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ABSTRACT

In this Chapater we prove two important results. Let L be a lattice. A congruence of L is
said to be uniform, if any two congruence classes of are of the same size. The lattice L is
said to be uniform, if all congruences of L are uniform. We prove that every finite
distributive lattice D can be represented as the congruence lattice of a finite uniform lattice.
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1.1 Introduction

In this chapter we prove that every finite distributive lattice
D can be represented as the congruence lattice of finite uniform
lattice L. Infact we prove that “For any finite distributive lattice
D, there exists a finite uniform lattice L such that the congruence
lattice of L is isomorphic to D, and L satisfies the properties (P)
and (Q) where

(P) Every join-irreducible congruence of L is of the form
0 (0,p), fora suitable atomp of L.

Q If 0, 0, ,.....eeee, 0, € J (Conl) are pairwise
incomparable, then L contains atoms p,, p,,.........., p, that
generate an ideal isomorphic to B, and satisfy 6,=6 (0,p;), forall
i<n.

To prove this result, we introduce a new lattice construction
which is described in section 1.2. Then we find the congruences
on this new lattice in section 1.3. In 1.4, we introduce a very
simple kind of chopped lattices. In section 1.5, we prove that
the ideal lattice of this chopped lattice is uniform. The proof of
the theorem is presented in section 1.6.

Notation:

B, will denote the Boolean algebra with 2" elements. For a
bounded lattice A with bounds 0and 1, A~ will denote the lattice
A-{01}

We start with the definition of uniform lattices.

Definition : 1.1.1

A congruence 9 of a lattice L is uniform, if any two
congruence classes A and B of 9 are of the same size. That is,
|Al=]B].

Definition : 1.1.2

A lattice L is said to be uniform, if all of its congruences are

uniform.

Note : 1.1.3

Every lattice need not be a uniform lattice.

For example, the lattice Ng, given below is not uniform.
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1]
The lattice has exactly one non-trivial congruence 6 and 9 has
exactly two congruence classes {0, a, b, d} and {e,I}.
These two congruence classes are not of the same order.
Note : 1.1.4
There exists uniform lattices.

For example,
Consider the Boolean algebra B,,, with four elements.
1
a b
0

Its congruence lattice is also B,. It has 4 congruences. The
null congruence ®, the all congruence i and two non-trivial
congruences 0, and 0,.

0, has two congruence classes {{0, a,},{b, I}} and 6, has
two congruence classes {{0,b},{a,1}} and both 9, and 0, are
uniform congruences.

Hence B, is a uniform lattice.
1.2. A LATTICE CONSTRUCTION

Let A and B be lattices. Let us assume that A is bounded
with bounds 0 and 1 with 0 1. We introduce a new lattice
construction N(A,B).
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If u e AXB, then u = (u,,ug) where u,eA and ugeB. The Example: 1.2.2

binary relation <, will denote the partial ordering on AxB, and A=F, E=E-
V, and A, the join and the meet in AxB respectively. 1 1
On the set AxB, we define a new binary relation denoted by
< as follows :
<= < —{UVv) /uyv e AxB and ugzvg}.
We denote (AxB, <,) by (N(A,B), <) a b - ¥
Example :1.2.1
For example, consider A=B, and B=B,
1
l
.

N
AxB ={(00), 0, (Oy), (0.1), (.0). (X, (@y). (@1), (b,0),
(0., (by) (b.1), (10), 1%, (Ly), (LD}

b Then AxB is the lattice given below :-
1.1
a ( : AxB
®0
0
A B (.
AxB= {(0,0), (0,1), (a,0), (a,1), (b,0), (b,1), (1,0), (1,1)}

(1.0) €
(by) .1

(10 0
(0.2) (0.%)

But N (B,,B,) is the lattice given below :
(L0

D
(18) .‘ '
0.

Then (AXB, <) is the lattice.
But N (A, B) has elements the same as AxB. But the partial
ordering differs
(L)

(LD)
(b.1)

(a,0)

0.0
N(AB)
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Example :1.2.3 (LugWy ) ifuVyy e AXB and ug = vg;
Consider the lattice A=M, and B=B, uVyVv =
uVyv,  otherwise.
M3 BE X
Proof:-

1 1
a >C §©E
1] 0

Then AxB = { (0,0) (0%, (0yy), (0,1), (a,0), (@), (@y), (@1
(0, (bx, (by), (1) (€0, €, €y) 1) (10, @X),
(Ly), (11) }

Then the lattices M, xB, and N(M,, B,) are as given below :

od Myx8,

(e e

(0,00

Now we prove that N(A,B) is a lattice.
Lemma :1.24

Let A and B be lattices. Let A be a bounded lattice with
bounds 0 and 1 and 0=1. Then N(A,B) is a lattice. The meet and
join in N(A,B) of < -incomparable elements can be computed
by the formulae.

