

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 57 (2013) 14172-14180

Congruence lattices of uniform lattices

K. Thiruganasambandam¹ and S. Mahendirakumar²

¹Department of Mathematics, Govt. Thirumagal Mills College, Gudiyatham, S.India.

²Research Department, Manonmaniam Sundaranar University, Tirunelveli S.India.

ARTICLE INFO

Article history:

Received: 7 February 2013; Received in revised form: 28 March 2013;

Accepted: 6 April 2013;

Keywords

Lattices,

Congruence, Element.

ABSTRACT

In this Chapater we prove two important results. Let L be a lattice. A congruence of L is said to be uniform, if any two congruence classes of are of the same size. The lattice L is said to be uniform, if all congruences of L are uniform. We prove that every finite distributive lattice D can be represented as the congruence lattice of a finite uniform lattice.

2013 Elixir All rights reserved.

1.1 Introduction

In this chapter we prove that every finite distributive lattice D can be represented as the congruence lattice of finite uniform lattice L. Infact we prove that "For any finite distributive lattice D, there exists a finite uniform lattice L such that the congruence lattice of L is isomorphic to D, and L satisfies the properties (P) and (Q) where

- (P) Every join-irreducible congruence of L is of the form θ (0,p), for a suitable atom p of L.
- If θ_1 , θ_2 ,...., $\theta_n \in J$ (ConL) are pairwise incomparable, then L contains atoms p_1, p_2, \ldots, p_n that generate an ideal isomorphic to B_n and satisfy $\theta_i = \theta$ $(0,p_i)$, for all $i \leq n$.

To prove this result, we introduce a new lattice construction which is described in section 1.2. Then we find the congruences on this new lattice in section 1.3. In 1.4, we introduce a very simple kind of chopped lattices. In section 1.5, we prove that the ideal lattice of this chopped lattice is uniform. The proof of the theorem is presented in section 1.6.

B_n will denote the Boolean algebra with 2ⁿ elements. For a bounded lattice A with bounds 0 and 1, A will denote the lattice $A - \{0.1\}$

We start with the definition of uniform lattices.

Definition: 1.1.1

A congruence θ of a lattice L is uniform, if any two congruence classes A and B of θ are of the same size. That is, |A| = |B|.

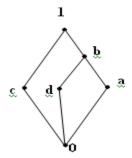
Definition: 1.1.2

A lattice L is said to be uniform, if all of its congruences are uniform.

Note: 1.1.3

Every lattice need not be a uniform lattice.

For example, the lattice N₆, given below is not uniform.



The lattice has exactly one non-trivial congruence θ and θ has exactly two congruence classes {0, a, b, d} and {e,l}.

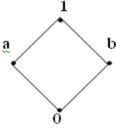
These two congruence classes are not of the same order.

Note: 1.1.4

There exists uniform lattices.

For example,

Consider the Boolean algebra B₂, with four elements.



Its congruence lattice is also B2. It has 4 congruences. The null congruence o, the all congruence i and two non-trivial congruences θ_1 and θ_2 .

 θ_1 has two congruence classes $\{\{0, a,\},\{b, l\}\}$ and θ_2 has two congruence classes $\{\{0,b\},\{a,1\}\}\$ and both θ_1 and θ_2 are uniform congruences.

Hence B_2 is a uniform lattice.

1.2. A LATTICE CONSTRUCTION

Let A and B be lattices. Let us assume that A is bounded with bounds 0 and 1 with $0 \neq 1$. We introduce a new lattice construction N(A.B).

Tele:

E-mail addresses: srisanthakumar@rediffmail.com

If $u \in AxB$, then $u = (u_A, u_B)$ where $u_A \in A$ and $u_B \in B$. The binary relation \leq_X will denote the partial ordering on AxB, and V_X and Λ_X the join and the meet in AxB respectively.

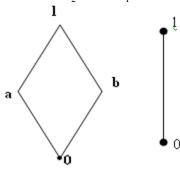
On the set AxB, we define a new binary relation denoted by \leq_N as follows :

 $\leq_N \ = \ \leq_X \ - \ \{(u,v) \ / \ u,v \ \in \ A \ \bar{} \ xB \ \ and \ u_B \neq v_B \}.$

We denote (AxB, \leq_N) by $(N(A,B), \leq_N)$.

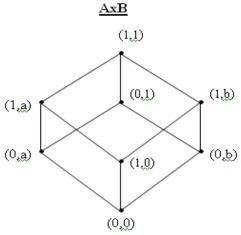
Example : 1.2.1

For example, consider A=B₂ and B=B₁



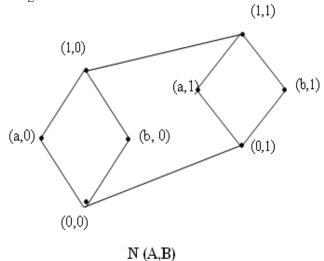
 \mathbf{B}

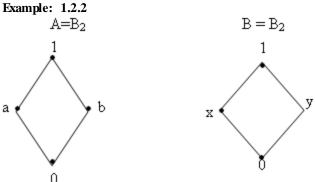
 $AxB=\ \{(0,0),\ (0,1),\ (a,0),\ (a,1),\ (b,0),\ (b,1),\ (1,0),\ (1,1)\}$



Then (AxB, \leq_X) is the lattice.

