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1.1 Introduction  

In this chapter we prove that every finite distributive lattice 

D can be represented as the congruence lattice of finite uniform 

lattice L. Infact we prove that “For any finite distributive lattice 

D, there exists a finite uniform lattice L such that the congruence 

lattice of L is isomorphic to D, and L satisfies the properties (P) 

and (Q) where 

(P)    Every join-irreducible congruence of L is of the form 

 (0,p), for a suitable atom p of L. 

(Q)    If 1, 2 ,………….,  n  J (ConL) are pairwise 

incomparable, then L contains atoms p1, p2,………., pn that 

generate an ideal isomorphic to Bn and satisfy i= (0,pi), for all 

i  n. 

To prove this result, we introduce a new lattice construction 

which is described in section 1.2. Then we find the congruences 

on this new lattice in section 1.3. In 1.4, we introduce a very 

simple kind of chopped lattices.  In section 1.5, we prove that 

the ideal lattice of this chopped lattice is uniform.  The proof of 

the theorem is presented in section 1.6.  

Notation: 

Bn will denote the Boolean algebra with 2n elements.  For a 

bounded lattice A with bounds 0 and 1, A - will denote the lattice 

A – {0,1} 

We start with the definition of uniform lattices.   

Definition : 1.1.1 

A congruence  of a lattice L is uniform, if any two 

congruence classes A and B of  are of the same size.  That is, 

A =B. 

Definition : 1.1.2 

A lattice L is said to be uniform, if all of its congruences are 

uniform.  

Note : 1.1.3  

Every lattice need not be a uniform lattice. 

For example, the lattice N6, given below is not uniform. 

 

The lattice has exactly one non-trivial congruence  and  has 

exactly two congruence classes {0, a, b, d} and {e,l}. 

These two congruence classes are not of the same order. 

Note :  1.1.4  

There exists uniform lattices.   
For example,                                                                      

 Consider the Boolean algebra B2, with four elements. 

 

Its congruence lattice is also B2. It has 4 congruences.  The 

null congruence , the all congruence i and two non-trivial 

congruences   1 and  2. 

1 has two congruence classes {{0, a,},{b, l}} and 2 has 

two congruence classes {{0,b},{a,1}} and both 1 and 2 are 

uniform congruences. 

Hence B2 is a uniform lattice. 

1.2. A LATTICE CONSTRUCTION 

          Let A and B be lattices.  Let us assume that A is bounded 

with bounds 0 and 1 with 0 1.  We introduce a new lattice 

construction N(A,B).  
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If u  AxB, then u = (uA,uB) where uAA and uBB.  The 

binary relation X will denote the partial ordering on AxB, and 

VX and X the join and the meet in AxB respectively. 

On the set AxB, we define a new binary relation denoted by 

N as follows : 

 N = X – {(u,v) / u,v  A-xB and uBvB}. 

We denote (AxB, N) by (N(A,B), N). 

Example : 1.2.1 

For example, consider A=B2 and B=B1 

 

AxB= {(0,0), (0,1), (a,0), (a,1), (b,0), (b,1), (1,0), (1,1)} 

 

Then (AxB, X) is the lattice.   

But N (A, B) has elements the same as AxB. But the partial 

ordering differs 

 

 

 

 

Example: 1.2.2 

 

AxB = {(0,0), (0,x), (0,y), (0,1), (a,0), (a,x), (a,y), (a,1), (b,0), 

(b,x), (b,y), (b,1), (1,0), (1,x), (1,y), (1,1)} 

Then AxB is the lattice given below :- 

 

But N (B2,B2) is the lattice given below : 
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Example : 1.2.3 

 Consider the lattice A=M3 and B=B2  

 

Then AxB = { (0,0) (0,x), (0,y), (0,1), (a,0), (a,x), (a,y), (a,1) 

(b,0), (b,x), (b,y), (b,1), (c,0), (c,x), (c,y), (c,1), (1,0), (1,x), 

(1,y), (1,1) } 

Then the lattices M3xB2 and N(M3, B2) are as given below : 

 

N (M3, B2) is the lattice given below : 

 

Now we prove that N(A,B) is a lattice. 

Lemma : 1.2.4 

Let A and B be lattices.  Let A be a bounded lattice with 

bounds 0 and 1 and 01. Then N(A,B) is a lattice.  The meet and 

join in N(A,B) of N -incomparable elements can be computed 

by the formulae. 

    (0,uBvB),  if uXv  A-xB and uB  vB; 

  uNv  =     

                      uXv,     otherwise. 

 

 

    (1,uBVvB ),  if uVXv  A-xB and uB  vB; 

 uVNv  =   

             uVXv,      other wise. 

  
Proof:- 

First we claim that (N(A,B), N) is a poset. 

(i) N is reflexive. 

 Let aA, bB. 

 Then (a,b)  (a,b) in AxB. 

 Therefore, ( (a,b), (a,b) ) x. 