(OugAvg), if UAyV e AXB and ug# Vg;
UAGY =

UAyV, otherwise.

First we claim that (N(A,B), <) is a poset.
(i) <y isreflexive.
Let acA, beB.
Then (a,b) < (a,b) in AxB.
Therefore, ( (a,b), (a,b) ) e<,.
But ((a,b), (a,b)) e{(u.v) /uveAxB, ugzvg} forb=h.
~ (@b), @b)) e <y
o <y I8 reflexive.
(i) < is antisymmetric.
Let (a,b) < (c,d) and (c,d) < (a,b).
Then (a,b) < (c,d) and (c,d) < (a,b).
But <, is antisymmetric, hence (a,b) = (c,d) in AxB.
. a=c and b=d.
- (a,b) = (c,d) under < for b=d.
. <y Is antisymmetric.
(iii) <y is transitive.
Let (a,b) < (c.d) and (c,d) < (e.f)
Then (a,b) <, (c,d) and (c,d) <, (e,f)
But <, is a transitive relation.
Hence (a,b) <, (e,f).
(a,b) <y (cd) implies ((ab), (c,d)) e{(uv)/uveAxB,
Ug#Vg}
- b=d.
Similarly, (c,d) <y(e,f) implies d=f.
b=d, d=f implies b=f.
(a,b) <4 (e,f) and b=f implies
((ab),(eh) ¢ {(uv)/uveAxB, ug=vg}.
- (ab) <y (&)
-.<y s atransitive relation.
That is (N(A,B), <) is a poset.
To prove (N(A,B)<,) is a lattice.
For that we have to prove uAyv, uVyv exst for all elements
u,veN(A B).
For that, it is enough if we prove that uAyv, uVv exist for <-
incomparable elements u, veN(A,B).
Because of duality principle, it is enough if we prove that uAVv
exists for <-incomparable elements u, v eN(A,B).
Let u,veN(A,B) and u, v be < -incomparable.

Let t be a lower bound of u and v in N(A,B).
Case: 1

UA,v is not a lower bound of both u and v in N(A,B).
If uAv is not a lower bound of both u and v in N(A,B), then
either UA V< U Or UA V< V.
Suppose UAY <y U,
then u, UA,V eAXB and ug # (UAV)g .
But (UA,V)g # Ug implies that ug=vy .
Since t < uAy, it follows that t; < (UAV)g <ugandsot ¢
AXB.
For, if teAXB, ue AXB and tg= ug implies that t <, u.
Which is a contradiction to t is a lowerbound of u.
Since t ¢ AXB , the first element of t must be O or 1.
If t= (1, tg), then it gives a contradiction to t <, UA,V.
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.. tmust be equal to (0, tg).
That is, t=(0,tg).
Since t; <, Ug and tg <, vy, it follows that tg <ugAvg
o 1< (OUgARVR).
s UARY = (OugAyVg)
Case: 2

UAyV is a lower bound of both u and v in N(A,B)
We claim that UAV = UAyV
For that it is enough if we prove that t < UAV
Suppose t <« UAyv, then t, uA,v eAXB and tg =
(UARV)g
s tg < (UAV)g,
S UeAXB orveAXB
Suppose ueAxB
~.The assumption of case 2, namely, UAy < u,
implies that (UAyV)g = Ug,
-1, ueAXB and tg = Ug, contradicting that t < u.
Similarly, for veAxB
Thus, t < UAV leads to a contradiction.
LTS G UARY .
Hence in case 2, UARV = UAV.
This verifies the meet formula.
Hence the lemma.
Notation :

B, = {0} xB, B* = {1} xBand for beB, A, = A x{b}. We
observe that B, is an ideal of N(A,B) and B* is a dual ideal of
N(A,B).
1.3.CONGRUENCES ON N(A,B)

Definition : 1.3.1

Let K and L be lattices and let o be an embedding of K into
L. Let 6 be a congruence on L. We can define a congruence 0,
on Kvia o. That is for a, beK define 9, by a = b(p,) if, and
only if, (@)= a(b) (0).

We call 9, the restriction of @ transferred via the
isomorphism ¢ to K.

Remark :1.3.2

Let A be a bounded lattice and B be a lattice. Then N(A,B)
is a lattice. Define o : B — N(A,B) by a(b)=(0,b) for all beB.
Then o is an isomorphism of B into N(A,B) with image of o
equal to B,. Similarly, if we define § : B — N(AB) by
B(b)=(1,b) for all beB, then B is an isomorphism of B into
N(A,B) with image of B equal to Bx. Define a map y, : A —
N(A,B) by y,(a) = (a,b) for all acA and for a fixed beB. Then
Yp 15 an isomorphism of A into N(A,B) with the image of v,
equalto A, .

