Advances in Pure Mathematics

Enestrom- Kakeya Theorem and Zero-free regions of polynomials

Naseer Ahmad Gilani

Department of Mathematics, Govt. Model Degree College for Women Kupwara, Jammu \& Kashmir, India.

ARTICLE INFO

Article history:
Received: 24 February 2013;
Received in revised form:
28 March 2013;
Accepted: 6 April 2013;

Keywords

Polynomials,
Enestrom-Kakeya Theorem,
Zero.

ABSTRACT
In the literature, some extensions and generalizations of Enestrom-Kakeya theorem are
available. In this paper we refine results by defining the zero -free regions of polynomials.
$\mathbf{2 0 1 3}$ Elixir All rights reserved.

1. Introduction and statement of results

In the theory of distribution of zeros of polynomials, the Enestrom-Kakeya theorem [4] given below in theorem A is a well known result.
Theorem A. Let $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n such that

$$
a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}>0
$$

Then all the zeros of $P(z)$ lie in the disk $\mid z \mathbf{|} \leq 1$.
Many attempts have been made to extend and generalize the Enestrom-Kakeya theorem. A. Joyal et al [3] extended the Enestrom-Kakeya theorem to the polynomials with general monotonic coefficients by proving that if

$$
a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}
$$

Then $\mathrm{P}(\mathrm{z})$ has all its zeros in the disk

$$
\mathbf{| z |} \leq \frac{a_{n}-a_{0}+\left|a_{0}\right|}{\left|a_{n}\right|}
$$

Further Aziz and Zargar [1] generalized the result of A. Joyal et al [3] and the Enestrom-Kakeya theorem as given below in theorem B.
Theorem B. Suppose $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$
For some $\lambda \geq \mathbf{1}$

[^0]Theorem C. Suppose $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n such that either
$a_{n} \geq a_{n-2} \geq \ldots \geq a_{2} \geq a_{0}>0$ and $a_{n-1} \geq a_{n-\mathbf{a}} \geq \ldots \geq a_{2} \geq a_{1}>0$ if n is even
Or $a_{n} \geq a_{n-2} \geq \ldots . . \geq a_{3} \geq a_{1}>0$ and $a_{n-1} \geq a_{n-8} \geq \ldots \geq a_{2} \geq a_{0}>0$ if n is odd, then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\left|z+\frac{a_{n-1}}{a_{n}}\right| \leq 1+\frac{a_{n-1}}{a_{n}}
$$

But Govil and Rahman [2] proved that if, $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ is a complex polynomial of degree n with
$\left|\arg . a_{i}-\beta\right| \leq \alpha \leq \frac{\pi}{2},(\mathrm{i}=0,1,2, \ldots \ldots . . \mathrm{n})$ for some β real and
$\left|a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \ldots \ldots . . \geq\left|a_{1}\right| \geq\left|a_{0}\right|$, then $\mathrm{P}(z)$ has all its zeros in the disk

$$
|z| \leq \cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{n}\right|} \sum_{i=0}^{n-1}\left|a_{i}\right|
$$

Again Shah and Liman [5] generalized theorem B and the result of Govil and Rahman [2] and proved theorems D and E as stated below.
Theorem D. Suppose $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}$ and $\operatorname{Im}\left(a_{i}\right)=\beta_{i}, \mathrm{i}=0,1,2, \ldots \ldots . . . \mathrm{n}$. If for some $\lambda \geq 1$
$\lambda \alpha_{n} \geq \alpha_{n-1} \geq \ldots . . \geq \alpha_{1} \geq \alpha_{0}, \beta_{n} \geq \beta_{n-1} \geq \ldots . . \geq \beta_{1} \geq \beta_{0}>0$
Then $\mathrm{P}(\mathrm{z})$ has all its zeros in the disk
$\left|z+\frac{(\lambda-1) \alpha_{n}}{a_{n}}\right| \leq \frac{\lambda \alpha_{n}-\alpha_{0}+\left|\alpha_{0}\right|+\beta_{n}}{\left|a_{n}\right|}$
Theorem E. Suppose $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n such that

$$
\begin{aligned}
& \text { larg. } a_{i}-\beta \left\lvert\, \leq \alpha \leq \frac{\pi}{2}\right.,(\mathrm{i}=0,1,2, \ldots \ldots . \mathrm{n}) \text { for some } \beta \text { real and for some } \lambda \geq \mathbf{1} \\
& \lambda\left|a_{n}\right| \geq\left|a_{n-\mathbf{2}}\right| \geq \ldots \ldots . . . \geq\left|a_{\mathbf{2}}\right| \geq\left|a_{0}\right|
\end{aligned}
$$