 But ((a,b), (a,b)) {(u,v) / u,vA-xB, uBvB} for b=b. 

  ((a,b), (a,b))  N. 

  N is reflexive. 

(ii) N is antisymmetric.  

 Let (a,b) N (c,d)  and (c,d) N (a,b). 

 Then (a,b) X (c,d) and (c,d) X (a,b). 

 But X is antisymmetric, hence (a,b) = (c,d) in AxB. 

  a=c and b=d. 

  (a,b) = (c,d) under N for b=d. 

  N is antisymmetric.  

(iii) N is transitive. 

 Let (a,b) N (c,d) and (c,d) N (e,f) 

 Then (a,b) X (c,d) and (c,d) X (e,f) 

 But X is a transitive relation. 

 Hence (a,b) X (e,f). 

 (a,b) N (c,d) implies ((a,b), (c,d)) {(u,v)/u,vA-xB, 

uBvB} 

  b=d. 

 Similarly, (c,d) N(e,f) implies d=f. 

 b=d, d=f implies b=f. 

 (a,b) X (e,f) and b=f implies 

 ((a,b),(e,f))  {(u,v) / u,vA-xB, uBvB}. 

  (a,b) N (e,f). 

 N is a transitive relation. 

 That is (N(A,B), N) is a poset. 

To prove (N(A,B)N) is a lattice.   

For that we have to prove uNv, uVNv exist for all elements 

u,vN(A,B). 

For that, it is enough if we prove that uNv, uVNv exist for N- 

incomparable elements u, vN(A,B). 

Because of duality principle, it is enough if we prove that uNv 

exists for N-incomparable elements u, v N(A,B). 

Let u, vN(A,B) and u, v be N -incomparable.   

Let t be a lower bound of u and v in N(A,B). 
Case : 1 

uxv is not a lower bound of both u and v in N(A,B). 

If uxv is not a lower bound of both u and v in N(A,B), then 

either uxvN u or uxvN v. 

Suppose uxv N u , 

then u, uxv A-xB and uB   ( uxv)B . 

But (uxv)B  uB implies that uBvB . 

          Since t x uxv, it follows that tB  (uxv)B < uB and so t  

A-xB.  

 For, if tA-xB, u A-xB  and tB  uB implies that t N u. 

 Which is a contradiction to t is a lowerbound of u. 

 Since t  A-xB , the first element of t must be 0 or 1. 

 If t = (1, tB), then it gives a contradiction to t x uxv. 



K. Thiruganasambandam et al./ Elixir Appl. Math. 57 (2013) 14172-14180 
 

14175 

  t must be equal to (0, tB). 

 That is, t=(0,tB).   

 Since tB x uB and tB X vB, it follows that tB  uBvB.  

  t  (0,uBXvB). 

  uNv = (0,uBXvB). 

Case : 2 

 uXv is a lower bound of both u and v in N(A,B) 

 We claim that uNv = uXv 

          For that it is enough if we prove that t N uXv 

          Suppose t N uXv,  then t, uXv A-xB and tB  

(uXv)B 

  tB < (uXv)B.  

           uA-xB or vA-xB 

           Suppose uA-xB 

 The assumption of case 2, namely, uXv N u, 

implies that  (uXv)B = uB,  

t, uA-xB and tB  uB, contradicting that t N u. 

Similarly, for vA-xB  

Thus, t N uXv leads to a contradiction. 

  t  N uXv .  

Hence in case 2, uNv = uXv. 

This verifies the meet formula. 

Hence the lemma. 

Notation :  

B  = {0} x B, B  = {1} x B and for bB, Ab = A x {b}. We 

observe that B  is an ideal of N(A,B) and B  is a dual ideal of 

N(A,B). 

1.3.CONGRUENCES ON N(A,B) 

Definition : 1.3.1 

Let K and L be lattices and let  be an embedding of K into 

L. Let  be a congruence on L. We can define a congruence 1 

on K via .  That is for a, bK define 1 by a  b(1) if, and 

only if, (a) (b) (). 

We call 1 the restriction of  transferred via the 

isomorphism  to K. 

Remark : 1.3.2 

Let A be a bounded lattice and B be a lattice.  Then N(A,B) 

is a lattice.  Define  : B  N(A,B) by (b)=(0,b) for all bB. 

Then  is an isomorphism of B into N(A,B) with image of  

equal to B . Similarly, if we define   : B  N(A,B) by 

(b)=(1,b) for all bB, then  is an isomorphism of B into 

N(A,B) with image of  equal to B. Define a map b : A  

N(A,B) by b(a) = (a,b) for all  aA and for a fixed bB.  Then 

b is an isomorphism of A into N(A,B) with the image of b 

equal to Ab . 

