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Introduction 

 The newly emerging trends in engineering, sciences and 

technology demand the use of higher order derivatives of some 

functions. Importantly, in the implementation of some numerical 

integrators [1, 3, 4], the use of higher order derivatives of the 

interpolant involved is required. 

Let           (1)  

Then the first derivative of  using product rule is given as; 

 

Such that (2) implies; 

 

 

If one replaces 

 

with their Leibnitz’s theorem expressions, one will obtain;  

 

 

The second derivative of  is obtained from (2) as; 

 

 

 

 

By using the Leibnitz’s theorem expression for the derivatives in 

(5), one obtains: 

 

 

 

 

 

  For the 3rd, 4th, and 5th derivatives, one obtains the followings; 

 

 

      

 

 And from (7), one obtains;  
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In this work, we make use of the well known product rule and Leibnitz’s theorem to 

generate a new method which can be used to obtain the higher order derivatives of any 

functions which depends on four variables. The new method does not require the knowledge 

of the preceding derivative before obtaining the succeeding ones.  
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Likewise one obtains  

 

 

 

 

 

And by Leibnitz’s theorem, (9) comminutes unto;  

 

 

 

 

 

 

 

 

Below we have the expression for the 5th derivative: 

 

 

 

 

 

 

 

And by using Leibnitz’s theorem, (11) becomes ; 

 

 

 

 

 

 

 

 

 

 

Thus, for the nth order derivative, one obtains;   

                                             

 

Opeenoch’s Theorem:  

Let 

 

, ,     

 or  . 

Then the nth derivative of y is given as  
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Proof:  

Using Mathematical induction, it can be shown that for n=1, (3) 

and (4) hold. 

So that it is true for n=1. 

If it is true for n=1, it must also be true for n=2, such that (5) and 

(6) hold. 

Now that it is true for n=1, 2, it must be true for n=k: 

 

 

 

 

 

 

 

The coefficients of the above expression are obtained by the 

binomial theorem. Thus; 

 

 

 

 

 

 

 

This must be true for n=k+1 such that; 

 

 

 

 

 

 

 

 

Thus, the opeenoch’s theorem for the n th derivative of y is given 

as  

 

Conclusion: 

The algorithm can easily be simulated by writing subroutines for 

the independent variables involved. 

The following points are obvious concerning the new method: 

(i) The superscript n decreases regularly by 1 

(ii) The superscript  i increases regularly by 1 

 (iii) The numerical coefficients are the normal binomial 

coefficients. 

 For increased accuracy in most numerical methods that 

involve the use of higher order derivatives, this new method can 

be used to obtain higher order derivatives of the functions 

involved. The labor involved in calculating and evaluating 

higher derivatives through the use of this new method is very 

minimal, since you can jump the process of obtaining the 

preceding derivatives to the point of obtaining desired derivative 

(order).  
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