Cubic graphs with equal complementary tree domination number and chromatic number

S. Muthammai ${ }^{1}$ and P. Vidhya ${ }^{2}$
${ }^{1}$ Government Arts College for Women (Autonomous), Pudukkottai - 622 001, India.
${ }^{2}$ S.D.N.B.Vaishnav College for Women (Autonomous), Chennai - 600 044, India.

ARTICLE INFO

Article history:

Received: 16 January 2013;
Received in revised form:
5 March 2013;
Accepted: 5 March 2013;

Keywords

Dominating set,
Complementary tree dominating set and Chromatic Number.

Abstract

A set D of vertices in a graph $G=(V, E)$ is called a dominating set of G, if every vertex in V-D is adjacent to some vertex in D . The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality of a dominating set in G . A dominating set D of a graph G is a complementary tree dominating set, if the induced subgraph <V-D> is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{\mathrm{ctd}}(\mathrm{G})$.The chromatic number of G is the minimum number of colours assigned to the vertices of G such that no two adjacent vertices have the same colour and is denoted by $\chi(\mathrm{G})$.In this paper we investigate cubic graphs for which $\gamma_{\text {ctd }}(\mathrm{G})=$ χ (G).

© 2013 Elixir All rights reserved.

1. Introduction

Graphs considered here are nontrivial, simple, finite, connected and undirected. Let G be a graph with vertex set $V(G)$ and edge set $\mathrm{E}(\mathrm{G})$. A graph with p vertices and q edges is denoted by $G(p, q)$. In general, we use <X> to denote the subgraph induced by the set X of vertices. The concept of domination was first studied by Ore [4]. A set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a dominating set of G, if every vertex in $V(G)-D$ is adjacent to some vertex in D and D is said to be a minimal dominating set if $D-\{u\}$ is not a dominating set for any $u \in D$. The domination number $\gamma_{(\mathrm{G})}$ of G is the minimum cardinality of a dominating set.

The concept of complementary tree domination was introduced by Muthammai, Bhanumathi and Vidhya[3]. A dominating set $\mathrm{D} \subseteq \mathrm{V}$ is called a complementary tree dominating set (ctd-set), if the sub graph $<\mathrm{V}-\mathrm{D}>$ induced by $\mathrm{V}-\mathrm{D}$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{\text {ctd }}(\mathrm{G})$. We call a set of vertices a $\gamma_{\text {-set, if it is a dominating set with cardinality }} \gamma_{(\mathrm{G})}$. Similarly a $\gamma_{\text {ctd }}$-set is defined. A colouring of a graph is an assignment of colours to its vertices so that no two adjacent vertices have the same colour. An n-colouring of a graph G uses n colours. The chromatic Number $\chi_{(\mathrm{G})}$ is defined to be the minimum n , for which G has an n -colouring.

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. There are several papers in which graphs with equal parameters are investigated. In[5], Paulraj Joseph investigated cubic graphs whose domination number equals chromatic number. Motivated by the above, we now took the problem of characterizing the graphs for which complementary
tree domination number equals to chromatic number. For terminology and notations not specifically defined here we refer reader to [1]. For more details about domination number and its related parameters, we refer to [2].

In this paper, we investigate cubic graphs whose complementary tree domination number equals chromatic number.

2. Prior Results

Theorem 2.1. [1] If G is neither a complete graph nor an odd cycle, then $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})$
Theorem 2.2. [1] For any connected graph G, $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$.
Theorem 2.3. [2]. If G is a graph of order p , with maximum
degree Δ, then

$$
\gamma(\mathrm{G}) \leq\left\lceil\frac{\mathrm{p}}{\Delta+1}\right\rceil
$$

Theorem 2.4.[5].
For a connected graph $\mathrm{G}, \gamma(\mathrm{G})=\chi_{(\mathrm{G})}=2$ if and only if
(i) G is bipartite with bipartition (X, Y) and
(ii) $|\mathrm{X}|=2$ (or)
there exist x in X, y in Y such that $N(x)=Y$ and $N(y)=X$ (or)
there exist x in X and y in Y such that $N(x)=Y-\{y\}$ and $N(y)$ $=\mathrm{X}-\{\mathrm{x}\}$.