Remark :1.3.3

Let ¥ be a congruence relation on N = N(A,B). Using the
natural isomorphisam o, of B into N(A,B), we define ®, as the
restriction of ¥ to B,. Using the natural isomorphism g of B into
N(A,B), we define ®* as the restriction of ¥ to B*. Using the
natural isomorphism y, of A into N(A,B). We define 9, as the
restriction of y to A, forbeB.

Lemma :1.34
O, =0*
Proof :-
Let by=b, (D,).
Then (0,by) = (0, by) (v).
Joining both sides with (1,b,Ab,) we get,
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(Obg) V (LbyAb,)=(0.b;) V (LbyAb,) (w).
(ie) (OV1, b,V (byAby)) = (OVL, b,V (byAb,)) (y)
(ie)  (Lby)=(Lby) (w)
B bOEbl ((D*)
Conversely, if by =b,(® *) then (1,b,) = (1,b,)(¥).
Taking meet on both sides with (0, b,V b,) we get,
(L, by) A 0byVb,) = (1,b;) A (ObyVb,) (¥)
(i)  (1AOb,A (byVb,)) = (1A0, b, A (b,Vb,)) (¥)
(ie) (0, bo) =(0by) (¥)
. by=b, (®,).

Hence @, = @* .
Note : 1.3.5

It is easy to see that ® = ®, = ®* e Con Band {0, |beB}
Con A. Further ® and @, describe .
Definition : 1.3.6

Let A be a bounded lattice. A congruence @ of A is said to
separate 0 if [0] 6 = {0}. That is x = 0 (9) implies that x = 0.
similarly, a congruence 9 of A is said to separate 1 if [1] 6 =
{1}. That is x=1 (9) implies that x=1. The lattice A is said to
be non-separating, if 0 and 1 are not separated by any
congruence 9 # .
Example :1.3.7
Consider the lattice B,.

1 Ba
a b
1]

Then Con (B,) = {w, 1, 6 (g4, 6 o)}
Con (B,) is the lattice

Con (B3

=N 8 om

]

Here ¢ is the only congruence separating O and 1.
Hence B, is a non-separating lattice.
Lemma :1.3.8

Let A and B be lattices with |A|>2and [B|> 1. Let A be
bounded with bounds 0 and 1. Let us further assume that A is
non-separating. Let y = @y be a congruence of N(A,B). Define
amap ¢ by o (y)=®,,where ®d, is the restriction of y to B,
via the natural isomorphism o.. Then o is a bijection between the
non-wmy, congruences of N(A,B) and the congruences of B.
Therefore, Con N(A,B) is isomorphic to Con B with a new zero

added.
Proof: -

Let  # my be congruence relation of N(A,B).

We start with the following statement.
Claim1:

There are elements a, <a, in A and an element b, B such
that (a,,b;) = (a,.b,) (y)
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Proofof Claim1 :
Assume that (u,,v,) = (U,,V,) (y) with (u,v,) <y U,.v,)
We distinguish two cases :
case (i) u,=u,
Then (uy,v,) < (u,v,) implies v,<v, and eitheru, =u,=0oru, =
u,=1.
That is either (O,v,) = (0, v,) (y) or (Lv,) = (1, v,) (y).
But (O,v;) =(Ov,) (y) implies (1v,) = (1.v,) (y)
and (Lv,) = (1v,) (y) implies (O,v,) = (O\v,) (v)
Hence we have both the congruences hold.
Since |A|> 2, we can choose acA-.
Then (a,v,) V (Ov,) = @V, v,W,)=(a\v,)
(avy)=(@vy) V©Ov,) =(@vy)V (v,
= (@awvo, v,W,)
= (Lv,) (since v,<v, and
by definition of <, in N(A,B), aV0=1)
(a,vl) = (1,V2) (\4/)
From this we get (a,v;) A (Lv;) =(1v,) A (Lv,) (y).
Thatis (a,v,) = (1,v,) (y).
Hence the claim is true with a, =a,a,=1and b, =v,.
Case (ii) u;<u,
Since we have assumed that (u;,v,) <y (u,Vv,) it follows
from the definition of < that eitherv, =v, oru;=0oru, =1
If v, = v,, then (u;,v,) = (u,,v,) (y) and so the claimis true
with a, =u,,a,=u,and b; = v, .
If u=0, then (0, v,) = (u,.v,) (y)
As (Ug,vy) <y (U,Vv,), (ie) Ov,) <\ (u,v,) we getv, =v,
(01\/2) = (UZ,VZ) (\U)
Hence the claim is verified with a, =0, a,=u,and b, =v,
If u,=1, then (u;,v,) = (Lv,) (y).
As (Uy,v,) <\ (4, v,), it follows that v, =v,,.
(Ul,Vl) = (l,Vl) (W)
Hence the claim is true with a, = u;,a,=1and b, =v,.
Thus there are elements a, <a, in A and an element b, eB such
that (a,,b,) = (a,.0,) (y).
Claim2 :-
There is an element b,eB such that A, is a single congruence
class of y .
proof of claim 2 :-
By claim 1, there are a;<a, in A and b, in B such that
(a;b))=(, by) ().
Since A is non-separating, there exists a,eA with a,<1 and
3451(9(0'61 )).
As A, is asublattice of N(A,B), it follows that
(Ob;) =(2301)0@ b )@ b))
(Olbl) = (a3vb1) (\V)
So, for any b,eB with b;<b,, joining both sides with (0,b,) we
obtain that (0,b,) V (O,b,) = (a5,b;) V (0,b,) ().
Thatis (0,b,) = (1,b,) (y).
(ie) A, isin asingle congruence y-class.
If b, is the unit element 15 of B we cannot find a b,eB such that
b,<b,.
Hence the proofis complete if b, is not the unit element of B.
If b, is the unit element of B, then we have (0, 1g) = (a31p)
(v).
Since A is non-separating, there exists a,eA with a,<1 and
a451(6(0'a )).
Moreover A, is a sublattice of N(A,B).
So, it follows that (a,,15) = (1,1g) (0 183,18 ))-
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Therefore, (a,,1g) = (1,15) (y).
Now choose any b, <1g.
As | B|>1, such ab, exists.
Meeting bothsides with (1,b,), we obtain that
(@515) A (Lby) =(L1g) A (Lby) ().
Thatis (0,b,) = (Lb,) (y).
Thatis A, is in a single congruence class of y.
Claim 3 :
A, is in a single congruence class of y for each beB.
Proof of clain 3 :
Let beB
By claim 2, there is an element b,eB such that A, is in asingle
congruence class of y.
(i) (Lby)=(0by) (y)
(,b) =((@b,) V(Ob Vh,))A(b)
=((0b,) V(ObVb,))A(@lb)
= (0b) (y).
Thatis, (1,b) = (0,b) (y).
- A, is in asingle congruence class of y .
Proof of lemma :-
Let y e Con (N(A,B)) -{oy}
Define o : Con (N(A,B)) - {wy} — Con (B) by
o(y) = ®,, where @, is the restriction of y to B,
Claim : g is one-one
Let y ,, y, € Con (N(A,B)) -{my} be such that 5 (y ;) = o (v
).
T Thatis @), = (@,).
Let b, =b, (@,), , then (0O,b;) = (0,b,) (v ).
(@), =(®,), and b, =b, (®,), implies that b, = b,(d,),
- (0b,) = (0by) (y).
Thus (0, b;) = (0, b,) () implies (0,b;) = (0,b,) (v ,).
Again b, =b, (d,), implies b, =b, (®,),
- (0,b;) = Ob,) (y ,) implies (1,b,) = (1,b,) (y,)and
(0,b,) =(O,b,) (y ,) implies (1,b;) = (1, b,) (y,).
Thus (1,b;) = (1,0,)( ) implies (1,b;) = (Lb,) (v ).
This implies v =y,
.o Is one-one.
Claim :- gis onto
Let @ < Con (B)
Define a relation y on N(A,B) by
(uyvy) = (Uy,V,) () if, and only if, v, = v, (®).
Claim :- yis a congruence relation
(i) wis reflexive
Let (u,,v,) e N(A,B).
Thenv, € B.
Since @ is reflexive, v, =v, (®).
By definition of y ,(uj,v,) = U,V )(y).
-~y is reflexive.
(ii) y is symmetric
Let (a,b) ,(c,d) e N (A,B) be such that (a,b) = (c,d) ().
@b) =(cd) (v) = b=d(®)
= d=b (D)
= (cd) = (ab) (v)
.y is symmetric.
(iii) y is transitive
Let (a,b), (c.d), (e,)eN(A,B) be such that
(ab) = (c.d)( ) and (c.d) = .1 (v)



