The Riemann zeta function and its extension into continuous optimization equation

O. O.A. Enoch and L.O.Salaudeen

Department of Mathematical Sciences, Ekiti State University, Ado-Ekiti, Nigeria.

ARTICLE INFO

Article history:

Received: 7 November 2012;
Received in revised form:
18 April 2013;
Accepted: 22 April 2013;

Keywords

Riemann Zeta Functions, Quadratic Function,
Bilinear Function,
Optimization,
Sobolev Space.

Abstract

In this paper, the Riemann Zeta function is presented as a function with real and imaginary parts. Thus we are able to evaluate $\zeta(z) \overline{\zeta(z)}=\varphi^{2}(t)+\rho^{2}(t)$ By writing $\zeta(z) \overline{\zeta(z)}$ as a bilinear function, and through the use of Sobolev space theorem, an optimization problem with a variable coefficient is derived. Some methods of solution are presented.

© 2013 Elixir All rights reserved.

Introduction

Given that

$\varepsilon(t)=4 \int_{1}^{\infty} \frac{d\left(x^{3 / 2} g^{1}\right)}{d x} x^{-1 / 4} \cos \left(\frac{-1}{2}-\frac{1}{2} x\right) d x$
Such that
$\emptyset=\sum_{n=1}^{\infty} e^{-n n \pi x}$
Thus $\phi^{\prime}(x)=-\sum_{n=1}^{\infty}\left[e^{-n n \pi x]}\right.$
for $\frac{d}{d x}\left(x^{3 / 20} \theta^{0}\right)=\frac{d}{d x}\left[-m \pi x^{2} \sum_{n=1}^{\infty} e^{-m n x}\right]$
Equation (4) given
$\left.\sum_{n=1}^{\infty}\left((m n)^{2} \pi^{2} x^{3 / 2}-\frac{3}{2} \pi x^{1 / 2}+n^{2}\right)\right)^{-n n \pi x}$
This implies that (1) can be written as
$\varepsilon(t)=4 \int_{1}^{\infty} \sum_{n=1}^{\infty}\left[n^{4} \pi^{2} x^{3 / 2}-\frac{3}{2} n^{2} \pi x^{1 / 2}\right] e^{-n n \pi x} x^{-1 / 4} \cos \left(\frac{1}{2} \log x\right) d x$
If one substitutes the Taylor's series expansions for $e^{-n n \pi x}$ and $\cos \left(\frac{t}{2} \log x\right)$ in (6), one will obtain $\varepsilon(t)$;
$=\int_{1}^{\infty} \sum_{n=1}^{\infty}\left[4 n^{4} \pi^{2} x^{5 / 4}-6 n^{2} \pi x^{1 / 4}\right]\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n!}\left[\frac{1}{2} t \log x\right]^{2 n}\right]\left[1+\sum_{n=1}^{\infty}(-1)^{n} \frac{\left(n^{2} \pi x\right)^{n}}{n!}\right] d x$
On further simplification, it can be shown that $\varepsilon(t)$ gives
$=\int_{1}^{\infty}\left(\sum_{n=1}^{\infty}\left[4 n^{4} \pi^{2} x^{5 / 4}-6 n^{2} x^{1 / 4}\right]+\left(4 n^{4} \pi^{2} x^{5 / 4}-6 n^{2} \pi x^{1 / 4}\right)\left[(-1)^{\left(n n^{2} \pi x\right)^{n}} \frac{n!}{n!}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n!}\left[\frac{t}{2} \log x\right]^{2 n n}\right) d x \quad(8)\right.\right.$
The above equation (8) is also equivalent to (9) on using integrating by part;

Recall that $\quad \Pi\left(\frac{z}{2}\right)(z-1) \pi^{-z / 2} \zeta(z)=\varepsilon(t)$
Thus:
$\zeta(z)=\frac{\pi^{z / 2}}{\Pi\left(\frac{2}{2}\right)(z-1)}\left[4 \int_{1}^{\infty} \frac{d\left(x^{3 / 2} \psi^{1}\right)}{d x} x^{-1 / 4} \cos \left(\frac{t}{2} \log x\right) d x\right]$

If we replace $\Pi\left(\frac{Z}{2}\right)$ by $z \Gamma\left(\frac{Z}{2}\right)$,the resulting function will be;

Riemann presented in [Riemann (1859)] that;
$\frac{d}{d z}\left(\frac{1}{z} \log \Pi\left(\frac{z}{2}\right)\right)=\sum_{n=1}^{\infty} \frac{d}{d z}\left(\frac{1}{z} \frac{-\log }{\left.\left(1+\frac{z}{2 n}\right)\right)}\right.$
It follows that
$n\left(\frac{z}{2}\right)=\frac{z}{2}\left(\frac{z}{2}\right)=\sum_{n=1}^{\infty}\left(1+\frac{z}{2 n}\right)$
Thus (13) can be written as

