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Introduction  

 The continuous improvement in Nuclear Magnetic 

Resonance (NMR) instruments and techniques are fostering new 

and important applications in nuclear spectroscopy and 

medicine. Here we apply the NMR technique in the transport of 

nerve pulses. We shall apply Bloch NMR theory to develop an 

analytical neural communication model which will explain the 

mode of transmission of nerve pulses. 

The interstitial or intercellular fluid (tissue fluid) is the 

medium through which substances pass from blood to the body 

cells and from cells to blood. (Ross and Wilson, 2003) 

Since the cerebrospinal fluid inside the neurones is made up 

of water, which consists of hydrogen and oxygen that have 

nuclei that contain odd numbers of protons or neutrons, the 

application of NMR technique can be used to describe the 

transportation of the neurones in the body system. 

Theory 

The wave equation is a hyperbolic partial differential 

equation with two or more variables. It includes a time variable 

t, one or more spatial variables x1, x2, …, xn, and a scalar 

function u = u (x1, x2, …, xn; t), whose values could model the 

height of a wave. The wave equation for u is 

    (1) 

where  is the (spatial) Laplacian and c is a fixed constant 

identified with the propagation speed of the wave. This equation 

is linear, as the sum of any two solutions is again a solution. The 

equation alone does not specify a solution; a unique solution is 

usually obtained by setting a problem with further conditions, 

such as initial conditions, which prescribe the value and velocity 

of the wave. (Courant and Hilbert, 1962). 

Associated with each rotating object is an angular 

momentum and associated with each nuclear spin is a magnetic 

moment arising from the angular momentum of the nucleus.  In 

a magnetic field, B, the magnetic moment will behave like 

magnetic dipole and will experience a torque (Hornak, 2011). 

In terms of the Bloch NMR equations for example, a nerve 

cell containing cerebrospinal fluid, which contains hydrogen and 

oxygen molecules with many unpaired electrons, spins with 

angular speed w, in a coordinate system rotating with the nerve 

cell. When the radio frequency (rF) field, B1, is applied on a 

microscopic volume of mass m of the nerve cell, at equilibrium, 

the net force acting on m must be zero. The forces are the 

contact force, coriolis force and the centrifugal force. The 

coriolis and centrifugal forces seem quite real in a rotating frame 

(Awojoyogbe, 2003).  

The fluid particle, on the atomic scale, was considered 

which either initially or on the average is in steady rotation. We 

apply a mathematical algorithm to describe the dynamical state 

of the flowing fluid particle starting from the NMR flow 

equations (Awojoyogbe, 2002). 

The fluid is assumed to be magnetized by the static 

magnetic field, Bo, to an equilibrium magnetization, Mo, before 

entering the exit coil. The z axis in the rotating frame coincides 

with the laboratory Z axis; the x axis makes an angle 'wt' at any 

instant of time 't' with laboratory X axis. The X=0 position could 

be such that the transverse magnetic field at the end of the 

detector coil is negligible. The flow properties of the Bloch 

NMR flow equations describes the dynamics of fluid flow under 

the influence of rF magnetic field as follows (Awojoyogbe, 

2004). 

      (2) 

    (3)  

                                
      (4)
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where V is the fluid flow velocity. Two reasonable initial 

boundary conditions which may conform to the real-time 

experimental arrangements were chosen. These are: 

(i). a situation which holds when the rF B1(x) field is 

strong. 

(ii). before entering signal detector coil, the fluid bolus has 

magnetization 

       .                                                                 

If B1(x) is large, the of the fluid bolus changes 

appreciably from . For steady flow 

                 (5) 

Thus from equations (3) and (4) one obtains 

           
      (6) 

It is convenient to use, as dependent variable, the departure 

of the stream function from its classical form and write: 

                      (7) 

where   is treated as a constant, V is the 

instantaneous velocity of the fluid and (x) is a special function 

of the transverse magnetization  which depends on the 

dynamical state of the fluid particle (Kreyszic, 1998). Equation 

(6) can be written as: 

             (8) 

provided that     (9) 

subject to the following two conditions: 

(i) Resonance condition exists at Larmor frequency, 

                                                   

(ii) , where denotes the gyromagnetic ratio of fluid 

spins;  is the rF excitation frequency; and   is the 

off- resonance field in the rotating frame of reference. and 

are the spin-lattice and spin-spin relaxation times 

respectively. rF  is treated as constant.. Classically, equation 

(8) applies to a free fluid particle moving in one dimension only. 