14177

Thenb =d (®) and d =f (D).
s b=f (D).
This implies (a,b) = (e,f) ().
.y is transitive.
.y Is an equivalence relation.
Let (uy,vy), (UyVy), (UgVvg), (Uyv,) € N(A,B) be Such that (u,,v,)
= (U,,V,) (y) and (ug,v3) = (Uy.v,) (y).
Thenv, =v, (d)and vy=Vv, (D).
Since @ is a congruence relation,
v, Vv, =v, Vv, (®)and v, Av;=V, AV, (D)
U Vg v V) =(u,Vu,v,Vv,) (y) and
(U Augvy Avg)=(u, Auy, v, AV,) (y).
.y is a congruence relation.
By definition of ¢ and v, we get o(y) = ®
.o isonto
..o is a bijection from Con (N(A,B)) - {wy} — Con (B).
Hence the lemma.
1.4 CHOPPED LATTICES
Definition : 1.4.1
Let M be a finite poset satisfying the following two conditions.
(i) Inf {a,b} exists in M, foranyab ¢ M
(if) Sup {a,b} exists for any a,b € M having a common upper
bound in M.
In M, we define a Ab = inf{a,b} and avb = sup{a,b} whenever
sup{a,b} exists in M.
Then M is a partial lattice called a chopped lattice.
Definition : 1.4.2
Let M be a finite chopped lattice. An equivalence relation ¢ ofa
chopped lattice M is a congruence relation if, and only if, a =
b(@) and ¢ = d () imply that aAc = bAd(P) and whenever aVc
and bWVd exist, aVc = bVd(p). The set Con M of all congruence
relations of M partially ordered by set inclusion is again a
lattice.
Definition : 1.4.3
Let M be a finite chopped lattice. A subset | of M is said to be an
ideal of M if
(i) ielandaec M imply aAie |
(i) ab e I implies avb e | provided that aVvb exists in M. The
set IdM of all ideals of M partially ordered by set inclusion is a
lattice.
Lemma :1.4.4
Let M be a finite chopped lattice. Then for every congruence 6
of M, there exists exactly one congruence @ of IdM, such that
fora,be M,
@a] = (b] (0) if, and only if, a=b (9)
Proof :-
Since arbitrary meet exists in M, (m] is a finite lattice for every
meM.
If {x, y} has an upperbound then X\Wy exists.
Let 9 be a congruence relation on M.
For X cM,set[X] 0=u {[¥] 0]xeX }.
That is, [X] 0 = {y | x = y(0) for some xeX}.
If, 1, J € IdM, define I = J(9) if, and only if, [I]_e: [J1e.
Then @ is an equivalence relation.
For, _
() [1e = [1]6 implies I = 1(p).
. 0 s reflexive.
(ijLet 1= J(0). Then [1]6 = [J]6.
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[916 = [1]6, which implies J=1 (9).
.0 is symmetric.
(iii) Let 1 =J(0) and J = K(9).
Then [I] 6 = [J]6 and [J] 6 = [K] o.
Hence [I] 6 = [K]6.
- 1=K (9).
. 0s transitive.
So, @ is an equivalence relation.
Let I = J(8), NeldM and xel ~ N.
1=J0) = [IT6 = [J]e.
~Xel implies [X]6 = [y]o for some yel.
=X =Yy (p) for some yel.
SXAX = XAY(0).
That is X = XAy(0).
yel, XeN implies xAyeJ n N.
XAy eJnN, X =xAy(0) implies xeJ N N
Thus xel n N implies xe J~ N.
~[I ~NJ6 = [J~ NJe.
Similarly, we can prove that [J ~ N]6 < [I ~ NJe.
Hence [I ~N]o =[J n N]o.
~ 1A N=Jn~ N@).
Next we claim that IVN = JVN(0).
Let A,=TUN.
Let A, ={x| x<t;W;, t,t;eA, . forO<n<w
Then 1 UN = U{A, [n<wi}.
We claim that A, < [JUN]e.
We prove this result using induction on n.
Whenn=0 A,=1UNc[JJo UN < [JWN]o
~A, < [JWN]o.
Therefore the result is true when n = 0.
By induction assumption assume that A _; — [JVN]e.
Let xeA,. Thenx <t Vt, forsometyt,eA ;.
toe A A, < [IWN]o implies
ty=U,(0) for some u,e JUN.
t, e A A, < [DUN]O implies
t, =u,(0) for some u; e JWN.
~ty=toAu (0) and t, =t A u, ().
t,V t, is an upper bound for {t,Au,, t, Au, }.
S (toA Ug) V (T, A uy) exists.
stV t=(tyAug) V (t A, )(0).
X=XA (V1)
=x A [ (t,Aup) V (t,Au;)] (0).
Now X A [ (t,Aug) V (t;Au;) ] e JUN.
=X e [JVN ](9).
An c [JVN ](9)
Thus by induction each A, < [ JVN ](9).
~U{A, In<e} c [IWN ]6).
~IWN < [IWN ](0).
Similarly JVN < [ IVWN ] ().
~IVN =JWN(@).
-fisa congruence relation on IdM.
Let a=b(p) and x e (a]
a=h(g) implies xAa = xAb(6)
That is X = xAb(0).
~.(a] < (b](6).
Similarly, (b] < (2](0)
Hence (a]o = (b]e.
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~.(a] = (b](0). .
Thus a=b (9) implies (a] = (b] (0).
Conversely, let (a] = (b](0).

