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1. Introduction  

Graphs considered here are nontrivial, simple, finite, 

connected and undirected. Let G be a graph with vertex set V(G) 

and edge set E(G). A graph with p vertices and q edges is 

denoted by G(p, q). In general, we use <X> to denote the 

subgraph induced by the set X of vertices. The concept of 

domination was first studied by Ore [4]. A set DV(G) is said to 

be a dominating set of G, if every vertex in V(G) −D is adjacent 

to some vertex in D and D is said to be a minimal dominating 

set if D-{u} is not a dominating set for any uD. The 

domination number 
γ

(G) of G is the minimum cardinality of a 

dominating set.  

The concept of complementary tree domination was 

introduced by Muthammai, Bhanumathi and Vidhya[3]. A 

dominating set DV is called a complementary tree dominating 

set (ctd-set), if the sub graph < V−D > induced by V − D is a 

tree. The minimum cardinality of a complementary tree 

dominating set is called the complementary tree domination 

number of G and is denoted by 
γ

ctd(G). We call a set of vertices 

a 
γ

-set, if it is a dominating set with cardinality 
γ

(G). 

Similarly a 
γ

ctd-set is defined. A colouring of a graph is an 

assignment of colours to its vertices so that no two adjacent 

vertices have the same colour. An n-colouring of a graph G uses 

n colours. The chromatic Number 
χ

(G) is defined to be the 

minimum n, for which G has an n-colouring.   

Several authors have studied the problem of obtaining an 

upper bound for the sum of a domination parameter and a graph 

theoretic parameter and characterized the corresponding 

extremal graphs. There are several papers in which graphs with 

equal parameters are investigated. In[5], Paulraj Joseph 

investigated cubic graphs whose domination number equals 

chromatic number. Motivated by the above, we now took the 

problem of characterizing the graphs for which complementary 

tree domination number equals to chromatic number. For 

terminology and notations not specifically defined here we refer 

reader to [1]. For more details about domination number and its 

related parameters, we refer to [2]. 

In this paper, we investigate cubic graphs whose 

complementary tree domination number equals chromatic 

number. 

2. Prior Results 

Theorem 2.1. [1] If G is neither a complete graph nor an odd 

cycle, then
χ(G)  Δ(G)

 

Theorem 2.2. [1] For any connected graph G, 

χ(G) Δ(G) + 1.
 

Theorem 2.3. [2].  If G is a graph of order p, with maximum 

degree  , then 

p
γ(G) 

Δ+1

 
  
   

Theorem 2.4.[5]. 

For a connected graph G, (G) = 
χ

(G) = 2 if and only if 

(i) G is bipartite with bipartition (X, Y) and 

(ii) |X| = 2 (or) 

there exist x in X, y in Y such that N(x) = Y and N(y) = X (or)  

there exist x in X and y in Y such that N(x) = Y  {y} and N(y) 

= X {x}. 

3. Main Results 

In the following we find the cubic graphs with equal 

complementary tree domination number and chromatic number. 

In analogous to Theorem 2.4., we state the following theorem. 

Theorem 3.1. 

For a connected graph G, with at least 3 vertices, ctd(G) 

=
χ

(G) = 2 if and only if G is bipartite with bipartition (X, Y) 

such that there exist x  X, y  Y with V(G)  {x, y} is a tree 

and either N(x) = Y and N(y) = X (or) N(x) = Y  {y} and N(y) 

= X  {x}. 
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Let G = (V, E) be a connected cubic graph of order p with 

ctd(G) =
χ

(G).  

But 
χ

(G)  (G) implies 
χ

(G)  3. Clearly 
χ

(G)  1.  

Theorem 3.1., characterizes graphs for with 
γ

ctd(G) =
χ

(G) = 

2. We consider the cubic graphs for which ctd(G) =
χ

(G) = 3.  

But, 
ctd

p p
γ (G)

Δ 1 4

   
        . Since 

γ
ctd(G) = 3, 6 < p  

15 and p  14. Also, p is even, since G is cubic. Therefore, p = 

8, 10 (or) 12. 

Cubic Graphs of Order 8 

Theorem 3.2. 

Let G be a connected cubic graph on 8 vertices. Then 
γ

ctd(G) =
χ

(G) = 3, if and only if  G is isomorphic to any of the 

six graphs G1, G2, G3, G4 and G5 given in Figure 1. 

 
Figure 1 

Proof: 

Let G be a connected cubic graph on 8 vertices such that 
γ

ctd(G) =
χ

(G) = 3.  