Remark : 1.3.3 

Let  be a congruence relation on N = N(A,B). Using the 

natural isomorphisam  of B into N(A,B), we define Φ  as the 

restriction of  to B . Using the natural isomorphism  of B into 

N(A,B), we define Φ* as the restriction of  to B . Using the 

natural isomorphism b of A into N(A,B). We define b as the 

restriction of  to Ab for bB. 

Lemma : 1.3.4  

 Φ   = Φ   

Proof :- 

 Let b0  b1 (Φ ). 

 Then (0,b0)  (0, b1) (). 

 Joining both sides with (1,b0b1) we get, 

   (0,b0) V (1,b0b1)  (0,b1) V (1,b0b1) (). 

             (ie) (0V1, b0 V (b0b1))  (0V1, b1V (b0b1)) () 

                     (ie)      (1,b0)  (1,b1) ()  

                                            b0  b1 (Φ  ). 

Conversely, if b0  b1(Φ  ) then (1,b0)  (1,b1)(). 

          Taking meet on both sides with (0, b0 V b1) we get,  

          (1, b0)  (0,b0Vb1)  (1,b1)  (0,b0Vb1) () 

  (ie)  (10,b0 (b0Vb1))  (10, b1  (b0Vb1)) () 

                        (ie) (0, b0)  (0,b1) () 

                                  b0  b1 ( ). 

Hence   =   . 

Note : 1.3.5  

It is easy to see that  =   =  Con B and {b bB}  

Con A. Further  and b describe . 

Definition : 1.3.6 

Let A be a bounded lattice. A congruence  of A is said to 

separate 0 if [0]  = {0}. That is x  0 () implies that x = 0. 

similarly, a congruence  of A is said to separate 1 if [1]  = 

{1}. That is x  1 () implies that x = 1.  The lattice A is said to 

be non-separating, if 0 and 1 are not separated by any 

congruence   . 

Example : 1.3.7 

Consider the lattice B2. 

 

Then Con (B2) = {, i,  (0,a),  (0,b)}. 

Con (B2) is the lattice      

 

Here  is the only congruence separating 0 and 1. 

Hence B2 is a non-separating lattice. 

Lemma : 1.3.8 

Let A and B be lattices with A > 2 and B > 1. Let A be 

bounded with bounds 0 and 1. Let us further assume that A is 

non-separating.  Let   N be a congruence of N(A,B). Define 

a map   by   () =  ,where    is the restriction of  to B  

via the natural isomorphism . Then  is a bijection between the 

non-N congruences of N(A,B) and the congruences of B. 

Therefore, Con N(A,B) is isomorphic to Con B with a new zero 

added.  
Proof : - 

Let    N be congruence relation of N(A,B).  

We  start with the following statement. 
Claim 1 :  

There are elements a1 < a2 in A and an element b1B such 

that (a1,b1)  (a2,b2) ()  
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Proof of Claim 1 : 

Assume that (u1,v1)  (u2,v2) () with (u1,v1) <N (u2,v2) 

We distinguish two cases : 

case (i) u1=u2  

Then (u1,v1) <N (u2,v2) implies v1<v2 and either u1 = u2 =0 or u1 = 

u2=1. 

That is either (0,v1)  (0, v2) () or (1,v1)  (1, v2) (). 

 But (0,v1)  (0,v2) () implies (1,v1)  (1,v2) () 

 and (1,v1)  (1,v2) () implies (0,v1)  (0,v2) () 

 Hence we have both the congruences hold. 

 Since A > 2, we can choose aA-. 

 Then (a,v1) V (0,v1) = (aV0, v1Vv1) = (a,v1) 

 (a,v1) = (a,v1) V (0,v1)  (a,v1)V (0,v2) 

           = (aV0, v1Vv2) 

         = (1,v2) (since v1<v2 and 

by definition of N  in N(A,B), aV0=1) 

 (a,v1)  (1,v2) (). 

From this we get (a,v1)  (1,v1)  (1,v2)  (1,v1) (). 

That is (a,v1)  (1,v1) (). 

Hence the claim is true with a1 = a, a2 = 1 and b1 = v1. 

Case (ii) u1< u2 

Since we have assumed that (u1,v1) <N (u2,v2) it follows 

from the definition of N that either v1 = v2 or u1 = 0 or u2  = 1. 

If v1 = v2, then (u1,v1)  (u2,v1) () and so the claim is true 

with a1 = u1, a2 = u2 and b1 = v1 . 

 If u = 0, then (0, v1)   (u2,v2) () 

As (u1,v1) <N (u2,v2), (ie) (0,v1) <N (u2,v2) we get v1 = v2 

 (0,v2)  (u2,v2) (). 

Hence the claim is verified with a1 = 0, a2 = u2 and b1 = v2. 

If u2 = 1, then (u1,v1)  (1,v2) (). 

 As (u1,v1) <N (1, v2), it follows that v1 = v2. 

 (u1,v1)  (1,v1) (). 

Hence the claim is true with a1 = u1, a2 = 1 and b1 = v1. 