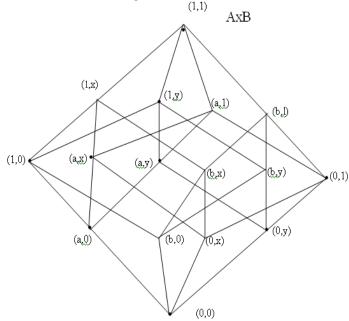
But N (A, B) has elements the same as AxB. But the partial ordering differs



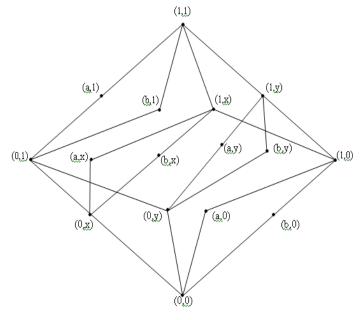


 $\begin{array}{lll} AxB = \{ (0,0), \ (0,x), \ (0,y), \ (0,1), \ (a,0), \ (a,x), \ (a,y), \ (a,1), \ (b,0), \\ (b,x), \ (b,y), \ (b,1), \ (1,0), \ (1,x), \ (1,y), \ (1,1) \} \end{array}$

Then AxB is the lattice given below:-

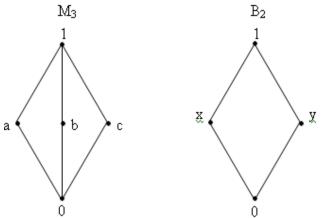


But N (B_2,B_2) is the lattice given below:



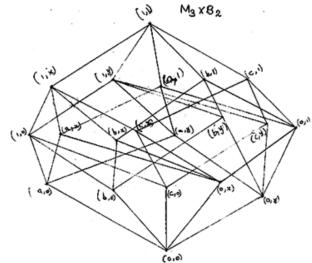
Example : 1.2.3

Consider the lattice A=M₃ and B=B₂

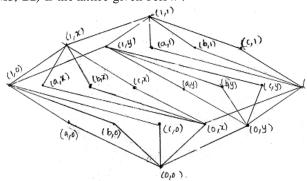


Then $AxB = \{ (0,0), (0,x), (0,y), (0,1), (a,0), (a,x), (a,y), (a,1), (b,0), (b,x), (b,y), (b,1), (c,0), (c,x), (c,y), (c,1), (1,0), (1,x), (1,y), (1,1) \}$

Then the lattices M_3xB_2 and $N(M_3, B_2)$ are as given below:



N (M3, B2) is the lattice given below:



Now we prove that N(A,B) is a lattice.

Lemma: 1.2.4

Let A and B be lattices. Let A be a bounded lattice with bounds 0 and 1 and $0 \neq 1$. Then N(A,B) is a lattice. The meet and join in N(A,B) of \leq_N -incomparable elements can be computed by the formulae

by the formulae.
$$(0,u_B \Lambda v_B), \text{ if } u \Lambda_X v \in A^- xB \text{ and } u_B \neq v_B;$$

$$u \Lambda_X v = u \Lambda_X v, \text{ otherwise.}$$

$$uV_N^{}v \; = \; \left\{ \begin{array}{l} \left(1,\!u_B^{}V\!v_B^{}\right), \; \text{if} \; uV_X^{}v \; \in \; A^*xB \; \text{and} \; u_B^{} \neq v_B^{}; \\ \\ uV_X^{}v, \qquad \text{other wise}. \end{array} \right.$$

Proof:

First we claim that $(N(A,B), \leq_N)$ is a poset.

(i) \leq_N is reflexive.

Let $a \in A$, $b \in B$.

Then $(a,b) \le (a,b)$ in AxB.

Therefore, $((a,b), (a,b)) \in \leq_v$.

But $((a,b), (a,b)) \notin \{(u,v) / u,v \in A^{-x}B, u_{B} \neq v_{B}\}$ for b=b.

 $((a,b), (a,b)) \in \leq_{N}$

 $\therefore \leq_{N}$ is reflexive.

(ii) \leq_N is antisymmetric.

Let $(a,b) \leq_N (c,d)$ and $(c,d) \leq_N (a,b)$.

Then $(a,b) \leq_{X} (c,d)$ and $(c,d) \leq_{X} (a,b)$.

But \leq_X is antisymmetric, hence (a,b) = (c,d) in AxB.

 \therefore a=c and b=d.

 \therefore (a,b) = (c,d) under \leq_N for b=d.

 $\therefore \leq_N$ is antisymmetric.

(iii) \leq_N is transitive.

Let $(a,b) \leq_N (c,d)$ and $(c,d) \leq_N (e,f)$

Then $(a,b) \leq_X (c,d)$ and $(c,d) \leq_X (e,f)$

But $\leq_{\mathbf{X}}$ is a transitive relation.

Hence $(a,b) \leq_{X} (e,f)$.

 $(a,b) \le_N (c,d) \text{ implies } ((a,b), (c,d)) \notin \{(u,v)/u,v \in A^-xB,$

 $u_B \neq v_B$

∴ b=d.

Similarly, $(c,d) \leq_N (e,f)$ implies d=f.

b=d, d=f implies b=f.

 $(a,b) \leq_{X} (e,f)$ and b=f implies

 $((a,b),(e,f)) \notin \{(u,v) / u,v \in A^{-}xB, u_B \neq v_B\}.$

 $(a,b) \leq_N (e,f)$.

 $\therefore \leq_N$ is a transitive relation.

That is $(N(A,B), \leq_N)$ is a poset.

To prove $(N(A,B) \leq_N)$ is a lattice.

For that we have to prove $u\Lambda_N v$, $uV_N v$ exist for all elements $u,v\in N(A,B)$.

For that, it is enough if we prove that $u \Lambda_N v$, $u V_N v$ exist for \leq_N -incomparable elements $u, v \in N(A,B)$.

Because of duality principle, it is enough if we prove that $u\Lambda_N v$ exists for \leq_N -incomparable elements $u, v \in N(A,B)$.

Let $u, v \in N(A,B)$ and u, v be \leq_N -incomparable.

Let t be a lower bound of u and v in N(A,B).

Case : 1

 $u\Lambda_x v$ is not a lower bound of both u and v in N(A,B).

If $u\Lambda_x v$ is not a lower bound of both u and v in N(A,B), then either $u\Lambda_x v \Leftarrow_N u$ or $u\Lambda_x v \Leftarrow_N v$.