Let D = {u, v, w} be a minimum ctd- set of G and let V  D 

= {x1, x2, x3, x4, x5}.  It is clear that 
.KD 3
 If 3D K  

, 

then there exist atleast two vertices in V  D not adjacent to any 

of the vertices in D. Since V  D is a tree, either V  D is a 

path on 5 vertices or 
V D T   

, where T is the tree 

obtained from the path on four vertices by attaching a pendant 

edge at any one of the supports. Second case is not possible, 

since there is a vertex of degree 3 in V  D and it cannot be 

adjacent to any of the vertices in D.  Therefore, V  D is a path 

on 5 vertices.  Let x1, x2, x3, x4, x5 be the vertices of V  D and 

let  

E(V  D) = {(x1, x2), (x2, x3), (x3, x4), (x4, x5)} 

Case 1. 3KD 
 

Let u be adjacent to x1, x2, x3. Then v is adjacent to x1, x4, x5 and 

w is adjacent to x5 only.  Hence, Gdeg (w) 1 , which is not 

possible. Similarly, if u is adjacent to x2, x3, x4 (or) x1, x2, x5, 

then at least one of the vertices v and w has degree less than 3 in 

G. Therefore, 3KD 
. 

Case 2. 12 KKD   
Let the vertices of K2 be u, v and let w be the vertex of K1. 

Subcase(a). u is adjacent to x1, x2. 

Then v (or) w cannot be adjacent to x2. If v is adjacent to x1, x3; 

x1, x4 (or) x3, x4, then degree of w in G will be 2, which is not 

possible. 

Therefore v is adjacent x1, x5; x3, x5 (or) x4, x5 and w is adjacent 

to x3, x4, x5; x1, x4, x5 (or) x1, x3, x5 respectively. Hence, G is 

isomorphic one of the graphs G1, G2 and G3. 

Sub case (b). Let u be adjacent to x1 x3. 

Then v or w cannot be adjacent to x3.  As in Subcase(a), v is not 

adjacent to x1, x2; x1, x4 and x2, x4.  Therefore, v is adjacent to 

x1, x5; x2, x5 (or) x4, x5. Correspondingly, w is adjacent to x2, x4, 

x5; x1, x4, x5; or x1, x2, x5 respectively. Then G is isomorphic to 

one of the graphs G2 and G4. 

Subcase (c). u is adjacent to x1, x4.  

Then v or w cannot be adjacent to x4.  Since G is a cubic graph, 

v is not adjacent to x1, x2; x1, x4 and x2, x3. Therefore, v is 

adjacent to x1, x5; x2, x5 and x3, x5. Correspondingly, w is 

adjacent to x2, x3, x5; x1, x3, x5 (or) x1, x2, x5 respectively. Then 

G is isomorphic to one of the graphs G3, G5, and G4. 

Subcase (d).  u is  adjacent to x1, x5.  

Then v can be adjacent to any two vertices of  <V-D>  P5, a 

path on five vertices.  

The following cases arise. 

N(v) – {u} N(w) G is isomorphic to 

x1, x2 x3, x4, x5 G1 

x1, x3 x2, x4, x5 G2 

x1, x4 x2, x3, x5 G3 

x1, x5 x2, x3, x4 G1 

x2, x3 x1, x4, x5 G2 

x2, x4 x1, x3, x5 G6 

x2, x5 x1, x3, x4 G3 

x3, x4 x1, x2, x5 G2 

x3, x5 x1, x2, x4 G2 

x4 ,x5 x1, x2, x3 G1 

For the graphs Gi,   i = 1, 2, 3, 4, 5, 
χ

(Gi) = 3 and for the graph 

G6, 
χ

(G6) = 2 

Therefore, 
γ

ctd(G) = 
χ

(G) = 3 if and only if  G  Gi,   i = 1, 2, 

3, 4, 5. 

Conversely if G  Gi, i = 1, 2, 3, 4, 5, then 
γ

ctd(G) =
χ

(G) = 3. 

Cubic Graphs of Order 10 

Theorem 3.3. 

Let G be a connected cubic graph of order 10. Then 
γ

ctd(G) 

= 
χ

(G) = 3 if and only if  G is isomorphic to one of the 

seventeen graph Gi, i = 1, 2, ..., 17 given in Figure 2. 

Proof: 

Let D be a 
γ

ctd-set of G such that |D| = 3. Then |V  D| = 7 

and V  D is a tree. 

Let D = {u, v, w} and V  D = {x1, x2, x3, x4, x5, x6, x7} 

Since the graph G is cubic, V  D must be a path P7 on 7 

vertices. Let x1, x7 be the pendant vertices of P7. Clearly, D   

K3 and P3. Hence, D  K2  K1 (or) 3K  

If D  K2  K1, then there exist atleast two vertices in G of 

degree atmost two and hence D   K2  K1. Therefore, D  

3K  
Then the following two cases arise 

(i) Two vertices of D are adjacent to the both pendant vertices 

x1 and x7. 