Then a=b,(p) for some b, <b and

a,=b(0) forsomea, <a.

~.ava, = b, Vb(0).
Thatis a= b (0).
Thus (a] = (b](0) implies a = b(0).
Thus ¢ has all the properties.
To prove uniqueness:-
Let ® be a congruence relation of IdM satisfying (a] = (b](®) if,
and only if, a =b(0).

Let ILJeldM, | = J(®) and xel.

1 =J(@) implies (4 N 1= N I(D).

But xel implies (4 ~I=(.

] nJ=(y] forsomeyel.

S l=( ~ J@) implies ( = (y](d) for some
yel.

~( = (yl(®) implies x =y(6).

Thus given xel, there exists yeJ such that x=y(0).

~X e [J]e.
Thatis | < [J](0).

Similarly J < [1](0).

Hence [1](6) = [J](0).

Therefore | = J(0).
Thus | = J(®) implies 1 = J(0).
Conversely, let 1 = J(0) .

Then x =y(0) for some xel and yelJ.
Take all congruences of the formx = y(0), xel, yel.
By our assumption of @, (X] = (y](®) and by our definition of g,
the join of all these congruences yields | = m

Thus @ = 0.
Hence the lemma.
Definition : 1.4.5
Let C and D be finite lattices such that J =C ~ Dis an ideal

in Cand Jis an ideal in D. Let mdenote the generator of J. Then
M(CD) = C u D is a finite chopped lattice with the natural
partial ordering. We observe that if avb = ¢ in M(C,D), then
either a,b,ceC and avb =c in C ora,b,ceD and avb =cin D.
Lemma :1.4.6
Let C and D be finite lattices such that J =C ~ D is an ideal
in C and an ideal in D. Let m denote the generator of J.
Let M(C,D) = {(xy) € CxD / xAm = yAm}, a subposet of
CxD. Then M(C,D) is a finite lattice and Id M(C,D) ~ M(C,D).
Proof :- .
Let I be an ideal of M(C,D).
Then | can be written uniquely in the form I, u Iy where I is an
ideal of C and I, is an ideal of D satisfying Io nJ= 15 J.
Let I.=(q and 15 = (y].
Then I~ J =I5 Jis the same as XAm = yAm.
Define amap @ : Id M(C,D) — M(C,D) by
o= (K uil)=Kxy)
We claim that @ is an isomorphism.
(i) @isone-one
Let @ (I) = @ (J) Where I and J are ideals of M(C,D).
Thenl=1.u lywhere I.=(q and I;=(y] and J=J. U Jp
where J. = (a] and J = (b].

K. Thiruganasambandam et al./ Elixir Appl. Math. 57 (2013) 14172-14180

() = ©() implies (xy) = (a,b).
This implies x=a,y =b.
Thatis ( U (y] = (a] v (b].
Thatis | =J.
Hence @ is one-one.
(i) @isonto
Let (xy) e CxD be such that xAm = yAm.
Let I = (IV(y], Then @ (1) = (xy).
- @ is onto.
(iii) @ is a homomorphism
Let I, Jeld M(C,D).
Then | = (XM(y]and J = (a]V(b] for some xa « C and
y,b e D such that xAm = yAm and aAm =bAm.
® (V) =0 (VYD) V (@Mb]) )
=@ ((}V@]) V ((yIMb]) )
=@ ((va] V (yWb]))
= (*Va,yb)
(Vo) =0 (VY] )V @ ((aMb] )
= (xy)V(a,b)
= (xVa,y\Vb)
=d (Vo).
=@ (VYD) A (@V(bD) )
=@ (((KA@D) V((yIA®bD )
=@ ((xAa] V (yAb])
= (XAa, YAD)
o) AP () =0 (MYl ) A @ ((@V(b] )
=(xy) A (ab)
= (XA, YAD)
=@ (IA) = (DA @ ().
-.®@ is a homomorphism.
Hence @ is an isomorphism.
~.1dM(C,D) = M(C,D).
Lemma :1.4.7
Let C and D be finite lattices such that J =C ~ D is an ideal
in C and an ideal in D. Let m be the generator of J. Let U be an
ideal of C and let V be an ideal of D. Let us regard U U Vas a

subset of IdM(C,D) by identifying an element with the principal
ideal it generates. If U ~ V = {0}, then the sublattice generated
by Uu Vin IdM(CD) is an ideal and it is isomorphic to UxV.
Proof :-
Let U=(X and V = (y].
Then xeC and yeD.
Define 6: Uu V — 1dM (CD) by o(a) = o (aVb) ) = (aVb].
Then o is an embedding of U U V into IdM(C,D).
Suppose U~V = {0}
Let < U U V > be the sublattice generated by U U V.
letpge<UuV>
ThenpVg e <ULV >,
LetxeC uDandpe<UuV>
Thenx =xV x andp< t Vi,
PSXAP=(XVX)AEVL)
<ALV EKAL)e<UUV>
pe<UuV>
Hence<U u V > isan ideal .
letae<Uu V> thenae (X U (y])
Thena<a,Va,wherea, e (X and a, e(y].
-.By identifying a — (a,,a,) we get
<UuV>=UXV.