Then $P(z)$ has all its zeros in the disk

$$
\begin{gathered}
|z+(\lambda-1)| \leq \frac{1}{\left|a_{n}\right|}\left\{\left(\lambda\left|a_{n}\right|-\left|a_{0}\right|\right)\left(\cos \alpha_{+} \sin \alpha\right)+\left|a_{0}\right|+\right. \\
\left.2^{\sin \alpha \sum_{i=0}^{n-1}\left|a_{i}\right|}\right\}
\end{gathered}
$$

The main purpose of this paper is to refine some results mentioned above and define the zero -free regions of polynomials in theorems C, D and E.

2. Theorems And Proofs

Theorem 1. Suppose $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n such that either
$a_{n} \geq a_{n-2} \geq \ldots \geq a_{2} \geq a_{0}$ and $a_{n-1} \geq a_{n-5} \geq \ldots \geq a_{2} \geq a_{1}$ if n is even Or, $\quad a_{n} \geq a_{n-2} \geq \ldots \geq a_{3} \geq a_{1}$ and $a_{n-1} \geq a_{n-\mathrm{a}} \geq \ldots \geq a_{2} \geq a_{0}$ if n is odd
Then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk
$\mathbf{| z |}<\frac{\left|a_{0}\right|}{\left|a_{n}\right|+a_{n}+\left|a_{n-1}\right|+a_{n-1}+\left|a_{1}\right|-a_{1}-a_{0}}$
Proof. To prove the theorem, we consider a polynomial $F(z)$ defined by

$$
\begin{aligned}
& \mathrm{F}(\mathrm{z})=\left(1-z^{\mathrm{z}}\right) \mathrm{P}(\mathrm{z}) \\
&=\left(1-z^{2}\right)\left(a_{0}+a_{1 z}+a_{2} z^{2}+\ldots \ldots+a_{n-1} z^{n-1}+a_{n} z^{n}\right) \\
&=-a_{n} z^{n+2}-a_{n-1} z^{n+1}+\left(a_{n}-a_{1}(n-2)\right) z^{\mathrm{t}} n+\left(a_{n-1}-a_{1}(n-3)\right) z^{\mathrm{t}}(n-1)+\ldots .+\left(a_{a}-a_{1} 1\right) z^{\mathrm{t}} 3+\left(a_{2}-\right. \\
&\left.a_{0}\right)^{z^{\mathrm{z}}} \quad+a_{1} z+a_{0} \\
&=\mathrm{g}(z)+a_{0}, \\
& \text { where } \mathrm{g}(\mathrm{z})=-a_{n} z^{n+2}-a_{n-1} z^{n+1}+\left(a_{n}-a_{1}(n-2)\right) z^{\mathrm{t} n}+\left(a_{n-1}-a_{1}(n-3)\right) z^{\mathrm{t}}(n-1)+ \\
& \ldots .+\left(a_{\mathrm{a}}-a_{1} 1\right) z^{\mathrm{t}} 3+\left(a_{2}-a_{0}\right) z^{2}+a_{1} z
\end{aligned}
$$