Suppose $u \Lambda_x v \Leftarrow_N u$,

then $u, u \Lambda_x v \in A^-xB$ and $u_B \neq (u \Lambda_x v)_B$.

But $(u\Lambda_x v)_B \neq u_B$ implies that $u_B \neq v_B$.

Since $t \le_x u \Lambda_x v$, it follows that $t_B \le (u \Lambda_x v)_B < u_B$ and so $t \not\in A^-xB$.

For, if $t \in A^-xB$, $u \in A^-xB$ and $t_B \neq u_B$ implies that $t \leq_N u$. Which is a contradiction to t is a lowerbound of u. Since $t \notin A^-xB$, the first element of t must be 0 or 1. If $t = (1, t_B)$, then it gives a contradiction to $t \leq_x u \Lambda_x v$.

 $\begin{array}{l} \therefore \text{ t must be equal to } (0,\,t_B). \\ \text{That is, } t \! = \! (0,\!t_B). \\ \text{Since } t_B \! \leq_{\! X} \! u_B \text{ and } t_B \! \leq_{\! X} \! v_B, \text{ it follows that } t_B \! \leq \! u_B \Lambda v_B. \\ \therefore t \! \leq \! (0,\!u_B \! \Lambda_X \! v_B). \\ \therefore u \! \Lambda_N \! v \! = \! (0,\!u_B \! \Lambda_X \! v_B). \end{array}$

Case: 2

 $u\Lambda_X v$ is a lower bound of both u and v in N(A,B) We claim that $u\Lambda_N v = u\Lambda_X v$

For that it is enough if we prove that $t \leq_N u \Lambda_X v$

Suppose $t \Leftarrow_N u\Lambda_X v, \quad then \ t, \ u\Lambda_X v \in A^-xB$ and $t_B \neq (u\Lambda_X v)_B$

 $\therefore t_{B} < (u\Lambda_{X}v)_{B}.$ $\therefore u \in A^{-}xB \text{ or } v \in A^{-}xB$

Suppose $u \in A^-xB$

...The assumption of case 2, namely, $u\Lambda_X v \leq_N u,$ implies that $(u\Lambda_X v)_B = u_B,$

 $\therefore t$, $u \in A^{-}xB$ and $t_{B} \neq u_{B}$, contradicting that $t \leq_{N} u$.

Similarly, for $v \in A^-xB$

Thus, $t \leftarrow_N u \Lambda_X v$ leads to a contradiction.

 $\therefore \ t \leq_N u \Lambda_X v \ .$

Hence in case 2, $u\Lambda_N v = u\Lambda_X v$.

This verifies the meet formula.

Hence the lemma.

Notation:

 $B_* = \{0\} \times B$, $B^* = \{1\} \times B$ and for $b \in B$, $A_b = A \times \{b\}$. We observe that B_* is an ideal of N(A,B) and B^* is a dual ideal of N(A,B).

1.3.CONGRUENCES ON N(A,B)

Definition: 1.3.1

Let K and L be lattices and let α be an embedding of K into L. Let θ be a congruence on L. We can define a congruence θ_1 on K via α . That is for a, $b \in K$ define θ_1 by $a \equiv b(\theta_1)$ if, and only if, $\alpha(a) \equiv \alpha(b)$ (θ).

We call θ_1 the restriction of θ transferred via the isomorphism α to K.

Remark: 1.3.2

Let A be a bounded lattice and B be a lattice. Then N(A,B) is a lattice. Define $\alpha:B\to N(A,B)$ by $\alpha(b)\text{=}(0,b)$ for all $b\in B.$ Then α is an isomorphism of B into N(A,B) with image of α equal to B_* . Similarly, if we define $\beta:B\to N(A,B)$ by $\beta(b)\text{=}(1,b)$ for all $b\in B,$ then β is an isomorphism of B into N(A,B) with image of β equal to B_* . Define a map $\gamma_b:A\to N(A,B)$ by $\gamma_b(a)=(a,b)$ for all $a\in A$ and for a fixed $b\in B.$ Then γ_b is an isomorphism of A into N(A,B) with the image of γ_b equal to A_b .

Remark: 1.3.3

Let Ψ be a congruence relation on N=N(A,B). Using the natural isomorphisam α of B into N(A,B), we define Φ_* as the restriction of Ψ to B_* . Using the natural isomorphism β of B into N(A,B), we define Φ^* as the restriction of Ψ to B^* . Using the natural isomorphism γ_b of A into N(A,B). We define θ_b as the restriction of ψ to A_b for $b \in B$.

 $\Phi_* = \Phi^*$

Proof:-

Let $b_0 \equiv b_1 (\Phi_*)$.

Then $(0,b_0) \equiv (0, b_1) (\psi)$.

Joining both sides with $(1,b_0\Lambda b_1)$ we get,

Taking meet on both sides with $(0, b_0 \vee b_1)$ we get,

$$(1, b_0) \Lambda (0,b_0 Vb_1) \equiv (1,b_1) \Lambda (0,b_0 Vb_1) (\Psi)$$

$$(ie) \qquad (1\Lambda 0,b_0 \Lambda (b_0 Vb_1)) \equiv (1\Lambda 0, b_1 \Lambda (b_0 Vb_1)) (\Psi)$$

$$(ie) (0, b_0) \equiv (0,b_1) (\Psi)$$

$$\therefore b_0 \equiv b_1 (\Phi_*).$$

Hence $\Phi_* = \Phi^*$.

Note: 1.3.5

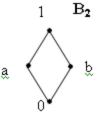
It is easy to see that $\Phi = \Phi_* = \Phi^* \in \text{Con B}$ and $\{\theta_b \mid b \in B\} \subseteq \text{Con A}$. Further Φ and θ_b describe ψ .

Definition: 1.3.6

Let A be a bounded lattice. A congruence θ of A is said to separate 0 if [0] $\theta = \{0\}$. That is $x \equiv 0$ (θ) implies that x = 0. similarly, a congruence θ of A is said to separate 1 if [1] $\theta = \{1\}$. That is $x \equiv 1$ (θ) implies that x = 1. The lattice A is said to be non-separating, if 0 and 1 are not separated by any congruence $\theta \neq \omega$.