(ii) One vertex of D is adjacent to both the pendant vertices x1, 

x7 and each of the remaining two vertices of D are adjacent to 

exactly one pendant vertex (distinct) 
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Case (1): u and v are adjacent to both x1 and x7.  

Then w is adjacent to none of x1 and x7. 

Let u be adjacent x1, x7, x2.  Then v is adjacent to x1, x7, x3 ; x1, 

x7, x4 ; x1, x7, x5 (or) x1, x7, x6. 

Correspondingly, w is adjacent to x4, x5, x6; x3, x5, x6; x3, x4, x6 

(or) x3, x4, x5.  Then G is isomorphic to one of the graphs G1, G2, 

G3 and G4. 

Case (2): u is adjacent to both x1 and x7.  v is adjacent to x1 and 

w is adjacent to x7. 

Subcase (a): u is adjacent to x1, x2, x7.   

Then v is adjacent to x1, x3, x4; x1, x3, x5; x1, x3, x6; x1, x4, x5; x1, 

x4, x6 (or) x1, x5, x6. Correspondingly, w is adjacent to x5, x6, x7; 

x4, x6, x7; x4, x5, x7; x3, x6, x7; x3, x5, x7 (or) x3, x4, x7. Then G is 

isomorphic to one of the graphs G5, G3, G6, G7, G8 and G7. 

Subcase(b):  u is adjacent to x1,x3,x7.  

Then v is adjacent to x1,x2,x4 ; x1,x2,x5; x1,x2,x6; x1,x4,x5; x1,x4,x6 

or  x1,x5,x6. Correspondingly, w is adjacent to x5, x6, x7; x4, x6, 

x7; x4, x5, x7; x2, x6, x7; x2, x5, x7 (or) x2, x4, x7. Then G is 

isomorphic to one of the graphs G1, G6, G9, G10 and G11. 

Subcase (c): u is adjacent to x1, x4, x7.   

Then v is adjacent to x1, x2, x3; x1, x2, x5; x1, x2, x6; x1, x3, x5; x1, 

x3, x6 (or) x1, x5, x6. 

Correspondingly, w is adjacent to x5, x6, x7; x3, x6, x7; x3, x5, x7; 

x2, x6, x7; x2, x5, x7 (or) x2, x3, x7. Then G is isomorphic to one of 

the graphs G12, G13, G11, G14, G15 and G13. 

Subcase (d): u is adjacent to x1, x5, x7.   

Then v is adjacent to x1, x2, x3; x1, x2, x4; x1, x2, x6; x1, x3, x4; x1, 

x3, x6 (or) x1, x4, x6. 

Correspondingly, w is adjacent to x4, x6, x7; x3, x6, x7; x3, x4, x7; 

x2, x6, x7; x2, x4, x7 (or) x2, x3, x7.Then G is isomorphic to one of 

the graphs G1, G6, G9, G16 and G11. 

Subcase (e): u is adjacent to x1, x6, x7.   

Then v is adjacent to x1, x2, x3; x1, x2, x4; x1, x2, x5; x1, x3, x4; x1, 

x3, x5 (or) x1, x4, x5. 

Correspondingly, w is adjacent to x4, x5, x7; x3, x5, x7; x3, x4, x7; 

x2, x5, x7; x2, x4, x7 (or)x2, x3, x7. Then G is isomorphic to one of 

the graphs G5, G3, G7, G17, G8 and G7.  

From the above cases, G  Gi,  i = 1, 2, ..., 17 and for these 

graphs 
χ

(Gi) = 3 

Conversely, for the graphs Gi,  i = 1, 2, ..., 17, 
γ

ctd(G) = 
χ

(G) 

= 3. 

 

 

 
Figure 2
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Cubic Graphs of Order 12 

Theorem 3.4. 

There exists no cubic graphs of order 12 such that 
γ

ctd(G) 

= 
χ

(G) = 3. 

Proof: 

Let G be a connected cubic graph of order 12, such that 
γ

ctd(G) = 
χ

(G) = 3. 

Let D be a 
γ

ctd - set of G.  Then |D| = 3 and V  D is a 

tree.  Since each vertex in V  D is adjacent to atleast one vertex 

in D, each vertex in V  D has degree either one or two in 

<VD>.  That implies V  D is a path on nine vertices. Also, 

G has atleast one vertex of degree less than or equal to two, 

which is a contradiction, since G is a cubic graph.  Therefore, 

there exists no cubic graphs of order 12 having 
γ

ctd(G) = 
χ

(G) 

= 3. 

Thus, we have found the cubic graphs of order 8 and 10 for 

which 
γ

ctd(G) = 
χ

(G) = 3. 
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