R ON(\A)]
d (IAJ)
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Lemma :1.4.8

Let C and D be finite lattices such that J=C ~ D = (m] is
an ideal in C and in D. Then Con IdM(C,D) = {(6, ¥) <Con C x
ConD/9 |J=‘P|J}.

Proof :-

Let O be a congruence of the chopped lattice M(C,D).

Let Q. and Q be the restrictions of O to C and D
respectively.

Then Q. is a congruence of Cand Q, is a congruence of D
Satisfying the condition Q. restricted to J equals Q restricted to
J.

~o:Con (M(CD)) — {(6,y) e ConCxConD/9|,=y |

defined by o(Q) = (Q¢, Qp) is a well defined map.
Conversely, let 6 be a congruence on C and y be a
congruence on D satisfying that 0 restricted to J equals
restricted to J.
Define a congruence Q on M(C,D) as follows :
(i) x=y@)if, andonly if, x=y (9) for xy € C
(i) x=y(Q)if, and only if, x=y(y) forx, y e D
(i) If xeC andyeD, x =y(Q) if, and only fif,
X =XAYy(0) and y = XAy (y) and symmetrically.
Then t : {6, y) € Con C x ConD / 0|=y|} —
Con(M(C,D))
defined by < ((0,y)) = Q is a well defined map.
(tBo)Q) =1(c(Q))
= 1(QaQp)
=Q
B QcQp)=0c(1(QcQp))
=5 (Q)
=(Qc Qp)
-7 Bo =identity map and ¢ B t = identity map.
*. o is an isomorphism.
Therefore Con M(CD) = {(®,y) € ConC x ConD /
ol v ‘ o+
But by lemma (2.4.4), Con M(C,D) = Con(ldM(C,D)).
Hence Con(ldM(CD)) = {(6.y) e ConC x ConD /
0 | v | J}'
Hence the lemma.
Lemma ~1.4.9
Let U be a finite lattice with an ideal V isomorphic to
B,. We identify V with the ideal (B,), = ((0,1)] of N(B,,B,) to
obtain the chopped lattice K=M(U,N(B,,B,)). Let m denote the
generator of V=(B,),. Then IdK=M(U,N(B,,B,)). Let ueU. Then
{vyeN(B,.B,) | (uy)eM(U,N(B,,B,))} isisomorphic to B,.
Proof :-
There are exactly four elements y of N(B,,B,) satisfying
that uAm = yAm, namely the elements of (B,)
They form a sublattice isomorphic to B,. .
Therefore { yeN(B,,B,) /(uy)eM(UN(B,,B,))} is a four
element set closed under co-ordinatewise meets and joins.
Hence the lemma.
1.5. CONGRUENCE CLASSES
Lemma: 15.1
Let U be a finite lattice with an ideal V isomorphic to B,.
Then V = ((0,1)]. Let us assume that U is uniform. Let K be a

chopped lattice M(UN(B,,B,)). Then ldK = M (U,N(B,,B,)).
Then IdK is uniform.