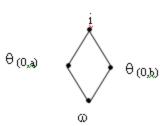
Example : 1.3.7

Consider the lattice B₂.



Then Con $(B_2) = \{\omega, i, \theta_{(0,a)}, \theta_{(0,b)}\}.$ Con (B_2) is the lattice

Con (B2)



Here ω is the only congruence separating 0 and 1.

Hence B₂ is a non-separating lattice.

Lemma: 1.3.8

Let A and B be lattices with |A|>2 and |B|>1. Let A be bounded with bounds 0 and 1. Let us further assume that A is non-separating. Let $\psi \neq \omega_N$ be a congruence of N(A,B). Define a map σ by $\sigma(\psi) = \Phi_*$, where Φ_* is the restriction of ψ to B_* via the natural isomorphism α . Then σ is a bijection between the non- ω_N congruences of N(A,B) and the congruences of B. Therefore, Con N(A,B) is isomorphic to Con B with a new zero added.

Proof:

Let $\psi \neq \omega_N$ be congruence relation of N(A,B).

We start with the following statement.

Claim 1:

There are elements $a_1 < a_2$ in A and an element $b_1 \in B$ such that $(a_1,b_1) \equiv (a_2,b_2) (\psi)$

Proof of Claim 1:

Assume that $(u_1, v_1) \equiv (u_2, v_2)$ (ψ) with $(u_1, v_1) <_N (u_2, v_2)$ We distinguish two cases :

case (i) $u_1=u_2$

Then $(u_1, v_1) \le v_1 \le v_2$ implies $v_1 \le v_2$ and either $v_1 = v_2 = 0$ or $v_1 = v_2 = 1$.

That is either $(0, v_1) \equiv (0, v_2) (\psi)$ or $(1, v_1) \equiv (1, v_2) (\psi)$.

But
$$(0,v_1) \equiv (0,v_2)$$
 (ψ) implies $(1,v_1) \equiv (1,v_2)$ (ψ)

and
$$(1, v_1) \equiv (1, v_2)$$
 (ψ) implies $(0, v_1) \equiv (0, v_2)$ (ψ)

Hence we have both the congruences hold.

Since |A| > 2, we can choose $a \in A^-$.

Then
$$(a,v_1) V (0,v_1) = (aV0, v_1Vv_1) = (a,v_1)$$

$$(a,v_1) = (a,v_1) V (0,v_1) \equiv (a,v_1)V (0,v_2)$$

=
$$(aV0, v_1Vv_2)$$

= $(1,v_2)$ (since $v_1 < v_2$ and

by definition of \leq_N in N(A,B), aV0=1)

$$\therefore (a, v_1) \equiv (1, v_2) (\psi).$$

From this we get $(a,v_1) \Lambda (1,v_1) \equiv (1,v_2) \Lambda (1,v_1) (\psi)$.

That is $(a,v_1) \equiv (1,v_1) (\psi)$.

Hence the claim is true with $a_1 = a$, $a_2 = 1$ and $b_1 = v_1$.

Case (ii) $u_1 < u_2$

Since we have assumed that $(u_1,v_1) <_N (u_2,v_2)$ it follows from the definition of \leq_N that either $v_1 = v_2$ or $u_1 = 0$ or $u_2 = 1$.

If $v_1=v_2$, then $(u_1,v_1)\equiv (u_2,v_1)$ (ψ) and so the claim is true with $a_1=u_1,\,a_2=u_2$ and $b_1=v_1$.

If
$$u = 0$$
, then $(0, v_1) \equiv (u_2, v_2) (\psi)$

As
$$(u_1, v_1) <_N (u_2, v_2)$$
, (ie) $(0, v_1) <_N (u_2, v_2)$ we get $v_1 = v_2$
 $\therefore (0, v_2) \equiv (u_2, v_2)$ (ψ).

Hence the claim is verified with $a_1 = 0$, $a_2 = u_2$ and $b_1 = v_2$.

If $u_2 = 1$, then $(u_1, v_1) \equiv (1, v_2) (\psi)$.

As
$$(u_1, v_1) <_N (1, v_2)$$
, it follows that $v_1 = v_2$.
 $\therefore (u_1, v_1) \equiv (1, v_1)$ (ψ).

Hence the claim is true with $a_1 = u_1$, $a_2 = 1$ and $b_1 = v_1$.

Thus there are elements $a_1 < a_2$ in A and an element $b_1 \in B$ such that $(a_1, b_1) \equiv (a_2, b_1)$ (ψ) .

Claim 2 :-

There is an element $b_2 \in B$ such that A_b is a single congruence class of ψ .

proof of claim 2:-

By claim 1, there are $a_1 < a_2$ in A and b_1 in B such that $(a_1,b_1) \equiv (a_2,b_1)$ (ψ).

Since A is non-separating, there exists $a_4 \in A$ with $a_4 < 1$ and $a_4 \equiv 1(\theta_{(0,a_-)})$.

As A_b is a sublattice of N(A,B), it follows that

$$(0,b_1) \equiv (a_3,b_1)(\theta_{(a_1,b_1),(a_1,b_1)})$$

$$\therefore (0,b_1) \equiv (a_3,b_1) (\psi).$$

So, for any $b_2 \in B$ with $b_1 < b_2$, joining both sides with $(0,b_2)$ we obtain that $(0,b_1)$ V $(0,b_2) \equiv (a_3,b_1)$ V $(0,b_2)$ (ψ) .

That is $(0,b_2) \equiv (1,b_2) (\psi)$.

(ie) A_h is in a single congruence ψ -class.

If b_1 is the unit element 1_B of B we cannot find a $b_2 \in B$ such that $b_1 < b_2$.

Hence the proof is complete if b_1 is not the unit element of B.