We take this as the x direction, so that the trajectory is a function 

x(t). The flow velocity V is the differential of position with 

respect to time. We can write equation (9) as 

               (10) 

After following some mathematical procedures 

(Awojoyogbe, 2004) equation (8) becomes 

                    (11)  

The Bloch equation (11) plays a fundamental role in the 

search for the best possible NMR data obtainable in a fluid flow 

system at microscopic level. The wave function (x) is 

associated with any particle at the atomic and molecular level 

flowing in a conservative force field. The wave function 

determines everything that can be known about the flow system. 

(Awojoyogbe, 2004). 

In our model we will show through the above Bloch theory 

that the transmission of nerve impulses (that is, communication 

between neurones) is not a flow of electrons as in the case of 

electric current, but is a wave of electrical activity travelling 

along the neurone. 

Our model for the neural communication 

Here we derive a partial differential equation governing 

small transverse vibrations of a nerve, which is assumed to be 

stretched to length L and then fixed at the endpoints.   Suppose 

that the nerve is distorted and then at a certain instant, say at the 

time t = 0, is released and allowed to vibrate. The problem is to 

determine the vibrations of the nerve, that is, to find its 

deflection 
),( txu

  at any point x  and time t  > 0. We make the 

following assumptions which simplify the resulting equation: 

(i) The mass of the nerve per unit length is constant 

(“homogenous nerve”).The nerve is perfectly elastic and does 

not offer any resistance to bending. 

(ii) The tension caused by stretched nerve that is connected in 

the nervous system is so large that the action of gravitational 

force on the nerve can be neglected. 

(iii)  The nerve performs a small transverse motion in a vertical 

plane that is, every particle of the nerve moves strictly vertically 

so that the deflection and the slope at every point of the nerve 

remain small in absolute value.  

These assumptions are such that we may expect that the 

solution 
),( txu

 of the differential equation to be obtained will 

reasonably be well described by small vibrations of the physical 

nerve consisting of small homogenous mass under large tension. 

Equation of Motion for the Model 
To obtain the equation of motion we consider the forces 

acting on a small portion of the nerve PQ as shown in Fig.1. 

Since the nerve does not offer resistance to bending, the tension 

is tangential to the curve representing the nerve at each point. 

 
Fig. 1:  Tensions T1 and T2 acting on a small portion, PQ, of 

the nerve 

Let T
1
and T

2
 be the tension at the endpoints P and Q of the 

portion. Since there is no motion in the horizontal direction, the 

horizontal components of the tension must be constant.            

Therefore we have; 

T 1  cos

T 2 cos


 Tconst   (12) 

 In the vertical direction we have two forces namely, T 1 sin


 

and T 2 sin


. The resultant of the two forces is equal to the 

mass Δx of the portion times the acceleration 
2

2

t

u





evaluated at 

some point between x and xΔx, where  is the mass of the 
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undeflected nerve per unit length and Δx is is the length of the 

portion of the undeflected nerve.  

Hence, T 2 sin 
T 1 sin 


x 2

2

t

u





 

By using eqn (12), we obtain; 





cos

sin

2

2

T

T

  



cos

sin

1

1

T

T

tan


  tan


      ( T

x

)(
2

2

t

u





)  

          (13) 

 Now, tan


 and tan are the slopes of the nerve at x and xΔx. 

Therefore, tan 

( x

u





) x  and tan ( x

u





) xx  . Dividing 

equation (13) by Δx, and taking the limit as Δx tends to zero we 

obtain the linear partial differential equation: 

2

2

t

u





  
2

2
2

x

u






, where  
2
 

T

   (14) 

Here


is the velocity of fluid flow from neurone to neurone. 

Equation (14) is a one dimensional homogenous second order 

differential equation. It represents a nerve set in motion (when 

pinched by an insect, for instance) that vibrates in vertical 

direction at the point x at time t. The notation
2

for physical 

constant 

T

 has been chosen to indicate that this constant is 

positive. Equation (14) is the wave equation, where T is the 

tension in the nerve and  is the mass per unit length of the 

nerve. Thus  has the physical dimension of velocity. Therefore, 

 is the velocity of fluid flow from neurone to neurone. 