Thus there are elements a1 < a2 in A and an element b1B such 

that (a1,b1)  (a2,b1) (). 

Claim 2 :- 

There is an element b2B such that Ab  is a single congruence 

class of  . 

proof of claim 2 :- 

By claim 1, there are a1<a2 in A and b1 in B such that          

(a1,b1)  (a2, b1) ( ). 

Since A is non-separating, there exists a4A with a4<1 and 

a41((0,a  )). 

   As  Ab   is a sublattice of N(A,B), it follows that  

(0,b1) ( a3,b1)((a   , b   ), (a     , b  )) 

 (0,b1)  (a3,b1) (). 

So, for any b2B with b1<b2, joining both sides with (0,b2)  we 

obtain that (0,b1) V (0,b2)  (a3,b1) V (0,b2) (). 

That is (0,b2)  (1,b2) (). 

(ie) Ab    is in a single congruence -class. 

If b1 is the unit element 1B of B we cannot find a b2B such that 

b1<b2.  

Hence the proof is complete if b1 is not the unit element of B. 

If b1 is the unit element of B, then we have  (0, 1B)  (a3,1B) 

(). 

Since A is non-separating, there exists a4A with a4<1 and 

a41((0,a  )). 

 Moreover A1  is a sublattice of N(A,B). 

          So, it follows that (a4,1B)  (1,1B) ((0 , 1 B ),(a 3 , 1B  ) ). 

           Therefore, (a4,1B)  (1,1B) (). 

           Now choose any b2 < 1B. 

  As B>1, such a b2 exists.  

           Meeting bothsides with (1,b2), we obtain that  

           (a4,1B)  (1,b2)  (1,1B)  (1,b2) (). 

           That is (0,b2)  (1,b2) (). 

           That is Ab   is in a single congruence class of . 

Claim 3 :  

Ab is in a single congruence class of  for each bB. 

Proof of claim 3 :    

Let bB 

By claim 2, there is an element b2B such that Ab   is in a single 

congruence class of .  

 (ie)  (1,b2)  (0,b2) ()  

         (1,b) = ( (1,b2) V (0,b V b2) )  (1,b) 

         ( (0,b2) V (0,b V b2) )  (1,b) 

        = (0,b) (). 

That is, (1,b)  (0,b) (). 

  Ab is in a single congruence class of  . 

Proof of lemma :- 

 Let   Con (N(A,B)) - {N} 

 Define  : Con (N(A,B)) - {N}  Con (B) by  

 () =  , where   is the restriction of  to B . 

Claim :  is one-one 

Let  1,  2  Con (N(A,B)) -{N} be such that  ( 1) =   ( 

2). 

 That is (1)  = (2)  

 Let b1  b2 (1)  ,  then (0,b1)  (0,b2) (  1). 

 (1)   = (2)  and b1  b2 (1)   implies that b1  b2(2)  

  (0,b1)  (0,b2) (2). 

 Thus (0, b1)  (0, b2) (  1) implies  (0,b1)  (0,b2) ( 2). 

 Again b1  b2 (1)   implies b1  b2 (2)   

           (0,b1)  (0,b2) ( 1) implies (1,b1)  (1,b2) ( 1) and  

     (0,b2)  (0,b2) ( 2) implies (1,b1)  (1, b2) ( 2). 

          Thus (1,b1)  (1,b2)(  1) implies (1,b1)  (1,b2) ( 2). 

 This implies  1= 2.   

  is one-one. 

Claim :-  is onto 

Let   Con (B) 

Define a relation  on N(A,B) by 

          (u1,v1)  (u2,v2) () if, and only if, v1  v2 (). 

Claim :-   is a congruence relation 

(i)   is reflexive  

Let (u1,v1)  N(A,B). 

          Then v1  B. 

 Since  is reflexive, v1  v2 (). 

 By definition of  ,(u1,v1)  (u1,v1)( ). 

          is reflexive. 

(ii)   is symmetric  

Let (a,b) ,(c,d)  N (A,B) be such that (a,b)  (c,d) (). 

(a,b)  (c,d) ()   b  d () 

   d  b () 

                              (c,d)  (a,b) () 

  is symmetric. 

(iii)   is transitive  

 Let (a,b), (c,d), (e,f)N(A,B) be such that  

 (a,b)  (c,d)( ) and (c,d)  (e,f) () 

2 

2 
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 Then b  d () and d  f (). 

           b  f (). 

          This implies (a,b)  (e,f) (). 

           is transitive.  

          is an equivalence relation. 

Let (u1,v1), (u2,v2), (u3,v3), (u4,v4)  N(A,B) be Such that (u1,v1) 

 (u2,v2) () and (u3,v3)  (u4,v4) (). 

 Then v1  v2 () and v3  v4 (). 

 Since  is a congruence relation, 

 v1 V v3  v2 V v4() and v1  v3  v2  v4 (). 