uAm
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Proof :-
A congruence Q of IdK can be described by lemma (2.4.8) .
That is Q — (0, y) where 9 is a congruence of U, y is a
congruence of N(B,,B,) and 6 and y restrict to the same
congruence of V=(B,),..
The trivial congruences w4 = (oy.oyg ) )and
g = (ly, Iy @ g ) are obviously uniform.
We need to look at only two cases.
First case : @ is represented by (8, )
S0 0|, =, Let (xy) bean element of IdK.
Then [(xy)](0.0) ={ ty)eldK | t=x0) }.
Itt =x(0), then tAm = xAm(0).
But 0],,= o, SO tAM= xAm.
~Ixy) 1(0.0) ={ (ty) | t=x0) }andso
[xy)] (6.0) = [[X6].
-, Each congruence class of Q is of the same size as a
congruence class of 9.
So Q is uniform.
Second case : 2 is represented by (4, ) where y = o.
Let (xy) be an element of IdK.
Then [(xy)] (0.) = {(@2)eldK|x = o(0) and y =z(y)}.
For a given o, if (t;) and (at,) e IdK, then t; = t,(y)
because (B,), is in a single congruence class of by lemma
2.3.8 (Claim 3).
Therefore {teN(B,B,)| (wt)eldK} = (B,),,, DY lemma
2.4.9.
Therefore |{teN(B,,B,) | (ot) e IdK}|=](B,)
We conclude that
()] 0.y) = {(@2)eldK| X =o(6) 7 €(B)),pmnt
andso |[(xy)I0.y) | =4[1de].
Therefore each congruence class of ) is four times the size
ofa congruence class of 9.
Hence Q is uniform.
Hence the lemma.
1.6. PROOF OF THE MAIN RESULT
Theorem : 1.6.1
For any finite distributive lattice D, there exists a finite uniform
lattice L such that the congruence lattice of L is isomorphic to D
and L satisfies the properties (P) and (Q) where
(P) : Every join-irreducible congruence of L is of the form
0(0,p), for a suitable atom p of L.
Q) : If 6,,0,.,.....0, € J(ConL) are pairwise incomparable, then L
contains atoms p,,p,.,....p, that generate an ideal isomorphic to
B, and satisfy 6,=6 (0,p;), for all i<n.
Proof :-
We prove the result using induction on n, where n is the number
of join-irreducible elements.
Let D be a finite distributive lattice with n join-irreducible
elements.
Ifn =1, then D = By, so there is a lattice L=B, that satisfies the
theoreml.6.1.
Let us assume that, for all finite distributive lattices with fewer
than n join-irreducible elements, there exists a lattice L
satisfying theorem 1.6.1 and properties (P) and (Q).
Assume that D has n join-irreducible elements.
Let g be a minimal element of J(D).
Let g;.,0,,...,q,(k>0) be all upper bounds of g in J(D).
Let D, be a distributive lattice with J(D,)=J(D)-{q}.

= 4

oAm |
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By induction assumption there exists a lattice L, satisfying Con
L,=D, and (P) and (Q).
If k=0, then D=~ B, xD, and L = B, xL;, obviously satisfies
all the requirements of the theoremand so the proofis over.
So, assume k> 1
The congruences of L, corresponding to the g;’s are pairwise
incomparable and therefore can be written in the form 0(0,p;)
and the p;’s generate an ideal I, isomorphic to B,.
The lattice N(B,,B,) also contains an ideal (B,), isomorphic to
B,.
Idkentifying I, and (B,),, We get the chopped lattice K and the
lattice L=IdK.
By lemmal5.1., IdK is uniform.

That is L is uniform.
Let @ be a join-irreducible congruence of L.
Then we can write 9 as 6(a,b) where a is covered by b.
By lemma 1.4.6., it follows that we can assume that eithera, b e
L,,ora, b e N(B,By)
In either case, there exists an atom g in L, or g in N(B,, B,) so
that
0 (a,b)= 06(0,9) in L, or 6(a,b)=6(0,q) in N(B,, B,).
Obviously, q is an atom of Land 6(a,b)=0(0,q) in L verifying
(P)for L.

Let 0,, 0,,...,.0, be pairwise in-comparable join-
irreducible congruences of L.

To verify condition (Q), we have to find atoms
P;.P,,....p, Of L satisfying 6, = 0(0,p;) for all i < t and such that
P,.Pp,.....p; generate an ideal of L isomorphic to B,.

Let p denote an atomin N(B,,B,) - I,
Infact, there are two atoms but they generate the same
congruence 6(0,p).
If 6(0,p) is not one of 0,,0,,...... ,0, then clearly we can find
PPy, ..., pyin L, as required and p,,p,, .....p, also serves in L.
If 6(0p) is one of 6,6,,...... 0, say 0(0,p) = 0,, then let
PPy, ...p, DE the set of atoms establishing (Q) for 0,,0,,...0,;
in L, and therefore in L.
Then p,.,p,......p,4.P represent the congruences 0,,0,.......,6, and
they generate an ideal isomorphic to B, by lemma 1.4.7.
Therefore L satisfies (Q).
It is clear from this discussion that J(ConK) has exactly one
more element than J(ConL,), namely, 8(0,p).
This join-irreducible congruence relates to the join-irreducible
congruences of ConL, exactly as g relates to the join-irreducible
elements of D.
Therefore D ~ ConL.
Hence the theorem.
Example :1.6.2
The uniform construction for the four-element chain is
This lattice has four congruences.
C, has 32 blocks.
C, is anull congruence
C, has 8blocks.
C, ={{0123}, {456,7},{8,9,10,11},{12,13,14,15},
(16,17,18,19} {20,21,22,23},
{24,25,26,27},{28,29,30,31} }.
C, has 2 blocks.
C,={{012345,6,7,89,10,11,12,13,14,15},
{16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31} }.
C, has 1block.
C, is all congruence.

K. Thiruganasambandam et al./ Elixir Appl. Math. 57 (2013) 14172-14180

The congruence lattice of this lattice is
C3

2

21

20

. Every finite distributive lattice D can be represented as the
congruence lattice of a finite uniform lattice L.
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