If $|z|<\mathbf{1}$ then
$|g(z)| \leq\left|a_{1} n\right|+\left|a_{\downarrow}(n-1)\right|+\left(a_{1} n-a_{1}(n-2)\right)+\left(a_{n-1}-a_{1}(n-3)\right)+\ldots .+\left(a_{3}-a_{1} 1\right)+\left(a_{2}-a_{0}\right)+\left|a_{1}\right|$ since by hypothesis $a_{n} \geq a_{n-2} \geq \ldots . . \geq a_{2} \geq a_{0}$ and $a_{n-1} \geq a_{n-3} \geq \ldots . . \geq a_{3} \geq a_{1}$.
On simplification, we have
$|g(z)| \leq\left|a_{n}\right|+\left|a_{n-1}\right|+a_{n}+a_{n-1}-a_{1}-a_{0}+\left|a_{1}\right|$
Also we have, $g(0)=0$, therefore by Schwarz lemma, it follows that $|g(z)| \leq M \mid z \mathbf{I}$ for $|z|<1$ where $\mathrm{M}=\left|a_{n}\right|+\left|a_{n-1}\right|+a_{n}+a_{n-1}-a_{1}-a_{0}+\left|a_{1}\right|$
Again for $|z|<\mathbf{1}$, we have
$|F(z)|=\left|g(z)+a_{0}\right|=\left|a_{0}+\mathbf{g}(\mathrm{z})\right| \geq\left|a_{0}\right|-|g(z)|$

$$
\begin{aligned}
& \geq\left|a_{0}\right|-M|z| \\
& >0 \text { if } \quad\left|a_{0}\right|>M|z|
\end{aligned}
$$

i.e. if $\quad|z|<\frac{\left|a_{0}\right|}{M}$

Also we can show that $\mathrm{M} \geq\left|a_{0}\right| \quad$ as $|z|<\mathbf{1}$ and hence the desired result follows.
Theorem 2. Let $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n with
$\operatorname{Re}\left(a_{i}\right)=\alpha_{i}$ and $\operatorname{Im}\left(a_{i}\right)=\beta_{i}, \mathrm{i}=0,1,2, \ldots \ldots . ., \mathrm{n}$. Let for some $\lambda \geq \mathbf{1}$,
$\lambda \alpha_{n} \geq \alpha_{n-1} \geq \ldots \geq \alpha_{1} \geq \alpha_{0}$,
$\beta_{n} \geq \beta_{n-1} \geq \ldots \geq \beta_{1} \geq \beta_{0}$, then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk
$\mathbf{| z |}<\frac{\left|a_{0}\right|}{\left|a_{n}\right|+(\lambda-\mathbf{1})\left|\alpha_{n}\right|+\lambda \alpha_{n}-\alpha_{o}+\beta_{n}-\beta_{0}}$
Proof. To prove the theorem, we consider a polynomial $F(z)$ defined by

$$
\begin{aligned}
\mathrm{F}(\mathrm{z}) & =(1-\mathrm{z}) \mathrm{P}(\mathrm{z})=(1-\mathrm{z}) \sum_{i=0}^{n} a_{i} z^{i} \\
& =(1-\mathrm{z})\left(a_{0}+a_{1}+a_{\mathbf{2}} z^{2}+\ldots . .+a_{n-1} z^{n-1}+a_{n} z^{n}\right)
\end{aligned}
$$