3. Main Results

In the following we find the cubic graphs with equal complementary tree domination number and chromatic number. In analogous to Theorem 2.4., we state the following theorem.

Theorem 3.1.

For a connected graph G, with at least 3 vertices, $\gamma_{\text {ctd }}(G)$ $=\chi_{(G)}=2$ if and only if G is bipartite with bipartition (X,Y) such that there exist $x \in X, y \in Y$ with $V(G)-\{x, y\}$ is a tree and either $N(x)=Y$ and $N(y)=X$ (or) $N(x)=Y-\{y\}$ and $N(y)$ $=X-\{x\}$.

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected cubic graph of order p with $\gamma_{\mathrm{ctd}}(\mathrm{G})=\chi_{(\mathrm{G})}$.

But $\chi_{(\mathrm{G}) \leq \Delta(\mathrm{G}) \text { implies }} \chi_{(\mathrm{G}) \leq 3 . \text { Clearly }} \chi_{(\mathrm{G}) \neq 1}$. Theorem 3.1., characterizes graphs for with $\gamma_{\text {ctd }}(\mathrm{G})=\chi_{(\mathrm{G})}=$ 2. We consider the cubic graphs for which $\gamma_{\text {ctd }}(\mathrm{G})=\chi_{(\mathrm{G})}=3$.

But, $\quad \gamma_{\text {ctd }}(G) \geq\left\lfloor\frac{\mathrm{p}}{\Delta+1}\right\rfloor=\left\lfloor\frac{\mathrm{p}}{4}\right\rfloor$. Since $\gamma_{\text {ctd }}(G)=3,6<\mathrm{p} \leq$ 15 and $\mathrm{p} \neq 14$. Also, p is even, since G is cubic. Therefore, $\mathrm{p}=$ 8,10 (or) 12 .

Cubic Graphs of Order 8

Theorem 3.2.

Let G be a connected cubic graph on 8 vertices. Then $\gamma_{c t d}(\mathrm{G})=\chi_{(\mathrm{G})=3 \text {, if and only if } \mathrm{G} \text { is isomorphic to any of the }}$ six graphs $G_{1}, G_{2}, G_{3}, G_{4}$ and G_{5} given in Figure 1.

Figure 1

Proof:

Let G be a connected cubic graph on 8 vertices such that $\gamma_{\text {ctd }}(G)=\chi_{(G)}=3$.

Let $\mathrm{D}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ be a minimum ctd- set of G and let $\mathrm{V}-\mathrm{D}$ $=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. It is clear that $\langle D\rangle \nsubseteq K_{3} .{ }_{\text {If }}\langle D\rangle \cong K_{3}$, then there exist atleast two vertices in $\mathrm{V}-\mathrm{D}$ not adjacent to any of the vertices in D. Since $\langle V-D\rangle$ is a tree, either $\langle V-D\rangle$ is a path on 5 vertices or $\langle\mathrm{V}-\mathrm{D}\rangle \cong \mathrm{T}$, where T is the tree obtained from the path on four vertices by attaching a pendant edge at any one of the supports. Second case is not possible, since there is a vertex of degree 3 in $\langle\mathrm{V}-\mathrm{D}\rangle$ and it cannot be adjacent to any of the vertices in D . Therefore, $\langle\mathrm{V}-\mathrm{D}\rangle$ is a path on 5 vertices. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ be the vertices of $\langle\mathrm{V}-\mathrm{D}\rangle$ and let
$\mathrm{E}(\langle\mathrm{V}-\mathrm{D}\rangle)=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right),\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right),\left(\mathrm{x}_{4}, \mathrm{x}_{5}\right)\right\}$
Case 1. $\langle\mathrm{D}\rangle \cong \overline{\mathrm{K}}_{3}$
Let u be adjacent to x_{1}, x_{2}, x_{3}. Then v is adjacent to x_{1}, x_{4}, x_{5} and w is adjacent to x_{5} only. Hence, $\operatorname{deg}_{G}(w)=1$, which is not possible. Similarly, if u is adjacent to x_{2}, x_{3}, x_{4} (or) x_{1}, x_{2}, x_{5}, then at least one of the vertices v and w has degree less than 3 in
G. Therefore,
$\langle\mathrm{D}\rangle \nsubseteq \overline{\mathrm{K}}_{3}$
Case 2. $\langle\mathrm{D}\rangle \cong \mathrm{K}_{2} \cup \mathrm{~K}_{1}$
Let the vertices of K_{2} be u, v and let w be the vertex of K_{1}.
Subcase(a). u is adjacent to x_{1}, x_{2}.