  (u1 V u3,v1 V v3)  (u2 V u4,v2 V v4) () and 

              (u1  u3,v1   v3)  (u2   u4, v2   v4) (). 

 is a congruence relation. 

By  definition of  and , we get () =  

 is onto 

 is a bijection from Con (N(A,B)) - {N}  Con (B). 

Hence the lemma. 

1.4 CHOPPED LATTICES 

Definition : 1.4.1  

Let M be a finite poset satisfying the following two conditions. 

(i) Inf {a,b} exists in M, for any a,b  M 

(ii) Sup {a,b} exists for any a,b  M having a common upper 

bound in M. 

In M, we define a b = inf{a,b} and aVb = sup{a,b}   whenever 

sup{a,b} exists in M. 

Then M is a partial lattice called a chopped lattice. 

Definition : 1.4.2 

Let M be a finite chopped lattice.  An equivalence relation  of a 

chopped lattice M is a congruence relation if, and only if, a  

b() and c  d () imply that ac  bd() and whenever aVc 

and bVd exist, aVc  bVd(). The set Con M of all congruence 

relations of M partially ordered by set inclusion is again a 

lattice.   

Definition : 1.4.3  

Let M be a finite chopped lattice. A subset I of M is said to be an 

ideal of M if 

(i) i  I and a  M imply ai  I 

(ii) a,b  I implies aVb  I provided that aVb exists in M. The 

set IdM of all ideals of M partially ordered by set inclusion is a 

lattice.  

Lemma : 1.4.4  

Let M be a finite chopped lattice.  Then for every congruence  

of M, there exists exactly one congruence   of IdM, such that 

for a, b  M , 

(a]  (b] () if, and only if, a  b () 

Proof :- 

Since arbitrary meet exists in M, (m] is a finite lattice for every 

mM.  

      If {x, y} has an upperbound then xVy exists.  

      Let  be a congruence relation on M. 

     For X  M, set [X]  =  { [x] xX }. 

     That is, [X]  = {yx  y() for some xX}. 

             If, I, J  IdM, define I  J() if, and only if, [I] = [J]. 

         Then  is an equivalence relation.      

For, 

(i)   [I] = [I] implies I  I(). 

  is reflexive.  

(ii)Let I  J(). Then [I] = [J]. 

           [J] = [I], which implies J  I (). 

  is symmetric.  

(iii)  Let I  J() and J  K(). 

 Then [I]  = [J] and [J]  = [K] . 

 Hence [I]  = [K].  

     I  K (). 

   is transitive.  

 So,  is an equivalence relation.  

    Let I  J(), NIdM and xI  N. 

 I  J()  [I] = [J]. 

xI implies [x] = [y] for some yJ. 

x  y () for some yJ. 

xx  xy(). 

 That is x  xy(). 

 yJ, xN implies xyJ  N.  

 xyJN, x  xy() implies xJ  N . 

 Thus xI  N implies x J  N.  

 [I  N]  [J  N]. 

Similarly, we can prove that [ J  N]  [I  N]. 

Hence [I  N] = [J  N]. 

      I  N  J  N(). 

        Next we claim that IVN  JVN(). 

Let Ao = I  N. 

Let An = {x x  toVt1,  to,t1An-1}, for 0 < n < w 

 Then I  N = {An  n<w}. 

We claim that An    [JVN]. 

 We prove this result using induction on n. 

 When n = 0, A0 = I  N  [J]  N    [JVN] 

 A0    [JVN]. 

 Therefore the result is true when n = 0. 

 By induction assumption assume that An-1  [JVN]. 

 Let xAn.  Then x  t0V t1 for some t0,t1An-1. 

 t0  An-1,An-1  [JVN] implies  

 t0  u0() for some u0 JVN. 

 t1  An-1, An-1   [JVN] implies 

 t1  u1() for some u1 JVN. 

 t0  t0uo() and t1  t1 u1().  

 t0V t1 is an upper bound for {t0u0, t1u1}. 

 (t0 u0) V (t1 u1) exists. 

 t0V t1(t0u0) V (t1u1)(). 

 x = x  (t0V t1) 

    x   [ (t0u0) V (t1u1) ] (). 

Now x  [ (t0u0) V (t1u1) ]  JVN. 

 x  [ JVN ](). 

  An   [ JVN ](). 

 Thus by induction each An  [ JVN ](). 

  { An  / n < }  [ JVN ](). 

 IVN    [ JVN ](). 

 Similarly JVN   [ IVN ] (). 

     IVN  JVN(). 

           is a congruence relation on IdM. 

           Let a  b() and x  (a] 

 a  b() implies xa  xb() 

 That is x  xb(). 

 (a]  (b](). 

     Similarly, (b]  (a]() 

 Hence (a] = (b]. 
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 (a]  (b](). 

                      Thus a  b () implies (a]  (b] (). 

       Conversely, let (a]  (b](). 