To describe the motion of the nerve completely it is 

necessary to specify suitable initial and boundary condition for 

the displacement u(x,t). The first neurone which is set in motion 

is assumed to be fixed at the initial end and free at the other end, 

while the other neurones attached to the first neurone are 

assumed to be free at both ends (Fig. 2). 

 
(a) Neurone closed at one end 

 
(b) Neurone open at both ends  

 

Fig. 2: Model of a Neurone (a) Closed at one end and (b) 

Open at both ends 

Since the differential equation (14) is of the second order with 

respect to t, it is plausible that two initial conditions must be 

prescribed. There is the initial position of the neurone; 

 
lxxfxu  0),()0,(

             (15) 

  Where its initial velocity is: 

lxxgxut  0),()0,(
,        (16) 

 where f and g are given functions. 

 We assume, as a working hypothesis that solutions for the 

displacement 
),( txu

 exist as a product of a function of x alone 

and a function of t alone. Using the method of separation of 

variables we set: 

 )()(),( tx TXtxu 
                             (17) 

 In this case, partial differentiation of 
),( txu

amounts to total 

differentiation of one or the other of the factors of 
),( txu

and 

we have 

TX
x

u





2

2

  and  
T

2

2

X
t

u






 

where X   represents second order partial derivatives with 

respect to position and Trepresents second order partial 

derivatives with respect to time. Substituting these into the wave 

equation (6) and dividing by the product XT, we obtain  

TXTX  2
 and                (18) 

 



X

X

T

T 2


                      (19) 

where  is a constant. Thus, we find that )(xX
and )(tT

 satisfy 

ordinary differential equations. 

In equation (19) the variables have been separated: the left 

side depends only on t while the right side depends only on x. 

For equation (19) to be valid for lx 0 , t 0 , it is 

necessary that both  sides  be equal to the same constant. This 

separation constant is indicated as . The partial differential 

equation (14) has thus been replaced by two ordinary differential 

equations. Each of these equations can be readily solved for any 

value of the separation constant .  

TT     and   X
X

2



            (20) 

Assuming that we need to consider only real values of , there 

are three cases to investigate; when   0,   0,   0. If   0, 

we can write   ² (  0). In this case the two differential 

equations and their solutions are: 

,2TT 
 

XX
2

2






    
,tt BeAeT    // xx DeCeX             (21) 

 But a solution of the form 
txx

tx AeDeCeTXtxu  )((),( //

)()(

 )tBe           (22) 

cannot describe the un-damped vibrations of a system because it 

is not periodic. Hence, although the product solution exists for  

 0, they have no significance in relation to the physical problem 

we are considering. If   0, the equations and their solutions 

are: 

,0T
   0X . 

BAT t 
  , 

DCX x 
 

But, again a solution of the form 

))((),( )()( BADCTXtxu tXtx 
cannot describe a periodic 

motion. Hence the alternative   0, must also be rejected. 

Finally, if   0, we can write ²(0). Then the component 

differential equations and their solutions are:  

TT 2 ,   
XX

2

2





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,sincos tBtAT  
 

)sincos( xDxCX









 
 In this case the solution becomes: 

)sincos)(sincos(),( )()( tBtAxDxCTXtxu tx 









                        
       (23) 

We thus find that the free ends are characterized by the 

requirement that 

E s x

u





│
0end ,                                (24) 

Since sE
 is a nonzero constant of the material of the nerve. For 

a nerve of uniform section such as the one considered in Fig. 2, 

it follows that at a free end (where x = 0),   

)sincos)(cossin( tBtAxDxC
x

u























 = 0,  

0)sincos(  tBtAD 




,  for all t.  (25) 

and from this we conclude that D  0. Similarly, imposing the 

right-hand end condition by substituting x  l and again equating 

the result to zero, we find; 

0)sincos(sin  tBtA
l

C 








, for all t.  

      (26) 

we cannot permit C = 0, since it leads only to a trivial solution 

Sin
0



l

   or   
,




n

l


 n = 0, 1, 2, 3, . ……….. 