If b_1 is the unit element of B, then we have $(0, 1_B) \equiv (a_3, 1_B)$ (ψ) .

Since A is non-separating, there exists $a_4 \in A$ with $a_4 < 1$ and $a_4 \equiv 1(\theta_{(0,a_1)})$.

Moreover A_1 is a sublattice of N(A,B).

So, it follows that $(a_4, 1_B) \equiv (1, 1_B) (\theta_{(0, 1B), (a3, 1B)})$.

Therefore, $(a_4, 1_B) \equiv (1, 1_B) \ (\psi)$.

Now choose any $b_2 < 1_B$.

As |B| > 1, such a b_2 exists.

Meeting bothsides with $(1,b_2)$, we obtain that

$$(a_4,l_B)~\Lambda~(1,b_2)\equiv (1,l_B)~\Lambda~(1,b_2)~(\psi).$$

That is
$$(0,b_2) \equiv (1,b_2) (\psi)$$
.

That is A_h is in a single congruence class of ψ .

Claim 3:

 A_b is in a single congruence class of ψ for each $b \in B$.

Proof of claim 3:

Let $b \in B$

By claim 2, there is an element $b_2 \in B$ such that A_b is in a single congruence class of ψ .

(ie)
$$(1,b_2) \equiv (0,b_2) (\psi)$$

 $(1,b) = ((1,b_2) \ V (0,b \ V \ b_2)) \ \Lambda (1,b)$
 $\equiv ((0,b_2) \ V (0,b \ V \ b_2)) \ \Lambda (1,b)$
 $= (0,b) (\psi).$

That is, $(1,b) \equiv (0,b) \ (\psi)$.

 \therefore A_b is in a single congruence class of ψ .

Proof of lemma :-

Let $\psi \in \text{Con } (N(A,B)) - \{\omega_N\}$

Define σ : Con (N(A,B)) - $\{\omega_N\}$ \rightarrow Con (B) by

 $\sigma(\psi) = \Phi_*$, where Φ_* is the restriction of ψ to B_*

Claim: \sigma is one-one

Let ψ_1 , $\psi_2 \in \text{Con }(N(A,B)) - \{\omega_N\}$ be such that $\sigma(\psi_1) = \sigma(\psi_2)$.

That is $(\Phi_1)_* = (\Phi_2)_*$

Let $b_1 \equiv b_2 (\Phi_1)_*$, then $(0,b_1) \equiv (0,b_2) (\psi_1)$.

 $(\Phi_1)_* = (\Phi_2)_*$ and $b_1 \equiv b_2 (\Phi_1)_*$ implies that $b_1 \equiv b_2 (\Phi_2)_*$

 $(0,b_1) \equiv (0,b_2) (\psi_2).$

Thus $(0, b_1) \equiv (0, b_2)$ (ψ_1) implies $(0, b_1) \equiv (0, b_2)$ (ψ_2).

Again $b_1 \equiv b_2 (\Phi_1)_*$ implies $b_1 \equiv b_2 (\Phi_2)_*$

 $\therefore (0,b_1) \equiv (0,b_2) (\psi_1) \text{ implies } (1,b_1) \equiv (1,b_2) (\psi_1) \text{ and } (0,b_2) \equiv (0,b_2) (\psi_2) \text{ implies } (1,b_1) \equiv (1,b_2) (\psi_2).$

Thus $(1,b_1) \equiv (1,b_2)(\psi_1)$ implies $(1,b_1) \equiv (1,b_2)(\psi_2)$.

 $(1,0_1) = (1,0_2)(\psi_1)$ implies $(1,0_1) = (1,0_2)(\psi_2)$

This implies $\psi_1 = \psi_2$.

∴ σ is one-one.

Claim :- σ is onto

Let $\Phi \in Con(B)$

Define a relation ψ on N(A,B) by

 $(u_1, v_1) \equiv (u_2, v_2) (\psi)$ if, and only if, $v_1 \equiv v_2 (\Phi)$.

Claim:- \(\psi \) is a congruence relation

(i) wis reflexive

Let $(u_1, v_1) \in N(A, B)$.

Then $v_1 \in B$.

Since Φ is reflexive, $v_1 \equiv v_2 (\Phi)$.

By definition of ψ , $(u_1, v_1) \equiv (u_1, v_1)(\psi)$.

∴ ψ is reflexive.

(ii) ψ is symmetric

Let (a,b), $(c,d) \in N(A,B)$ be such that $(a,b) \equiv (c,d)(\psi)$.

$$\begin{array}{ll} (a,b) \equiv (c,d) \; (\psi) & \Rightarrow & b \equiv d \; (\Phi) \\ & \Rightarrow & d \equiv b \; (\Phi) \\ & \Rightarrow (c,d) \equiv (a,b) \; (\psi) \end{array}$$

 \therefore ψ is symmetric.

(iii) ψ is transitive

Let
$$(a,b)$$
, (c,d) , $(e,f) \in N(A,B)$ be such that $(a,b) \equiv (c,d)(\psi)$ and $(c,d) \equiv (e,f)(\psi)$

 $\therefore \theta$ is reflexive.