If one substitutes $z=\frac{\mathbf{1}}{\mathbf{2}}+\boldsymbol{i t} \quad$ into (16) and rationalizes the emerging equation, this will lead to;
$\zeta(z)=\sum_{n=1}^{L=\infty} B\left\{\frac{2^{3} n A C}{(n-1)!D}+\frac{1}{2^{2 n}}\left(\frac{2^{2} n E C}{D}\right) t^{n n}+i\left[\left(\frac{2^{6} n^{2} A}{D}\right) t+\frac{1}{2^{2 n}}\left(\frac{2^{6} n^{2} E}{D}\right) t^{m n+1}\right]\right\}$
Where ;
$A=\left(\frac{24 n^{4} \pi}{5}-\frac{16 n^{4} \pi^{2}}{9}-\frac{(-1)^{n}}{n!}\left(n^{2} \pi\right)^{n}\left[\frac{16 n^{4} \pi^{2}}{(9+4 n)}-\frac{24 n^{4} \pi}{(5+4 n)}\right)\right)$
$B=\left(-\frac{1}{4} \frac{\text { it }}{} \text { it } \frac{\log \pi}{2}\right)^{n-1}$
$C=4 t^{2}+4 n+1$
$D=-\left(\left(4 t^{2}+4 n+1\right)^{2}+64 n^{2} t^{2}\right\}$
$E=\left(\frac{\left(n^{2} \pi\right)^{n}}{(2 n-1)!n!}\left\{\frac{64 n^{4} \pi^{2}}{(9+4 n)^{2}}-\frac{96 n^{4} \pi}{(5+4 n)^{2}}\right)+\frac{(-1)^{n}}{n!}\left\{\frac{64 n^{4} \pi^{2}}{81}-\frac{96 n^{4} \pi}{25}\right\}\right)$
Using binomial theorem on equation (19), we obtain
$B=\left(\frac{1}{4} \log \pi+\frac{i t}{2} \log \pi\right)^{n-1}=\left(\frac{\log \pi}{2}\right)^{n-1}\left(\frac{1}{2}+i t\right)^{n-1}$
If we choose $k=n-\mathbf{1}$ then B becomes
$\left.\left(\frac{\log \pi}{2}\right)^{k}\left(\frac{1}{2}+i t\right)^{k}=\left(\frac{\log \pi}{2}\right)^{k}\left\{\left(\frac{1}{2}\right)^{k}+\sum_{n=1}^{l=\infty} \frac{(1}{\frac{1}{2}}\right)^{k-n}(i t)^{n} \prod_{j=0}^{n-1}(k-j)\right\}$
$B=\left(\frac{1}{2}\right)^{k}\left(\frac{\log \pi}{2}\right)^{k}+\left(\frac{\log \pi}{2}\right)^{k}\left\{\sum_{n=1}^{(L=\infty} \frac{\left(\frac{1}{2}-\right)^{k-n}(i t)^{n}}{n!} \prod_{j=0}^{k}(k-j)\right\}$
To evaluate the value of B^{2}, we simply compute the square of (25) such that;
$B^{2}=\left(\frac{1}{2}\right)^{2 n-2}\left(\frac{\log \pi}{2}\right)^{2 n-2}+2\left(\frac{1}{2}\right)^{2 n-2}\left(\frac{\log \pi}{2}\right)^{2 n-2}\left\{\sum_{n=1}^{L=\infty} \frac{\left(\frac{1}{2}\right)^{k-n}(i t)^{n}}{n!} \prod_{j=0}^{n-1}(k-j)\right\}$
$+\left(\frac{\log \pi}{2}\right)^{2 n-2}\left\{\sum_{n=1}^{L=\infty} \frac{\left(\frac{1}{2}\right)^{k-n}(i t)^{n}}{n!} \prod_{j=0}^{n-1}(k-j)\right\}^{2}$
The above equation allows us to write (17) as follows:
$\zeta(z)=\sum_{n=1}^{L=\infty} \frac{1}{D}\left[\left(\frac{\log \pi}{4}\right)^{k}\left(2^{\mathrm{a}} n C\right)\left[\frac{A}{(n-1)!}+\frac{E}{2^{2 n}} t^{2 n}\right]\right]$
$+\sum_{n=1}^{L=\infty} \frac{1}{D}\left[\log \pi\left(2^{2} n C\right)\left\{\sum_{n=1}^{L=\infty} \frac{\left(\frac{1}{2}\right)^{k-n}}{n!} \prod_{j=0}^{k}(k-j)\right\}\left[\frac{A}{(n-1)!} t^{n}+\frac{E}{2^{2 n}} t^{3 n}\right] i^{n}\right.$
$+\sum_{n=1}^{L=\infty} \frac{1}{D}\left[\log \pi\left(2^{5} n^{2}\right)\left\{\sum_{n=1}^{L=\infty} \frac{\left(\frac{1}{2}\right)^{k-n}}{n!} \prod_{j=0}^{k}(k-j)\right\}\left[A t^{n+1}+\frac{E}{2^{2 n}} t^{2 n+1}\right]\right]^{n+1}$
$+\sum_{n=1}^{L=\infty} \frac{1}{D}\left[\left(\frac{\log \pi}{4}\right)^{k}\left(2^{6} n^{2}\right)\left[A t+\frac{E}{2^{2 n}} t^{2 n+1}\right]\right] i$
If the above series is truncated at $\mathrm{L}=$ even number then, (27) becomes;