 Thus, to have the end conditions of the problem fulfilled we 

must be restricted to one of the discrete set of values, 

l

n
n


 

,  
3,2,1,0n

, … 

 Again, we construct the product solution for each admissible 

value of , getting 

)sincos(cos),(
l

tn
B

l

tn
A

l

xn
txu nnn




           (27) 

  In an attempt to form an infinite series of these solutions, we 

get: 

 









1 1

)sincos(cos),(),(
n n

nnn
l

tn
B

l

tn
A

l

xn
txutxu



                   
                   (28) 

which satisfies the initial displacement condition 

)()0,( xfxu 
 and the initial velocity condition 

t

u





│
)(0, xgx 

 

 To satisfy the initial displacement condition, we must have 







1

cos)()0,(
n

n
l

xn
Axfxu



                 (29) 

which requires that the 
sAn '

 be the coefficients in the half-

range cosine expansion of the known function f(x) over the 

interval 
),0( l

 that is,  

A
dx

l

xn
xf

l

l

n


cos)(

2

0
                                (30) 

to satisfy the initial velocity condition, we must have; 

t

u





│






1

0, cos)()(
n

nx
l

xn
B

l

n
xg



,          (31) 

 which requires that the quantities 
nB

l

n

 be coefficients in the 

half-range cosine series for 
)(xg

 over the interval 
),0( l

 that 

l
B

l

n
n

2





l

dx
l

xn
xg

0
cos)(



, or


l

n dx
l

xn
xg

n
B

0
cos)(

2 

                                                            

                                 (32) 

Therefore for the S-numbers attached at both free ends of the 

nerves, we have; 

 



2

1
0

cos)(
2

2

k

l

kn dx
l

xkn
xg

kn
B



                             (33) 

where S is the number of the attached free  nerves at both ends. 

The case of the nerve with one end fixed and the other free can 

be disposed of quickly by taking the fixed end at 0x  and the 

free end at 1x , we have the two conditions: 

0),( tou
 and x

u





│
0, tl , for all t. 

Imposing the first of these upon the general product solution 

(23) gives 0)sincos(  tBtAc                     (34a) 

Hence it follows that 0c .Imposing the second then gives; 

0)sincos(cos  tBtA
l

D 








             (34b) 

 in which we conclude that; 

 2

)12(
,0cos









 


nll

  and l

n
n

2

)12( 





. 

The general solution of the problem, formed by adding together 

the product solutions corresponding to each n , is therefore  












1

)
2

)12(
sin

2

)12(
cos(

2

)12(
sin),(

n

nn
l

tn
B

l

tn
A

l

xn
txu



               
                  (35)  

To fit the initial displacement condition 
)()0,( xfxu 

,we 

must have; 









1

.
2

)12(
sin)(

n

n
l

xn
Axf



                       (36) 

This is not quite the usual half-range sine-expansion problem 

since the arguments of the various terms are not integral 

multiples of the fundamental argument l

x

.It is however, the 

half-range sine expansion covered by the formula for the 

coefficients which was shown to be; 

 





l

n
l

xn
xf

l
A

0 2

)12(
sin)(

2 

                  (37) 

Similarly, to satisfy the initial velocity condition, 

t

u





│
)(0, xgx 
, requires that 

 







l

n
l

xn
xg

n
B

0 2

)12(
sin)(

)12(

4
1



                          (38) 

We use equation (35) to evaluate nA
 and lnB

 for some special 

values of f(x) and g(x). Since it is a solution of (14) that satisfies 

the conditions (16) and (17). For the sake of simplicity we 

consider only the value when the initial velocity g(x) is 
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identically zero. Then the lnB
 are zero and equation (35) 

reduces to: 









1 2

)12(
cos

2

)12(
sin),(

n

n
l

tn

l

xn
Atxu



          (39)  

On application of trigonometric identities, equation (39) 

becomes: 

),( txu 










1

)}(
2

)12(
{)}(

2

)12(
{[

2

1

n

nn tx
l

n
SinAtx

l

n
SinA 






]                         (40)  

Since the movement of the impulse in the neurones is along the 

positive direction, equation (40) reduces to: 

),( txu 







1

)}(
2

)12(
{[

2

1

n

n tx
l

n
SinA 



]       (41) 

Taking the initial displacement f(x) to be unity from equation 

(37), with l = 1, we get: 

dx
l

xn

l
A

l

n 



0 2

)12(
sin

2 

 = )12(

4

n                            (42) 

Putting equation (37) into (41) and using equation (42), we get  

),( txu 







1

2 )}(
2

)12(
{

2

)12(
)

)12(

4
[(

2

1

n

tx
l

n
Sin

l

xn
Sin

n






]                               (43) 

Equation (43) is the general solution of the equation of 

motion for the neural communication. A computer program 

designed in visual basic has been used to illustrate the solution. 

