

n

d

d = value of MRE where data points have less than or equal to A

error.

The commonly used value of A is 25% in the literature.

4. Result Analysis

China Dataset was used to carry out the prediction of

software effort estimation model. The data set was divided into

two parts, i.e. training and testing set in a ratio of 4:1. Thus, 80%

of the data was used for the purpose of training the model and

remaining 20% was used for testing purpose.

The Artificial Neural Network (ANN), Adaptive Neuro

Fuzzy Inference System (ANFIS), and Decision Tree (DT)

machine learning techniques have been used for predicting the

software efforts. Nine performance indices have been used in

order to compare the results obtained from these models. These

indices are Sum-Square-Error (SSE), Mean-Square-Error

(MSE), Root-Mean-Square-Error (RMSE), Mean-Magnitude-

Relative-Error (MMRE), Relative-Absolute-Error (RAE),

Relative-Root-Square-Error (RRSE), Mean-Absolute-Error

(MAE), Correlation Coefficient (CC), and PRED(25). The

model possessing the lower values of SSE, MSE, MMRE,

RMSE, RAE, MAE, and RRSE and the higher values of

correlation coefficient and PRED (25) is considered to be the

best among others.

MATLAB programs were developed for training and testing

of various models and also for computation of performance

indices. The results are tabulated in Table 4 and plotted in

Figures 4.1-4.4. In these plots, the blue curve represents the

curve for the actual value and red curve represents the curve for

the predicted values. The more the closeness between the curves

for actual and predicted output values, the lesser is the error and

hence better is the model.

Figure 4.1(A1): Target and Predicted values using Artificial

Neural Networks with One hidden layers

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Set

T
a
rg

e
t

a
n

d
 P

re
d

ic
te

d
 V

a
lu

e
s

Comparison between Target and Predicted Values

Target Value

Predicted Value

Figure 4.1(B1): Target and Predicted values using Artificial

Neural Networks with Two Hidden layers

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Data Set

T
a
rg

e
t

a
n

d
 P

re
d

ic
te

d
 V

a
lu

e
s

Comparison between Target and Predicted Values

Target Value

Predicted Value

Figure 4.2(A1): Target and Predicted values using Adaptive

Neuro Fuzzy Inference System (ANFIS) with Grid

Partitioning

Prabhakar et al./ Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682

13681

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3

4

5
x 10

4

Data Set

T
a
rg

e
t

a
n

d
 P

re
d

ic
te

d
 V

a
lu

e
s

Comparison between Target and Predicted Values

Target Value

Predicted Value

Figure 4.2(B1): Target and Predicted values using

Adaptive Neuro Fuzzy Inference System (ANFIS) with

Subtractive Clustering

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data Set

T
a
rg

e
t

a
n

d
 P

re
d

ic
te

d
 V

a
lu

e
s

Comparison between Target and Predicted Values

Target Value

Predicted Value

Figure 4.3: Target and Predicted values using Decision Tree

In case of Adaptive Neuro Fuzzy Inference System

(ANFIS) with Grid Partitioning, the original data is too large to

be handled. The dimensionality reduction has been performed

based on Principal Component Analysis (PCA) in order to apply

the ANFIS effectively. Because of the error involved during pre-

processing, the overall error in this method is high. However, the

above method of dimensionality reduction is not required in case

of ANFIS with Subtractive Clustering, as a result of which the

Table 1China Data Set Statistics

S N Variables Min Max Mean Standard Deviation

1 ID 1 499 250 144

2 AFP 9 17518 487 1059

3 Input 0 9404 167 486

4 Output 0 2455 114 221

5 Enquiry 0 952 62 105

6 File 0 2955 91 210

7 Interface 0 1572 24 85

8 Added 0 13580 360 830

9 Changed 0 5193 85 291

10 Deleted 0 2657 12 124

11 PDR_AFP 0.3 83.8 12 12

12 PDR_UFP 0.3 96.6 12 13

13 NPDR_AFP 0.4 101 13 14

14 NPDU_UFP 0.4 108 14 15

15 Resource 1 4 1 1

16 Dev. Type 0 0 0 0

17 Duration 1 84 9 7

18 N_effort 31 54620 4278 7071

19 Effort 26 54620 3921 6481

Table 2 Comparison of Performance indices with various Machine Learning Techniques

S N

Performance

Measures

Artificial Neural Network

 (ANN)

Adaptive Neuro Fuzzy

Inference System (ANFIS)

Decision Tree (DT)

One Hidden Layer Two Hidden

Layer

Grid Partitioning

(with PCA)

Subtractive

Clustering

1 Sum Square Error (SSE) 0.04490 0.06440 7.09360 0.01460 0.14190

2 Mean Square Error (MSE) 0.00045 0.00064 0.07090 0.00015 0.00140

3 Root Mean Square Error (RMSE) 0.02120 0.02540 0.26630 0.01210 0.03770

4 Mean Magnitude Relative Error

(MMRE)

0.07630

0.11120

0.64090

0.14500

0.13440

5 Relative Absolute Error (RAE) 0.05650 0.08710 0.84200 0.07480 0.14510

6 Root Relative Squared Error

(RRSE)

0.02180

0.03120

3.43950

0.00710

0.06880

7 Mean Absolute Error (MAE) 0.00460 0.00710 0.06890 0.00610 0.01190

8 Pred(25) 0.92000 0.90000 0.37000 0.84000 0.90000

9 Correlation Coefficient 0.99350 0.99370 0.02450 0.99680 0.97100

Prabhakar et al./ Elixir Comp. Sci. & Engg. 56 (2013) 13677-13682

13682

results in this case are comparable with other methods. As

shown in Table 2, the artificial neural network with one hidden

layer shows the best results.