 Then a  b1() for some b1  b and  

 a1  b() for some a1  a . 

 aVa1  b1Vb(). 

That is a  b (). 

Thus (a]  (b]() implies a  b(). 

Thus  has all the properties. 

To prove uniqueness:- 

Let  be a congruence relation of IdM satisfying (a]  (b]() if, 

and only if, a  b(). 

 Let I,JIdM, I  J() and xI. 

 I  J() implies (x]  I  (x]  J(). 

 But xI implies (x] I=(x]. 

 (x]  J = (y] for some yJ. 

 (x]  I  (x]  J()  implies (x]  (y]() for some 

yJ. 

 (x]  (y]() implies x  y(). 

 Thus given xI, there exists yJ such that x  y(). 

 x  [J].  

 That is I  [J](). 

 Similarly J  [I](). 

 Hence [I]()  [J](). 

     Therefore I  J(). 

         Thus I  J() implies I  J(). 

       Conversely, let I  J() . 

Then x  y() for some xI and yJ. 

Take all congruences of the form x  y(), xI, yJ. 

By our assumption of , (x]  (y]() and by our definition of , 

the join of all these congruences yields I  )(J  

 Thus  = . 

  Hence the lemma. 

Definition : 1.4.5  

Let C and D be finite lattices such that J = C  D is an ideal 

in C and J is an ideal in D. Let m denote the generator of J. Then 

M(C,D) = C  D is a finite chopped lattice with the natural 

partial ordering. We observe that if aVb = c in M(C,D), then 

either a,b,cC and aVb =c in C or a,b,cD and aVb = c in D. 

Lemma : 1.4.6  

Let C and D be finite lattices such that J = C  D is an ideal 

in C and an ideal in D. Let m denote the generator of J. 

          Let M(C,D) = {(x,y)  CxD / xm = ym}, a subposet of 

CxD. Then M(C,D) is a finite lattice and Id M(C,D)  M(C,D). 

Proof :- 

 Let I be an ideal of M(C,D).  

Then I can be written uniquely in the form IC   ID where IC is an 

ideal of C and ID is an ideal of D satisfying IC   J = ID  J. 

 Let IC = (x] and ID = (y]. 

Then IC  J = ID  J is the same as xm = ym. 

   Define a map  : Id M(C,D)  M(C,D) by  

 (I) =  ( (x]  (y] ) = (x, y). 

We claim that  is an isomorphism. 

(i)   is one-one 

Let  (I) =  (J) Where I and J are ideals of M(C,D). 

Then I = IC  ID where IC = (x] and ID = (y] and J = JC  JD  

where JC = (a] and JD = (b]. 

 (I) = (J) implies (x,y) = (a,b). 

 This implies x = a, y = b. 

 That is (x]  (y] = (a]  (b]. 

 That is I = J. 

 Hence  is one-one. 

(ii)   is onto 

 Let (x,y)  CxD be such that xm = ym. 

 Let I = (x]V(y], Then  (I) = (x,y). 

    is onto. 

(iii)   is a homomorphism 

 Let I, JId M(C,D). 

 Then I = (x]V(y]and J = (a]V(b] for some x,a  C and 

y,b  D such that xm = ym and am = bm. 

  (IVJ)      =  ( ((x]V(y]) V ((a]V(b]) ) 

          =  ( ((x]V(a]) V ((y]V(b]) ) 

          =  ( (xVa] V (yVb]) ) 

          = (xVa,yVb) 

 (I) V  (J)   = ( (x]V(y] ) V  ( (a]V(b] )   

               = (x,y)V(a,b) 

                = (xVa,yVb) 

    (IVJ)      =  (I) V  (J). 

         (IJ)     =  ( ((x]V(y])  ((a]V(b]) ) 

                =  ( ((x](a]) V ((y](b]) ) 

                =  ( (xa] V (yb] ) 

                = (xa, yb) 

   (I)   (J)  =  ( (x]V(y] )   ( (a]V(b] ) 

      = (x,y)  (a,b) 

      = (xa, yb) 

         (IJ) =  (I)  (J). 

 is a homomorphism. 

Hence  is an isomorphism. 

  IdM(C,D)  M(C,D). 

Lemma : 1.4.7  

Let C and D be finite lattices such that J = C  D is an ideal 

in C and an ideal in D. Let m be the generator of J.  Let U be an 

ideal of C and let V be an ideal of D. Let us regard U  V as a 

subset of IdM(C,D) by identifying an element with the principal 

ideal it generates. If U  V = {0}, then the sublattice generated 

by U  V in IdM(C,D)  is an ideal and it is isomorphic to UxV. 

Proof :- 

Let U = (x] and V = (y]. 

Then xC and  yD. 

Define  : U  V  IdM (C,D) by (a) = ( (aVb) ) = (aVb]. 

Then  is an embedding of U  V into IdM(C,D). 