(ii)Let $I \equiv J(\theta)$. Then $[I]\overline{\theta} = [J]\theta$.

```
Then b \equiv d (\Phi) and d \equiv f (\Phi).
        \therefore b \equiv f (\Phi).
        This implies (a,b) \equiv (e,f) (\psi).
       \therefore \psi is transitive.
       ∴ w is an equivalence relation.
Let (u_1, v_1), (u_2, v_2), (u_3, v_3), (u_4, v_4) \in N(A,B) be Such that (u_1, v_1)
\equiv (u_2, v_2) (\psi) \text{ and } (u_3, v_3) \equiv (u_4, v_4) (\psi).
           Then v_1 \equiv v_2 (\Phi) and v_3 \equiv v_4 (\Phi).
           Since \Phi is a congruence relation,
           v_1 V v_3 \equiv v_2 V v_4(\Phi) and v_1 \Lambda v_3 \equiv v_2 \Lambda v_4(\Phi).
            (u_1 V u_3, v_1 V v_3) \equiv (u_2 V u_4, v_2 V v_4) (\psi) and
           (\mathbf{u}_1 \wedge \mathbf{u}_3, \mathbf{v}_1 \wedge \mathbf{v}_3) \equiv (\mathbf{u}_2 \wedge \mathbf{u}_4, \mathbf{v}_2 \wedge \mathbf{v}_4) (\psi).
∴ w is a congruence relation.
By definition of \sigma and \psi, we get \sigma(\psi) = \Phi
∴σ is onto
∴ \sigma is a bijection from Con (N(A,B)) - {\omega_N} \rightarrow Con (B).
Hence the lemma.
1.4 CHOPPED LATTICES
Definition: 1.4.1
Let M be a finite poset satisfying the following two conditions.
(i) Inf \{a,b\} exists in M, for any a,b \in M
(ii) Sup \{a,b\} exists for any a,b \in M having a common upper
bound in M.
In M, we define a \Lambda b = \inf\{a,b\} and aVb = \sup\{a,b\} whenever
\sup\{a,b\} exists in M.
Then M is a partial lattice called a chopped lattice.
Definition: 1.4.2
Let M be a finite chopped lattice. An equivalence relation \theta of a
chopped lattice M is a congruence relation if, and only if, a \equiv
b(\theta) and c \equiv d(\theta) imply that a\Lambda c \equiv b\Lambda d(\theta) and whenever aVc
and bVd exist, aVc \equiv bVd(\theta). The set Con M of all congruence
relations of M partially ordered by set inclusion is again a
lattice.
Definition: 1.4.3
Let M be a finite chopped lattice. A subset I of M is said to be an
ideal of M if
(i) i \in I and a \in M imply a \wedge i \in I
(ii) a,b \in I implies aVb \in I provided that aVb exists in M. The
set IdM of all ideals of M partially ordered by set inclusion is a
lattice.
Lemma: 1.4.4
Let M be a finite chopped lattice. Then for every congruence \theta
of M, there exists exactly one congruence θ of IdM, such that
for a, b \in M,
(a] \equiv (b) \overline{(\theta)} if, and only if, a \equiv b (\theta)
Proof:
Since arbitrary meet exists in M, (m) is a finite lattice for every
m \in M.
               If \{x, y\} has an upperbound then xVy exists.
               Let \theta be a congruence relation on M.
    For X \subset M, set [X] \theta = \bigcup \{ [x] \theta \mid x \in X \}.
    That is, [X] \theta = \{y \mid x \equiv y(\theta) \text{ for some } x \in X\}.
          If, I, J \in IdM, define I \equiv J(\theta) if, and only if, [I]\theta = [J]\theta.
       Then \overline{\theta} is an equivalence relation.
(i) [I]\theta = [I]\theta implies I \equiv \overline{I(\theta)}.
```

```
\theta is symmetric.
(iii) Let I \equiv J(\theta) and \overline{J} \equiv K(\overline{\theta}).
               Then [I] \theta = [J]\theta and [J] \theta = [K] \theta.
               Hence [I] \theta = [K]\theta.
                   I \equiv K(\overline{\theta}).
                \therefore \theta is transitive.
               So, \theta is an equivalence relation.
                  Let I \equiv J(\theta), N \in IdM and x \in I \cap N.
               I \equiv \overline{J(\theta)} \Rightarrow [I]\overline{\theta} = [J]\theta.
x \in I implies [x]\theta = [y]\theta for some y \in J.
\therefore x \equiv y(\theta) for some y \in J.
\therefore x \Lambda x = x \Lambda y(\theta).
               That is x = x \Lambda y(\theta).
               y \in J, x \in N \text{ implies } x \land y \in J \cap N.
               x \wedge y \in J \cap N, x \equiv x \wedge y(\theta) implies x \in J \cap N
               Thus x \in I \cap N implies x \in J \cap N.
                : [I \cap N]\theta \subseteq [J \cap N]\theta.
Similarly, we can prove that [J \cap N]\theta \subseteq [I \cap N]\theta.
Hence [I \cap N]\theta = [J \cap N]\theta.
      \therefore I \cap N \equiv J \cap N(\overline{\theta}).
        Next we claim that IVN \equiv JVN(\overline{\theta}).
Let A_0 = I \cup N.
Let A_n = \{x \mid x \le t_o V t_1, t_o, t_1 \in A_{n-1} \}, for 0 < n < w
               Then I \cup N = \bigcup \{A_n \mid n < w\}.
We claim that A_n \subseteq [JVN]\theta.
               We prove this result using induction on n.
                When n = 0, A_0 = I \cup N \subseteq [J]\theta \cup N \subseteq [JVN]\theta
                A_0 \subseteq [JVN]\theta.
               Therefore the result is true when n = 0.
               By induction assumption assume that A_{n-1} \subseteq [JVN]\theta.
               Let x \in A_n. Then x \le t_0 V t_1 for some t_0, t_1 \in A_{n-1}.
                t_0 \in A_{n-1}, A_{n-1} \subseteq [JVN]\theta implies
                t_0 \equiv u_0(\theta) for some u_0 \in JVN.
               t_1 \in A_{n-1}, A_{n-1} \subseteq [JVN]\theta implies
               t_1 \equiv u_1(\theta) for some u_1 \in JVN.
                \therefore t_0 \equiv t_0 \Lambda u_0(\theta) and t_1 \equiv t_1 \Lambda u_1(\theta).
                t_0 V t_1 is an upper bound for \{t_0 \Lambda u_0, t_1 \Lambda u_1\}.
                \therefore (t_0 \wedge u_0) \vee (t_1 \wedge u_1) exists.
                \therefore t_0 V \ t_1 \equiv (t_0 \Lambda u_0) \ V (t_1 \Lambda u_1)(\theta).
               \mathbf{x} = \mathbf{x} \, \Lambda \, (\mathbf{t}_0 \mathbf{V} \, \mathbf{t}_1)
                 \equiv x \; \Lambda \; \left[ \; (t_0 \Lambda u_0) \; V \; (t_1 \Lambda u_1) \; \right] \; (\theta).
Now x \Lambda [ (t_0 \Lambda u_0) V (t_1 \Lambda u_1)] \in JVN.
                \therefore x \in [JVN](\theta).
                \therefore A_n \subseteq [JVN](\theta).
               Thus by induction each A_n \subseteq [JVN](\theta).
                \therefore \cup \{ A_n / n < \omega \} \subseteq [ JVN ](\theta).
                \thereforeIVN \subset [ JVN ](\theta).
               Similarly JVN \subseteq [ IVN ] (\theta).
                    \therefore IVN \equiv JVN(\theta).
           ∴ \theta is a congruence relation on IdM.
           Let a \equiv b(\theta) and x \in (a]
               a \equiv b(\theta) implies x \Lambda a \equiv x \Lambda b(\theta)
               That is x = x \Lambda b(\theta).
                ∴(a] \subset (b](\theta).
     Similarly, (b] \subset (a](\theta)
               Hence (a]\theta = (b]\theta.
```