Then v (or) w cannot be adjacent to x_{2}. If v is adjacent to $\mathrm{x}_{1}, \mathrm{x}_{3}$; $\mathrm{x}_{1}, \mathrm{x}_{4}$ (or) $\mathrm{x}_{3}, \mathrm{x}_{4}$, then degree of w in G will be 2 , which is not possible.
Therefore v is adjacent $x_{1}, x_{5} ; x_{3}, x_{5}$ (or) x_{4}, x_{5} and w is adjacent to $x_{3}, x_{4}, x_{5} ; x_{1}, x_{4}, x_{5}$ (or) x_{1}, x_{3}, x_{5} respectively. Hence, G is isomorphic one of the graphs G_{1}, G_{2} and G_{3}.
Sub case (b). Let u be adjacent to $x_{1} x_{3}$.
Then v or w cannot be adjacent to x_{3}. As in Subcase(a), v is not adjacent to $\mathrm{x}_{1}, \mathrm{x}_{2} ; \mathrm{x}_{1}, \mathrm{x}_{4}$ and $\mathrm{x}_{2}, \mathrm{x}_{4}$. Therefore, v is adjacent to $\mathrm{x}_{1}, \mathrm{x}_{5} ; \mathrm{x}_{2}, \mathrm{x}_{5}$ (or) $\mathrm{x}_{4}, \mathrm{x}_{5}$. Correspondingly, w is adjacent to $\mathrm{x}_{2}, \mathrm{x}_{4}$, $\mathrm{x}_{5} ; \mathrm{x}_{1}, \mathrm{x}_{4}, \mathrm{x}_{5}$; or $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{5}$ respectively. Then G is isomorphic to one of the graphs G_{2} and G_{4}.
Subcase (c). u is adjacent to x_{1}, x_{4}.
Then v or w cannot be adjacent to x_{4}. Since G is a cubic graph, v is not adjacent to $\mathrm{x}_{1}, \mathrm{x}_{2} ; \mathrm{x}_{1}, \mathrm{x}_{4}$ and $\mathrm{x}_{2}, \mathrm{x}_{3}$. Therefore, v is adjacent to $x_{1}, x_{5} ; x_{2}, x_{5}$ and x_{3}, x_{5}. Correspondingly, w is adjacent to $\mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{5} ; \mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{5}$ (or) $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{5}$ respectively. Then G is isomorphic to one of the graphs G_{3}, G_{5}, and G_{4}.
Subcase (d). u is adjacent to x_{1}, x_{5}.
Then v can be adjacent to any two vertices of $\langle\mathrm{V}-\mathrm{D}\rangle \cong \mathrm{P}_{5}$, a path on five vertices.
The following cases arise.