Suppose U  V = {0} 

Let < U  V > be the sublattice generated by U  V. 

Let p,q  < U  V > 

Then pVq  < U  V > . 

Let xC  D and p  < U  V > 

Then x = x1V x2 and p   t1V t2 

p   x   p = (x1 V x2)  (t1V t2) 

                            (x1  t1) V (x2  t2)  < U  V > 

 p  < U  V >. 

 Hence < U  V >  is an ideal . 

Let a  < U  V >,  then a ( (x]   (y] ) 

Then a  a1V a2 where a1 (x] and a2 (y]. 

By identifying a  (a1,a2) we get      

    < U  V >  UXV. 
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Lemma : 1.4.8  

Let C and D be finite lattices such that J = C  D = (m] is 

an ideal in C and in D. Then Con IdM(C,D)  {(, ) Con C x 

Con D /  J=J}. 

Proof :- 

Let   be a congruence of the chopped lattice M(C,D). 

Let C and D be the restrictions of   to C and D 

respectively. 

Then C is a congruence of C and D is a congruence of D 

Satisfying the condition C restricted to J equals D restricted to 

J. 

 : Con (M(C,D))  {(,)  Con C x Con D /  J =   

J } 

defined by () = (C, D) is a well defined map. 

Conversely, let  be a congruence on C and  be a 

congruence on D satisfying that  restricted to J equals  

restricted to J. 

Define a congruence   on M(C,D) as follows : 

(i)  x  y() if, and only if, x  y () for x,y  C 

(ii) x  y()if, and only if, x  y() for x, y  D 

(iii) If xC and yD, x  y() if, and only if,  

 x  xy() and y  xy () and symmetrically. 

Then  : {(, )  Con C x ConD  J=J}  

Con(M(C,D)) 

defined by  ((,)) =   is a well defined map. 

           (  )() = (  (   ) ) 

                  =   ( C, D ) 

                           =    

(  )( C, D ) = (  ( C, D ) ) 

                 =  (   ) 

                = ( C, D )      

    = identity map and    = identity map. 

  is an isomorphism. 

Therefore Con M(C,D)  {(,)  ConC x ConD / 

J=J}. 

But by lemma (2.4.4), Con M(C,D)  Con(IdM(C,D)). 

Hence Con(IdM(C,D))  {(,)  ConC x ConD / 

J=J}. 

Hence the lemma. 

Lemma : 1.4.9 

 Let U be a finite lattice with an ideal V isomorphic to 

Bn.  We identify V with the ideal (Bn)  = ((0,1)] of N(B2,Bn) to 

obtain the chopped lattice K=M(U,N(B2,Bn)). Let m denote the 

generator of V=(Bn) . Then IdKM(U,N(B2,Bn)). Let uU. Then 

{yN(B2,Bn)(u,y)M(U,N(B2,Bn))} is isomorphic to B2. 

Proof :- 

There are exactly four elements y of N(B2,Bn) satisfying 

that um = ym, namely the elements of (B2) um. 

They form a sublattice isomorphic to B2. 

Therefore { yN(B2,Bn) /(u,y)M(U,N(B2,Bn))} is a four 

element set closed under co-ordinatewise meets and joins. 

Hence the lemma. 

1.5. CONGRUENCE CLASSES 

Lemma: 1.5.1 

Let U be a finite lattice with an ideal V isomorphic to Bn. 

Then V  ((0,1)].  Let us assume that U is uniform.  Let K be a 

chopped lattice M(U,N(B2,Bn)).  Then IdK  M (U,N(B2,Bn)). 

Then IdK is uniform. 

 

Proof :- 

A congruence   of IdK can be described by lemma (2.4.8) . 

That is    (, ) where  is a congruence of U,  is a 

congruence of N(B2,Bn) and  and  restrict to the same 

congruence of V=(Bn) . 

The trivial congruences IdK = ( U,N(B   ,B  )  ) and   

 iIdK = ( iU, iN (B   ,B  )  ) are obviously uniform. 

 We need to look at only two cases.  

First case :   is represented by ( , ) 

So V = V. Let (x,y) be an element of IdK. 

Then [(x,y)](,) = { (t,y)IdK  t  x() }. 

It t  x(), then tm = xm(). 

But V = V so tm = xm. 

[(x,y) ] (,) = { (t,y)  t  x() } and so  

[(x,y)] (,) = [[x]]. 

   Each congruence class of     is of the same size as a 

congruence class of . 

 So   is uniform. 

Second case :     is represented by ( , ) where     . 

Let (x,y) be an element of IdK. 

Then [(x,y)] (,) = {(,z)IdKx  () and y  z()}. 

For a given , if (,t1) and (,t2)  IdK, then t1  t2() 

because (B2) is in a single congruence class of    by lemma 

2.3.8 (Claim 3). 

Therefore {tN(B2,Bn)(,t)IdK} = (B2)m by lemma 

2.4.9. 