 $[J]\theta = [I]\theta$, which implies $J \equiv I(\theta)$.

```
\therefore (a] \equiv (b](\theta).
                 Thus a \equiv b(\theta) implies (a] \equiv (b] \overline{(\theta)}.
     Conversely, let (a) \equiv (b)(\overline{\theta}).
           Then a \equiv b_1(\theta) for some b_1 \le b and
           a_1 \equiv b(\theta) for some a_1 \le a.
            \therefore aVa_1 \equiv b_1Vb(\theta).
That is a \equiv b (\theta).
Thus (a] \equiv (b](\theta) implies a \equiv b(\theta).
Thus \theta has all the properties.
To prove uniqueness:-
Let \Phi be a congruence relation of IdM satisfying (a) \equiv (b)(\Phi) if,
and only if, a \equiv b(\theta).
           Let I,J \in IdM, I \equiv J(\Phi) and x \in I.
           I \equiv J(\Phi) implies (x] \cap I \equiv (x] \cap J(\Phi).
           But x \in I implies (x] \cap I = (x].
           (x] \cap J = (y] for some y \in J.
            \therefore (x) \cap I = (x) \cap J(\Phi) implies (x) = (y)(\Phi) for some
y \in J.
            \therefore (x] \equiv (y](\Phi) implies x \equiv y(\theta).
           Thus given x \in I, there exists y \in J such that x = y(\theta).
            x \in [J]\theta.
That is I \subseteq [J](\theta).
           Similarly J \subseteq [I](\theta).
           Hence [I](\theta) \equiv [J](\theta).
              Therefore I \equiv J(\overline{\theta}).
                  Thus I \equiv J(\Phi) implies I \equiv \overline{J(\theta)}.
                Conversely, let I \equiv J(\overline{\theta}).
Then x \equiv y(\theta) for some x \in I and y \in J.
Take all congruences of the form x \equiv y(\theta), x \in I, y \in J.
By our assumption of \Phi, (x] \equiv (y](\Phi) and by our definition of \theta,
the join of all these congruences yields I = \overline{I(\theta)}
           Thus \Phi = \theta.
                       Hence the lemma.
Definition: 1.4.5
     Let C and D be finite lattices such that J = C \cap D is an ideal
in C and J is an ideal in D. Let m denote the generator of J. Then
M(C,D) = C \cup D is a finite chopped lattice with the natural
partial ordering. We observe that if aVb = c in M(C,D), then
either a,b,c \in C and aVb =c in C or a,b,c \in D and aVb = c in D.
Lemma: 1.4.6
      Let C and D be finite lattices such that J = C \cap D is an ideal
in C and an ideal in D. Let m denote the generator of J.
       Let M(C,\overline{D)} = \{(x,y) \in CxD / x\Lambda m = y\Lambda m\}, a subposet of
CxD. Then M(C,D) is a finite lattice and Id\ M(C,D) \cong M(C,D).
Proof:
           Let I be an ideal of M(C,D).
Then I can be written uniquely in the form I_C \cup I_D where I_C is an
ideal of C and I_D is an ideal of D satisfying I_C \cap J = I_D \cap J.
           Let I_C = (x] and I_D = (y].
Then I_C \cap J = I_D \cap J is the same as x \wedge m = y \wedge m.
  Define a map \Phi : Id M(C,D) \to M(C,D) by
\Phi (I) = \Phi ((x] \cup (y]) = (x, y).
We claim that \Phi is an isomorphism.
(i) Φ is one-one
      Let \Phi (I) = \Phi (J) Where I and J are ideals of M(C,D).
Then I = I_C \cup I_D where I_C = (x] and I_D = (y] and J = J_C \cup J_D
where J_C = (a] and J_D = (b].
```

```
\Phi(I) = \Phi(J) implies (x,y) = (a,b).
          This implies x = a, y = b.
          That is (x] \cup (y] = (a] \cup (b].
          That is I = J.
           Hence Φ is one-one.
(ii) \Phi is onto
          Let (x,y) \in CxD be such that x \wedge m = y \wedge m.
          Let I = (x]V(y], Then \Phi(I) = (x,y).
                      ∴ Φ is onto.
(iii) Φ is a homomorphism
          Let I, J \in Id M(C,D).
          Then I = (x)V(y) and J = (a)V(b) for some x,a \in C and
y,b \in D such that x \wedge m = y \wedge m and a \wedge m = b \wedge m.
              = \Phi (((x)V(y)) V ((a)V(b)))
                 = \Phi (((x)V(a)) V ((y)V(b)))
                 =\Phi((xVa) V(yVb))
                 = (xVa, yVb)
\Phi (I) V \Phi (J) =\Phi ( (x]V(y] ) V \Phi ( (a]V(b] )
                     = (x,y)V(a,b)
                     = (xVa, yVb)
  ∴Φ (IVJ)
                  =\Phi (I) V \Phi (J).
      \Phi (I \Lambda J)
                  =\Phi ((x)V(y)) \Lambda ((a)V(b))
                      = \Phi (((x]\Lambda(a]) \ V((y]\Lambda(b]))
                      = \Phi ((x\Lambda a) V (y\Lambda b))
                      = (x\Lambda a, y\Lambda b)
 \Phi (I) \Lambda \Phi (J) = \Phi ( (x]V(y] ) \Lambda \Phi ( (a]V(b] )
                        = (x,y) \Lambda (a,b)
                        = (x\Lambda a, y\Lambda b)
      \therefore \Phi (I \Lambda J) = \Phi (I) \Lambda \Phi (J).
∴ Ф is a homomorphism.
Hence \Phi is an isomorphism.
           \therefore IdM(C,D) \cong M(C,D).
Lemma: 1.4.7
     Let C and D be finite lattices such that J = C \cap D is an ideal
in C and an ideal in D. Let m be the generator of J. Let U be an
ideal of C and let V be an ideal of D. Let us regard U \cup V as a
subset of IdM(C,D) by identifying an element with the principal
ideal it generates. If U \cap V = \{0\}, then the sublattice generated
by U \cup V in IdM(C,D) is an ideal and it is isomorphic to UxV.
Proof:-
Let U = (x) and V = (y).
Then x \in C and y \in D.
Define \sigma: U \cup V \to IdM (C,D) by \sigma(a) = \sigma((aVb)) = (aVb].
Then \sigma is an embedding of U \cup V into IdM(C,D).
     Suppose U \cap V = \{0\}
     Let \langle U \cup V \rangle be the sublattice generated by U \cup V.
     Let p,q \in \langle U \cup V \rangle
     Then pVq \in \langle U \cup V \rangle.
     Let x \in C \cup D and p \in \langle U \cup V \rangle
     Then x = x_1 V x_2 and p \le t_1 V t_2
```