On simplification, we have
$\mathrm{F}(\mathrm{z})=-a_{n} z^{n+1}+\left(a_{n}-a_{1}(n-1)\right) z^{\mathrm{t}} n+\ldots \ldots \ldots .+\left(a_{1}-a_{0}\right) z+a_{0}$
$=\mathrm{g}(\mathrm{z})+a_{0}$, where $\mathrm{g}(\mathrm{z})=-a_{n} z^{n+1}+\left(a_{n}-a_{1}(n-1)\right) z^{\mathrm{t}} n+\ldots \ldots \ldots .+\left(a_{1}-a_{0}\right) \mathrm{z}$
Using hypothesis, we can write $g(z)$ as
$\mathrm{g}(\mathrm{z})=-a_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{1}(n-1)\right) z^{\mathrm{T}} n+\left(\alpha_{1}(n-1)-\alpha_{1}(n-2)\right)^{n-1}+\ldots \ldots \ldots .+\left(\alpha_{1}-\alpha_{0}\right) z+$ $\mathrm{i}\left\{\left(\beta_{1} n-\beta_{\downarrow}(n-1)\right) z^{\uparrow} n+\left(\beta_{1}(n-1)-\beta_{1}(n-2)\right)^{z^{n-1}}+\ldots \ldots .+\left(\beta_{1}--\beta_{0}\right) z\right\}$
$=-a_{n} z^{n+1}-(\lambda-1) \alpha_{n} z^{n}+$
$\left(\square \lambda \alpha \square_{\downarrow} n-\alpha_{1}(n-1)\right) z^{\mathrm{T}} n+\left(\alpha_{1}(n-1)-\alpha_{1}(n-2)\right) z^{\mathrm{T}}(n-1)+\ldots .$.
$+\left(\alpha_{1}-\alpha_{0}\right) \mathrm{z}+\mathrm{i}\left\{\left(\beta_{1} n-\beta_{\downarrow}(n-1)\right) z^{\uparrow} n+\left(\beta_{1}(n-1)-\beta_{1}(n-2)\right)^{z^{n-1}}+\ldots \ldots .+\left(\beta_{1}-\beta_{0}\right) z\right\}$
Now if $\mid z \mathbf{z}<\mathbf{1}$, then on simplification, we have
$|g(z)| \leq\left|a_{n}\right|+(\lambda-1)\left|\alpha_{n}\right|+\lambda \alpha_{n}-\alpha_{o}+\beta_{n}-\beta_{0}$
From above, $\mathrm{g}(0)=0$, therefore by Schwarz lemma, it follows that
$|g(z)| \leq M|z|$ for $|z|<1$, where $M=\left|a_{n}\right|+(\lambda-1)\left|\alpha_{n}\right|+\lambda \alpha_{n}-\alpha_{o}+\beta_{n}-\beta_{0}$
Again for $|z|<1$
$|F(z)|=\left|g(\mathbf{z})+a_{0}\right| \geq\left|a_{0}\right|-|g(z)| \geq\left|a_{0}\right|-M|z|>0, \quad$ if $\quad\left|a_{0}\right|>M|z|$
i.e., if $\quad|z|<\frac{\left|a_{0}\right|}{M}$
where $\mathrm{M}=\left|a_{n}\right|+(\lambda-\mathbf{1})\left|\alpha_{n}\right|+\lambda \alpha_{n}-\alpha_{o}+\beta_{n}-\beta_{0}$
Also we can show that $\mathrm{M} \geq \mid a_{0} \mathbf{I}$ as $|z|<1$
Hence the desired result follows.
Theorem 3. Suppose $\mathrm{P}(\mathrm{z})=\sum_{i=0}^{n} a_{i} z^{i}$ be a complex polynomial of degree n such that |arg. $a_{i}-\beta \left\lvert\, \leq \alpha \leq \frac{\pi}{2}\right.,(i=0,1,2, \ldots \ldots . . n)$ for some β real and for some $\lambda \geq \mathbf{1}$

$$
\lambda\left|a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \ldots \ldots . . \geq\left|a_{1}\right| \geq\left|a_{0}\right|
$$

Then $\mathrm{P}(\mathrm{z})$ does not vanish in the disk
$\mathbf{| z |}<\frac{\left|a_{0}\right|}{\lambda\left|a_{n}\right|+\left(\lambda\left|a_{n}\right|-\left|a_{0}\right|\right) \cos \alpha+\left(\lambda\left|a_{n}\right|+\left|a_{0}\right|\right) \sin \alpha+2 \sin \alpha \sum_{i=0}^{n-1}\left|a_{i}\right|}$
Proof. To prove the theorem, we consider a polynomial $\mathrm{F}(\mathrm{z})$ defined by $F(z)=(1-z) P(z)$

$$
\begin{aligned}
& =(1-z)\left(a_{0}+a_{1 z}+a_{2} z^{2}+\ldots . .+a_{n-1} z^{n-1}+a_{n} z^{n}\right) \\
& =-a_{n} z^{n+1}+\left(a_{n}-a_{1}(n-1)\right) z^{\mathrm{t}} n+\ldots \ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0} \\
& =-a_{n} z^{n+1}-(\lambda-1) a_{n} z^{n}+\left(\square \lambda a \square_{\downarrow} n-a_{1}(n-1)\right) z^{t_{n}}+\ldots \ldots \ldots .+\left(a_{1}-a_{0}\right) z+a_{0} \\
& =g(z)+a_{0}, \quad \text { where } \\
\mathrm{g}(\mathrm{z}) & =-a_{n} z^{n+1}-(\lambda-1) a_{n} z^{n}+\left(\square \lambda a \square_{\downarrow} n-a_{1}(n-1)\right) z^{\mathrm{t}} n+\ldots \ldots \ldots+\left(a_{1}-a_{0}\right) z
\end{aligned}
$$