$\mathbf{N}(\mathbf{v})-\{\mathbf{u}\}$	$\mathbf{N}(\mathbf{w})$	\mathbf{G} is isomorphic to
x_{1}, x_{2}	x_{3}, x_{4}, x_{5}	G_{1}
x_{1}, x_{3}	x_{2}, x_{4}, x_{5}	G_{2}
x_{1}, x_{4}	x_{2}, x_{3}, x_{5}	G_{3}
x_{1}, x_{5}	x_{2}, x_{3}, x_{4}	G_{1}
x_{2}, x_{3}	x_{1}, x_{4}, x_{5}	G_{2}
x_{2}, x_{4}	x_{1}, x_{3}, x_{5}	G_{6}
x_{2}, x_{5}	x_{1}, x_{3}, x_{4}	G_{3}
x_{3}, x_{4}	x_{1}, x_{2}, x_{5}	G_{2}
x_{3}, x_{5}	x_{1}, x_{2}, x_{4}	G_{2}
x_{4}, x_{5}	x_{1}, x_{2}, x_{3}	G_{1}

For the graphs $G_{i}, \quad i=1,2,3,4,5, \chi_{\left(G_{i}\right)=3}$ and for the graph $\mathrm{G}_{6}, \chi_{\left(\mathrm{G}_{6}\right)=2}$
Therefore, $\gamma_{\text {ctd }}(\mathrm{G})=\chi_{(\mathrm{G})=3}$ if and only if $\mathrm{G} \cong \mathrm{G}_{\mathrm{i}}, \quad \mathrm{i}=1,2$, 3, 4, 5 .
Conversely if $\mathrm{G} \cong \mathrm{G}_{\mathrm{i}}, \mathrm{i}=1,2,3,4,5$, then $\gamma_{\mathrm{ctd}}(\mathrm{G})=\chi_{(\mathrm{G})}=3$.

Cubic Graphs of Order 10

Theorem 3.3.

Let G be a connected cubic graph of order 10. Then $\gamma_{\text {ctd }}(\mathrm{G})$ $=\chi_{(\mathrm{G})}=3$ if and only if G is isomorphic to one of the seventeen graph $\mathrm{G}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, 17$ given in Figure 2.

Proof:

Let D be a $\gamma_{\text {ctd }}$-set of G such that $|\mathrm{D}|=3$. Then $|\mathrm{V}-\mathrm{D}|=7$ and $\langle\mathrm{V}-\mathrm{D}\rangle$ is a tree.
Let $\mathrm{D}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ and $\mathrm{V}-\mathrm{D}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}, \mathrm{x}_{7}\right\}$
Since the graph G is cubic, $\langle V-D\rangle$ must be a path P_{7} on 7 vertices. Let $\mathrm{x}_{1}, \mathrm{x}_{7}$ be the pendant vertices of P_{7}. Clearly, $\langle\mathrm{D}\rangle \not \equiv$ K_{3} and P_{3}. Hence, $\langle D\rangle \cong K_{2} \cup K_{1}$ (or) \bar{K}_{3}
If $\langle\mathrm{D}\rangle \cong \mathrm{K}_{2} \cup \mathrm{~K}_{1}$, then there exist atleast two vertices in G of degree atmost two and hence $\langle\mathrm{D}\rangle \not \equiv \mathrm{K}_{2} \cup \mathrm{~K}_{1}$. Therefore, $\langle\mathrm{D}\rangle \cong$ $\overline{\mathrm{K}}_{3}$
Then the following two cases arise
(i) Two vertices of D are adjacent to the both pendant vertices x_{1} and x_{7}.
(ii) One vertex of D is adjacent to both the pendant vertices x_{1}, x_{7} and each of the remaining two vertices of D are adjacent to exactly one pendant vertex (distinct)