5. Conclusion

The Artificial Neural Network (ANN), Adaptive Neuro

Fuzzy Inference System (ANFIS), and Decision Tree (DT)

learning techniques have been used to analyze the results using

China dataset for predicting software development effort.

The model with the lower Sum-Square-Error (SSE), Mean-

Square-Error (MSE), Root-Mean-Square-Error (RMSE), Mean-

Magnitude-Relative-Error (MMRE), Relative-Absolute-

Error(RAE), Relative-Root-Square-Error(RRSE), Mean-

Absolute-Error (MAE), and the higher Correlation Coefficient

and PRED (25) has been considered to be the best among others.

Our work will benefit to Software Testers and Managers in

selecting best models for predicting software efforts in early

phases of Software Development Life Cycle (SDLC).

A similar study can be carried out to predict software effort

using prediction models based on other machine learning

algorithms such as Genetic Algorithms (GA) and Random

Forest (RF) techniques. Cost benefit analysis of models may be

carried out to determine whether a given effort prediction model

would be economically viable.

References:-

[1] A.Tosun, B. Turhan and A.B. Bener, “Feature Weighting

Heuristics for Analogy- based Effort Estimation Models,”

Expert Systems with Applications, vol. 36, pp.10325-10333,

2009.

[2] C.J. Burgess and M.Lefley, “Can Genetics Programming

improves Software Effort Estimation? A Comparative

Evaluation,” Information and Software Technology, vol.43,

pp.863-873, 2001.

[3] G. R. Finnie and G.E. Wittig, “A Comparison of Software

Effort Estimation Techniques: Using Function Points with

Neural Networks, Case Based Reasoning and Regression

Models,” Journal of Systems and Software, vol.39, pp.281-289,

1997.

[4] G. R. Finnie and G.E. Wittig, “AI Tools for Software

Development Effort Estimation,” Proceedings of the

International Conference on Software Engineering: Education

and Practice (SEEP’ 96).

[5] K. Srinivasan and D. Fisher, “Machine Learning Approaches

to Estimating Software Development Effort,” IEEE Transactions

on Software Engineering, vol.21, Feb.1995.

[6] M. O. Elish, “Improved Estimation of Software Project

Effort using Multiple Additive Regression Tree,” Expert

Systems with Applications, vol.36, pp. 10774-10778, 2009.

[7] G. Boetticher, T. Menzies and T. Ostrand , PROMISE

Repository of Empirical Software Engineering data

http://promisedata.org/repository, West Virginia University,

Department of Computer Science, 2007.

[8] R. Malhotra, A. Jain, “Software Effort Prediction using

Statistical and Machine Learning Methods,” International

Journal of Advanced Computer Science and Applications, vol.2,

No.1, January 2011.

 [9] I. Attarzadeh and Siew Hock Ow, “Software Development

Effort Estimation Based on a New Fuzzy Logic Model,”

International Journal of Computer Theory and Engineering, Vol.

1, No. 4, pp.1793-8201, October 2009.

[10] C. L. Martin, J. L. Pasquier and Cornelio Y M and Agustin

G. T., “Software Development Effort Estimation using Fuzzy

Logic: A Case Study,” Proceedings of the Sixth Mexican

International Conference on Computer Science (ENC’05), IEEE

Software, 2005.

[11] P. L. Braga , A. L. I. Oliveira and S. R. L. Meira, “Software

Effort Estimation using Machine Learning Techniques with

Robust Confidence Intervals,” 19th IEEE International

Conference on Tools with Artificial Intelligence, pp.181-

185,2007.

[12] E. N. Regolin, G. A. de Souza, A. R. T. Poza, S. R.

Vergilio, “Exploring Machine Learning Techniques for Software

Size Estimation,” Proceedings of IEEE Conference (SCCC’03),

2003.

[13] C. Mair, G.Kadoda, M. Lefley, K.P.C.Schofield, M.

Shepperd and Steve Webster, “An Investigation of Machine

Learning Based Prediction Systems,” Empirical Software

Engineering Research Group, Bournemouth University, U.K. 09

July, 1999.

[14] Bibi Stamatia and Stamelos Ioannis, “Selecting the

Appropriate Machine Learning Techniques for Predicting of

Software Development Costs,” Artificial Intelligence

Applications and Innovations, vol. 204, pp.533-540, 2006.

[15] Parag C. Pendharkar, “Probabilistic estimation of software

size and effort,” An International Journal of Expert Systems

with Applications, vol. 37, pp.4435-4440, 2010.

[16] L. Radlinki and W. Hoffmann, “On Predicting Software

Development Effort Using Machine Learning Techniques and

Local Data,” International Journal of Software Engineering and

Computing, vol. 2, pp.123-136, 2010.

[17] Jang, Sun, Mizutani (1997) – Neuro-Fuzzy and Soft

Computing – Prentice Hall, pp 335–368, ISBN0-13-261066-3.