Results And Discussion 
The following constants have been considered in computing 

the numerical results for the neural communication: 


  -   the velocity of fluid flow from one neurone to another 

neurone. 

l  -  the length of each neuron and  

n -  the  number of neurons that are involved in the 

communication. 

The value of 
),( txu

 is displayed for each value of n, 

starting from n=1 to, say M, depending on the number of 

neurons considered. We assume for simplicity, that 


=120 ms
-1

 

and l =1 m. 

By considering the range of values of x and T as depicted in 

Table 1, corresponding values of u are generated. The results 

can be clearly seen in a 3-dimensional graph of u against X ,T  

(Fig. 3) in which one observes a gradual folding with time along 

the y-axis. 

Three cases of the separation constant   were investigated 

and it was observed that when the separation constant  > 0 or  

= 0 the equation of motion cannot describe the un-damped 

vibrations of the system because it is not periodic and has no 

significance in relation to the physical problem under 

consideration. It is only when separation constant  < 0 that the 

equation describes the periodic motion. This observation is the 

reason why the separation gap between the neurons is not a wide 

gap. The  < 0 condition leads us to the general solution of the 

equation of motion. Computed results plotted as a three 

dimensional graph shows a form of sinusoidal movement. This 

sinusoidal wave is the transmission of nerve impulses from one 

neurone to the next. This explains why the transmission of nerve 

impulses is not a flow of electrons as in the case of electric 

current. 

 

Table 1: The Numerical Results of Data Plotted on the 

Graph 
T-Axis Values  4.857 3.571 2.286 

X-Axis Values 0.750 1.500 2.250 

U-Axis Values -52.750 -0.500 51.750 

 
Fig 3: A Three Dimensional Graph of U against X and T in 

z, x, y coordinates respectively. 

Conclusion 

     A second order partial differential equation occurring 

frequently in applied mathematics is the wave equation. A 

generalization of this equation inevitably arises in many 

mathematical analyses of phenomena involving the propagation 

of waves in continuous media, for example, the studies of 

acoustic waves, water waves, and such others are all based on 

this equation. Here, the wave differential equation has been 

applied to investigate and explain neural communication using 

the nervous system as a case study. On application of Bloch 

nuclear magnetic resonance theory, a model of linear one-

dimensional homogeneous second order partial differential 

equation is derived which represents a nerve set in a vibrational 

motion. Results from the solution of the differential equation 

show that the transmission of nerve impulses is not a flow of 

electrons, like in the case of electric current, but a wave of 

electrical activity travelling along the neurone. 

References 

1. Courant R., Hilbert D., (1962).Methods of Mathematical 

Physics, Vol II. Inter science (Wiley) New York.  

2. Hornak  J. P., (2011) .The Basics of NMR Center for Imaging 

Science, Rochester Institute of Technology, Rochester, NY 

14623-5604. Pp.60-77. 

3. Awojoyogbe O. B. (2003). A Mathematical Model of Bloch 

NMR Equations for Quantitative Analysis of Blood Flow in 

Blood Vessels with Changing Cross-section II. Physica A, 323c, 

534-550. 

4. Kreyszic, E. (1998). Advanced Engineering Mathematics. 

New York, John Willey and sons Inc. (6
th

 Edition). Pp. 647-649. 

5. Awojoyogbe O. B. (2002).A Mathematical model of Bloch 

NMR equations for quantitative analysis of blood flow in blood 

vessels of changing cross-section I. Physical A,Vol:303, No. 1-

2,163-175. 20 

6. Awojoyogbe, O. B. (2004). Analytical Solution of the Time 

Dependent Bloch NMR Equations: A Translational Mechanical 

Approach. Physica A, 339, pp 437-460 

7. Ross and Wilson (2003). Anatomy and Physiology in health 

and illness. London, Churchill Livingstone. (9
th

 Edition). Pp. 

28,141-145. 

 