Case (1): u and v are adjacent to both x_{1} and x_{7}.
Then w is adjacent to none of x_{1} and x_{7}.
Let u be adjacent x_{1}, x_{7}, x_{2}. Then v is adjacent to $x_{1}, x_{7}, x_{3} ; x_{1}$, $\mathrm{x}_{7}, \mathrm{x}_{4} ; \mathrm{x}_{1}, \mathrm{x}_{7}, \mathrm{x}_{5}$ (or) $\mathrm{x}_{1}, \mathrm{x}_{7}, \mathrm{x}_{6}$.
Correspondingly, w is adjacent to $\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6} ; \mathrm{x}_{3}, \mathrm{x}_{5}, \mathrm{x}_{6} ; \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{6}$ (or) x_{3}, x_{4}, x_{5}. Then G is isomorphic to one of the graphs G_{1}, G_{2}, G_{3} and G_{4}.
Case (2): u is adjacent to both x_{1} and $x_{7} . v$ is adjacent to x_{1} and w is adjacent to x_{7}.
Subcase (a): u is adjacent to x_{1}, x_{2}, x_{7}.
Then v is adjacent to $x_{1}, x_{3}, x_{4} ; x_{1}, x_{3}, x_{5} ; x_{1}, x_{3}, x_{6} ; x_{1}, x_{4}, x_{5} ; x_{1}$, x_{4}, x_{6} (or) x_{1}, x_{5}, x_{6}. Correspondingly, w is adjacent to x_{5}, x_{6}, x_{7}; $\mathrm{x}_{4}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{5}, \mathrm{x}_{7}$ (or) $\mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{7}$. Then G is isomorphic to one of the graphs $\mathrm{G}_{5}, \mathrm{G}_{3}, \mathrm{G}_{6}, \mathrm{G}_{7}, \mathrm{G}_{8}$ and G_{7}.
Subcase $(\mathbf{b}): u$ is adjacent to x_{1}, x_{3}, x_{7}.
Then v is adjacent to $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{4} ; \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{5} ; \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{6} ; \mathrm{x}_{1}, \mathrm{x}_{4}, \mathrm{x}_{5} ; \mathrm{x}_{1}, \mathrm{x}_{4}, \mathrm{x}_{6}$ or $\mathrm{x}_{1}, \mathrm{x}_{5}, \mathrm{x}_{6}$. Correspondingly, w is adjacent to $\mathrm{x}_{5}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{4}, \mathrm{x}_{6}$, $\mathrm{x}_{7} ; \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{7} ; \mathrm{x}_{2}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{2}, \mathrm{x}_{5}, \mathrm{x}_{7}$ (or) $\mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{7}$. Then G is isomorphic to one of the graphs $G_{1}, G_{6}, G_{9}, G_{10}$ and G_{11}.
Subcase (c): u is adjacent to x_{1}, x_{4}, x_{7}.
Then v is adjacent to $x_{1}, x_{2}, x_{3} ; x_{1}, x_{2}, x_{5} ; x_{1}, x_{2}, x_{6} ; x_{1}, x_{3}, x_{5} ; x_{1}$, $\mathrm{x}_{3}, \mathrm{x}_{6}$ (or) $\mathrm{x}_{1}, \mathrm{x}_{5}, \mathrm{x}_{6}$.
Correspondingly, w is adjacent to $\mathrm{x}_{5}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{5}, \mathrm{x}_{7}$; $x_{2}, x_{6}, x_{7} ; x_{2}, x_{5}, x_{7}$ (or) x_{2}, x_{3}, x_{7}. Then G is isomorphic to one of the graphs $\mathrm{G}_{12}, \mathrm{G}_{13}, \mathrm{G}_{11}, \mathrm{G}_{14}, \mathrm{G}_{15}$ and G_{13}.
Subcase (d): u is adjacent to x_{1}, x_{5}, x_{7}.
Then v is adjacent to $x_{1}, x_{2}, x_{3} ; x_{1}, x_{2}, x_{4} ; x_{1}, x_{2}, x_{6} ; x_{1}, x_{3}, x_{4} ; x_{1}$, $\mathrm{x}_{3}, \mathrm{x}_{6}$ (or) $\mathrm{x}_{1}, \mathrm{x}_{4}, \mathrm{x}_{6}$.
Correspondingly, w is adjacent to $\mathrm{x}_{4}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{6}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{7}$; $x_{2}, x_{6}, x_{7} ; x_{2}, x_{4}, x_{7}$ (or) x_{2}, x_{3}, x_{7}. Then G is isomorphic to one of the graphs $\mathrm{G}_{1}, \mathrm{G}_{6}, \mathrm{G}_{9}, \mathrm{G}_{16}$ and G_{11}.
Subcase (e): u is adjacent to x_{1}, x_{6}, x_{7}.
Then v is adjacent to $x_{1}, x_{2}, x_{3} ; x_{1}, x_{2}, x_{4} ; x_{1}, x_{2}, x_{5} ; x_{1}, x_{3}, x_{4} ; x_{1}$, $\mathrm{x}_{3}, \mathrm{x}_{5}$ (or) $\mathrm{x}_{1}, \mathrm{x}_{4}, \mathrm{x}_{5}$.
Correspondingly, w is adjacent to $\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{5}, \mathrm{x}_{7} ; \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{7}$; $\mathrm{x}_{2}, \mathrm{x}_{5}, \mathrm{x}_{7} ; \mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{7}($ or $) \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{7}$. Then G is isomorphic to one of the graphs $\mathrm{G}_{5}, \mathrm{G}_{3}, \mathrm{G}_{7}, \mathrm{G}_{17}, \mathrm{G}_{8}$ and G_{7}.
From the above cases, $\mathrm{G} \cong \mathrm{G}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, 17$ and for these graphs $\chi_{\left(\mathrm{G}_{\mathrm{i}}\right)=3}$
Conversely, for the graphs $\mathrm{G}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, 17, \gamma_{\mathrm{ctd}}(\mathrm{G})=\chi_{(\mathrm{G})}$ $=3$.