It was shown in [2] that for two complex numbers b_{0}, b_{1} if
$\left|b_{0}\right| \geq\left|b_{1}\right|$ and $\mathbf{| a r g} \cdot b_{i}-\beta \left\lvert\, \leq \alpha \leq \frac{\pi}{2}\right.,(i=0,1)$
for some β then
$\left|b_{0}-b_{1}\right| \leq\left(\left|b_{0}\right|-\left|b_{1}\right|\right) \cos \alpha+\left(\left|b_{0}\right|+\left|b_{1}\right|\right) \sin \alpha$
Hence for $|z|<\mathbf{1}$,

$$
\begin{aligned}
\mathbf{l} g(z) \mid & \leq\left|a_{n}\right|+(\lambda-1)\left|a_{n}\right|+\left|\lambda a_{n}-a_{n-\mathbf{1}}\right|+\left|a_{n-\mathbf{1}}-a_{n-\mathbf{2}}\right|+\ldots \ldots \ldots \ldots \ldots+\left|a_{1}-a_{0}\right| \\
& \leq \lambda\left|a_{n}\right|+\left(\lambda\left|a_{n}\right|-\left|a_{0}\right|\right) \cos \alpha+\left(\lambda\left|a_{n}\right|+\left|a_{0}\right|\right) \sin \alpha+2 \sin \alpha \sum_{i=0}^{n-1}\left|a_{i}\right|
\end{aligned}
$$

Again we have, $g(0)=0$, therefore by Schwarz lemma we obtain
$|g(z)| \leq M|z|$ for $|z|<\mathbf{1}$, where

$$
\mathrm{M}=\lambda\left|a_{n}\right|+\left(\lambda\left|a_{n}\right|-\left|a_{0}\right|\right) \cos \alpha+\left(\lambda\left|a_{n}\right|+\left|a_{0}\right|\right) \sin \alpha+2 \sin \alpha \sum_{i=0}^{n-1}\left|a_{i}\right|
$$

Therefore for $|z|<\mathbf{1}$, we have
$|F(z)|=\left|g(\mathbf{z})+a_{0}\right| \geq\left|a_{0}\right|-|g(z)| \geq\left|a_{0}\right|-M|z|>0$, if $\quad\left|a_{0}\right|>M|z|$ i.e, if $|z|<\frac{\left|a_{0}\right|}{M}$, where
$\mathrm{M}=\lambda\left|a_{n}\right|+\left(\lambda\left|a_{n}\right|-\left|a_{0}\right|\right) \cos \alpha+\left(\lambda\left|a_{n}\right|+\left|a_{0}\right|\right) \sin \alpha+2 \sin \alpha \sum_{i=0}^{n-1}\left|a_{i}\right|$
Also we can show that $\mathrm{M} \geq \mid a_{0} \mathbf{I}$ as $|z|<\mathbf{1}$

Hence the desired result follows.

References

[1] A.Aziz and B.A. Zargar, Some extensions of Enestrom-Kakeya theorem,Glasnik Matematicki , 31 (1996), 239-244.
[2] N.K.Govil and Q.I.Rahman, On the Enestrom-Kakeya theorem, Tohoku Math. J., 20 (1968), 126-136.
[3] A. Joyal, G.Labelle and Q.I.Rahman, On the location of zeros of polynomials, , Canad. Math. Bull., 10 (1967), 55-63.
[4] M. Marden, Geometry of polynomials, Math.Surveys, No. 3; Amer.Math. Society , (R.I.: Providence) (1966).
[5] W.M.Shah and A. Liman, On Enestrom-Kakeya theorem and related analytic functions, Proc. Indian Acad. Sci., (Math.Sci.) 117 (2007), 359-370.

[^0]: Tele:
 E-mail addresses: geelanina@gmail.com