$\zeta(z)=\sum_{n=1}^{L=\infty} \frac{1}{D}\left[\left(\frac{\log \pi}{4}\right)^{k}\left(2^{3} n C\right)\left[\frac{A}{(n-1)!}+\frac{E}{2^{2 n}} t^{z n}\right]\right]$ $+\delta \sum_{n=1}^{L=\infty} \frac{1}{D}\left[\log \pi\left(\mathbf{2}^{\mathbf{2}} n C\right)\left\{\sum_{n=1}^{L=\infty} \frac{\left(\frac{1}{2}\right)^{k-n}}{n!} \prod_{j=0}^{k}(k-j)\right\}\left[\frac{A}{(n-\mathbf{1})!} t^{n}+\frac{E}{2^{2 n}} t^{3 n}\right]\right]$
$+\rho \sum_{n=1}^{L=\infty} \frac{1}{D}\left[\log \pi\left(2^{5} n^{2}\right)\left\{\sum_{n=1}^{L=\infty} \frac{\left(\frac{1}{2}\right)^{k-n}}{n!} \prod_{j=0}^{k}(k-j)\right\}\left[A t^{n+1}+\frac{E}{2^{2 n}} t^{3 n+1}\right]\right]_{i}$
$+\sum_{n=1}^{L=\infty} \frac{1}{D}\left[\left(\frac{\log \pi}{4}\right)^{k}\left(2^{6} n^{2}\right)\left[A t+\frac{E}{2^{2 n}} t^{2 n+1}\right]\right]^{i}$
where δ and ρ could be either -1 or +1 .
On the other hand, if L is an odd number then the series in (27) becomes;
$\zeta(z)=\sum_{n=1}^{L=\infty} \frac{1}{D}\left[\left(\frac{\log \pi}{4}\right)^{k}\left(2^{3} n C\right)\left[\frac{A}{(n-1)!}+\frac{E}{2^{2 n}} t^{2 n}\right]\right]$
$+\rho \sum_{n=1}^{L=\infty} \frac{1}{D}\left[\log \pi\left(2^{5} n^{2}\right)\left\{\sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{k-n}}{n!} \prod_{j=0}^{k}(k-j)\right\}\left[A t^{n+1}+\frac{E}{2^{2 n}} t^{3 n+1}\right]\right]_{i}$
$+\delta \sum_{n=1}^{L=\infty} \frac{1}{D}\left[\log \pi\left(2^{2} n C\right)\left\{\sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{k-n}}{n!} \prod_{j=0}^{k}(k-j)\right\}\left[\frac{A}{(n-1)!} t^{n}+\frac{E}{2^{2 n}} t^{3 n}\right]\right]$
$+\sum_{n=1}^{L=\infty} \frac{\mathbf{1}}{D}\left[\left(\frac{\log \pi}{\mathbf{4}}\right)^{k}\left(\mathbf{2}^{6} n^{2}\right)\left[A t+\frac{E}{2^{2 n}} t^{2 n+1}\right]\right] i$
δ and ρ remain as defined above.
On multiplying (17) by its conjugate, we obtain $\zeta(z) \overline{\zeta(z)}$ to be;
$\sum_{n=1}^{\infty} \frac{B^{2}}{} \overline{D^{2}}\left[\left(\frac{2^{3} n A C}{(n-1)!}+\frac{1}{2^{2 n}}\left(2^{\left.2^{3} n E C\right) t^{n n}}\right]^{2}+\left[\left(2^{6} n^{2} A\right) t+\frac{1}{2^{2 n}}\left(2^{6} n^{2} E\right) t^{n+1}\right]^{2}\right\}\right.$
This can be neatly written as;
$\zeta(z) \overline{\zeta(z)}=\left(y^{2}(t)+\beta^{2}(t)\right)$
where
$\gamma(t)=\sum_{n=0}^{\infty} \frac{B}{D}\left[\frac{2^{3} n A C}{(n-1)!}+\frac{1}{2^{2 n}}\left(2^{3} n E C\right) t^{2 n}\right]$ and $\beta(t)=\sum_{n=0}^{\infty} \frac{B}{D}\left[\left(2^{6} n^{2} A\right) t+\frac{1}{2^{3 n}}\left(2^{6} n^{2} E\right) t^{2 n+1}\right]$
From the above, it is clear that (17) gives
$\gamma(t)$ as the state variable and
$\beta(t)$ as the control variable.
$\zeta(z) \overline{\zeta(z)}=$
$\left[\sum_{n=0}^{L=\infty}\left[\frac{2^{6} n^{2} E^{2} C^{2}}{2^{4 n}}\right]+\left(2^{12} n^{4} A^{2}\right) t^{2}+\left[\frac{2^{7} n^{2} A E C^{2}}{2^{2 n}(n-1)!}\right] t^{2 n}+\left[\frac{2^{6} n^{2} E^{2} C^{2}}{2^{4 n}}\right] t^{t^{n}}\right]\left\{\left(\frac{1}{2}\right)^{2 n-2}\left(\frac{\log \pi}{2}\right)^{2 n-2}\right\}$
$\left[\left(2^{12} n^{4} E A\right) t^{2 n+2}+\left[\frac{2^{16} n^{4} E^{2}}{2^{4 n}}\right] t^{4 n+2}\right]\left\{\left(\frac{1}{2}\right)^{2 n-2}\left(\frac{\log \pi}{2}\right)^{2 n-2}\right\}+$