G_{7}

G9

J_{13}

G_{15}

Figure 2

Cubic Graphs of Order 12

Theorem 3.4.

There exists no cubic graphs of order 12 such that $\gamma_{\text {ctd }}(\mathrm{G})$ $=\chi_{(\mathrm{G})=3}$.

Proof:

Let G be a connected cubic graph of order 12, such that $\gamma_{\mathrm{ctd}}(\mathrm{G})=\chi_{(\mathrm{G})}=3$.

Let D be a $\gamma_{\text {ctd }}$ - set of G . Then $|\mathrm{D}|=3$ and $\langle\mathrm{V}-\mathrm{D}\rangle$ is a tree. Since each vertex in $V-D$ is adjacent to atleast one vertex in D , each vertex in $\mathrm{V}-\mathrm{D}$ has degree either one or two in $\langle\mathrm{V}-\mathrm{D}\rangle$. That implies $\langle\mathrm{V}-\mathrm{D}\rangle$ is a path on nine vertices. Also, G has atleast one vertex of degree less than or equal to two, which is a contradiction, since G is a cubic graph. Therefore, there exists no cubic graphs of order 12 having $\gamma_{\text {ctd }}(\mathrm{G})=\chi_{(\mathrm{G})}$ $=3$.

Thus, we have found the cubic graphs of order 8 and 10 for which $\gamma_{\text {ctd }}(\mathrm{G})=\chi_{(\mathrm{G})}=3$.

References

[1] Harary F. Graph Theory, Addison Wesley Reading Mass, 1972.
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
[3] S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary Tree Domination Number of a Graph, Int. Mathematical Forum, Vol. 6, No. 26, p. 1273-1282, 2011.
[4] O. Ore, Theory of Graphs, Amer. Math Soc. Colloq. Publ., 38, Providence, 1962.
[5] J. Paulraj Joseph, On Graphs whose chromatic number equals domination parameters, Int. J. of Management and Systems, Vol.17, No.1, p. 69-76, 2001.