Therefore {tN(B2,Bn)(,t)  IdK}=(B2)m= 4. 

We conclude that 

 [(x,y)] (,) = {(,z)IdKx  () ,z (B2)m} 

and so  [(x,y)](,)  = 4[x]. 

Therefore each congruence class of   is four times the size 

of a congruence class of  . 

Hence   is uniform. 

Hence the lemma. 

1.6. PROOF OF THE MAIN RESULT 

Theorem : 1.6.1 

For any finite distributive lattice D, there exists a finite uniform 

lattice  L such that the congruence lattice of L is isomorphic to D 

and L satisfies the properties (P) and (Q) where  

 (P)  :  Every join-irreducible congruence of L is of the form 

(0,p), for a suitable atom p of L. 

(Q) : If 1,2,….,n  J(ConL) are pairwise incomparable, then L 

contains atoms p1,p2,….,pn that generate an ideal isomorphic to 

Bn and satisfy i= (0,pi), for all in. 

Proof :- 

We prove the result using induction on n, where n is the number 

of join-irreducible elements. 

Let D be a finite distributive lattice with n join-irreducible 

elements. 

If n = 1, then D  B1, so there is a lattice L=B1 that satisfies the 

theorem1.6.1.  

Let us assume that,  for all finite distributive lattices with fewer 

than n join-irreducible elements, there exists a lattice L 

satisfying theorem 1.6.1 and properties (P) and (Q).   

Assume that D has n join-irreducible elements. 

Let q be a minimal element of J(D). 

Let q1,q2,…,qk(k0) be all upper bounds of q in J(D). 

Let D1 be a distributive lattice with J(D1)=J(D)-{q}. 
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By induction assumption there exists a lattice L1 satisfying Con 

L1D1 and  (P) and (Q).  

If k = 0, then D  B1 x D1 and L = B1 x L1, obviously  satisfies 

all the requirements of the theorem and so the proof is over.   

So, assume k  1 

The congruences of L1 corresponding to the q i’s are pairwise 

incomparable and therefore can be written in the form (0,pi) 

and the pi’s generate an ideal I1 isomorphic to Bk. 

The lattice N(B2,Bk) also contains an ideal (Bk)  isomorphic to 

Bk.  

Identifying I1 and (Bk) , We get the chopped lattice K and the 

lattice L=IdK. 

By lemma1.5.1., IdK is uniform. 

 That is L is uniform. 

Let  be a join-irreducible congruence of L. 

Then we can write  as (a,b) where a is covered by b. 

By lemma 1.4.6., it follows that we can assume that either a, b  

L1, or a, b  N(B2,Bk) 

In either case, there exists an atom q in L1 or q in N(B2, Bk) so 

that  

 (a,b)= (0,q) in L1 or  (a,b)=(0,q) in N(B2, Bk). 

Obviously, q is an atom of Land (a,b)=(0,q) in L verifying 

(P)for L. 

 Let 1, 2,….,t be pairwise in-comparable join-

irreducible congruences of L. 

 To verify condition (Q), we have to find atoms 

p1,p2,…,pt of L satisfying i = (0,pi) for all i  t and such that 

p1,p2,…,pt generate an ideal of L isomorphic to Bt. 

Let p denote an atom in N(B2,Bk) - I1 

Infact, there are two atoms but they generate the same 

congruence (0,p). 

If (0,p) is not one of 1,2,……,t then clearly we can find  

p1,p2, …, pt in L1 as required and p1,p2, …..,pt also serves in L. 

If (0,p) is one of 1,2,……,t say (0,p) = t, then let 

p1,p2,…..,pt-1 be the set of atoms establishing (Q) for 1,2,..,t-1 

in L1 and therefore in L. 

Then p1,p2,…..,pt-1,p represent the congruences 1,2,……,t and 

they generate an ideal isomorphic to Bt by lemma 1.4.7.  

Therefore L satisfies (Q). 

It is clear from this discussion that J(ConK) has exactly one 

more element than J(ConL1), namely, (0,p). 

This join-irreducible congruence relates to the join-irreducible 

congruences of ConL, exactly as q relates to the join-irreducible  

elements of D. 

Therefore D  ConL. 

Hence the theorem. 

Example : 1.6.2 

The uniform construction for the four-element chain is 

This lattice has four congruences. 

Co has 32 blocks. 

C0 is a null congruence  

C1 has 8 blocks. 

C1 = { {0,1,2,3}, {4,5,6,7},{8,9,10,11},{12,13,14,15}, 

 (16,17,18,19},{20,21,22,23}, 

{24,25,26,27},{28,29,30,31} }. 

C2 has 2 blocks. 

C2 = { {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, 

 {16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31} }. 

C3 has 1 block. 

C3 is all congruence. 

The congruence lattice of this lattice is  

 

 

 

 Every finite distributive lattice D can be represented as the 

congruence lattice of a finite uniform lattice L. 
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