$+\sum_{n=0}^{L=\infty}\left[\left(2^{1 \pi} n^{4} E A\right) t^{2 n+2}+\left[\frac{2^{16} n^{4} E^{2}}{2^{\star n}}\right] t^{\star n+2}\right]\left[\left(\frac{\log \pi}{2}\right)^{2 n-2} \sum_{n=1}^{L=\infty} \frac{\left(\frac{1}{2}\right)^{2 k-2 n}(i t)^{2 n}}{(n!)^{2}} \prod_{j=0}^{n-1}(k-j)^{2}\right]$

Conclusion

If we choose to minimize the integral of (31), we come to obtain;
$\min \int_{a}^{b} \zeta(z) \overline{\zeta(z)} d z=\min \int_{a}^{b}\left[z^{z}(t)+\beta^{2}(t) d t\right.$
Furthermore, (35) is a quadratic function for which its bilinear transformation is given as;
$\min \int_{a}^{b}\left[\gamma^{2}(t)+\beta^{2}(t)\right] d t=\min \int_{a}^{b}\left[\gamma^{T}(t) P \gamma(t)+\beta^{T}(t) M \beta(t)\right] d t$
On imposing some constraints on (36), it becomes an optimization problem of the form;
$\operatorname{mimin} \int_{a}^{b}\left[\gamma^{T}(t) P P^{\prime}(t)+\beta^{T}(t) M \beta(t)\right] d t$

Subject to the constraints;

$$
\begin{equation*}
\frac{\gamma(t)^{\square}}{=\frac{d \mathbf{R} \zeta(z)}{d t}} \tag{37}
\end{equation*}
$$

$$
0 \leq t \leq T, \quad \gamma(0)=\frac{1}{2}
$$

The constrained problem (37) can be turned into unconstrained problem via the penalty method and
the multiplier method (34) as;

References

On the number of Prime Number less than a given Quantity; Bernhard Riemann Translated byDavid R. Wilkins. Preliminary version: Dec. 1998 \{Nonatsberichte der Berliner, Nov.1859\} An introduction to the theory of the Riemann zeta function, by S.J.Patterson.

On lower bounds for discriminants of algebraic number fields, M.Sc. thesis by S.A. Olorunsola (1980).

Complex variables and Application (Third edition) By Ruel V. Churchill, James W. Brown, and Roger F. Verhey. [ISBN 0-07-010855-2] Complex variables for scientists and engineers By John D. Paliouras [ISEN 0-02-390550-6] Mathematical methods for physics and engineering; A comprehensive guide by K. F. Riley,M. P. Hobson and S. J. Bence.[ISBN 052155529 9] Complex analysis (third edition) by Serge Lang; Department of mathematics Yale

University New Haven, CT06520 USA. SPRINGER The Mathematical Unknown by John Derbyshire Prime [ISBN 0-387-978801086-0] Problem of the millennium; hypothesis. en.wikipedia.org/wiki/Riemann-hypo.
Advanced Engineering mathematics By Erwin Kreyszig (8 ${ }^{\text {th }}$ Edition) [ISBN 978-81-265-0827-3] Supercomputers and the Riemann zeta function: A.M. Odlyzko; A.T and T. Bell Laboratories Murray Hcll, New jersey 07974