 $p \le x \land p = (x_1 \lor x_2) \land (t_1 \lor t_2)$

Hence $< U \cup V >$ is an ideal .

:. By identifying $a \rightarrow (a_1,a_2)$ we get

Let $a \in \langle U \cup V \rangle$, then $a \in (\langle x \rangle \cup \langle y \rangle)$

Then $a \le a_1 V a_2$ where $a_1 \in (x]$ and $a_2 \in (y]$.

 $\therefore p \in \langle U \cup V \rangle$.

 $< U \cup V > \cong UXV.$

 $\leq (x_1 \wedge t_1) \vee (x_2 \wedge t_2) \in \langle U \cup V \rangle$

Lemma: 1.4.8

Let C and D be finite lattices such that $J=C\cap D=(m]$ is an ideal in C and in D. Then Con $IdM(C,D)\cong\{(\theta,\Psi)\in Con\ C\ x\ Con\ D\ /\ \theta\ |\ =\Psi\ |\ _{I}\}.$

Proof:-

Let Ω be a congruence of the chopped lattice M(C,D).

Let Ω_C and Ω_D be the restrictions of Ω to C and D respectively.

Then Ω_C is a congruence of C and Ω_D is a congruence of D Satisfying the condition Ω_C restricted to J equals Ω_D restricted to J.

 $\therefore \sigma: Con\ (M(C,\!D)) \to \{(\theta,\!\psi) \in Con\ C\ x\ Con\ D\ /\ \theta\ \big|\ _J = \psi\ \big|$

defined by $\sigma(\Omega) = (\Omega_C, \Omega_D)$ is a well defined map.

Conversely, let θ be a congruence on C and ψ be a congruence on D satisfying that θ restricted to J equals ψ restricted to J.

Define a congruence Ω on M(C,D) as follows:

- (i) $x \equiv y(\Omega)$ if, and only if, $x \equiv y(\theta)$ for $x,y \in C$
- (ii) $x \equiv y(\Omega)$ if, and only if, $x \equiv y(\psi)$ for $x, y \in D$
- (iii) If $x \in C$ and $y \in D$, $x \equiv y(\Omega)$ if, and only if,

 $x \equiv x \Lambda y(\theta)$ and $y \equiv x \Lambda y(\psi)$ and symmetrically.

Then τ : $\{(\theta, \psi) \in \text{Con } C \times \text{ConD} / \theta |_J = \psi |_J\} \rightarrow \text{Con}(M(C,D))$

defined by $\tau((\theta,\psi)) = \Omega$ is a well defined map.

$$\begin{split} (\tau \, \mathbf{B} \, \sigma) &(\Omega) = \tau(\, \sigma \, (\, \Omega \,) \,) \\ &= \tau \, (\, \Omega_{\mathbf{C}}, \Omega_{\mathbf{D}}) \\ &= \Omega \\ (\sigma \, \mathbf{B} \, \tau) &(\, \Omega_{\mathbf{C}}, \Omega_{\mathbf{D}}) = \sigma(\, \tau \, (\, \Omega_{\mathbf{C}}, \Omega_{\mathbf{D}}) \,) \\ &= \sigma \, (\, \Omega \,) \\ &= (\, \Omega_{\mathbf{C}}, \Omega_{\mathbf{D}}) \end{split}$$

 $\therefore \tau B \sigma$ = identity map and $\sigma B \tau$ = identity map.

 σ is an isomorphism.

Therefore Con M(C,D) $\cong \{(\theta,\psi) \in ConC \ x \ ConD \ / \ \theta \mid_{I} = \psi \mid_{I} \}.$

But by lemma (2.4.4), Con $M(C,D) \cong Con(IdM(C,D))$.

Hence $Con(IdM(C,D)) \cong \{(\theta,\psi) \in ConC \ x \ ConD \ / \ \theta \mid_{J} = \psi \mid_{J} \}.$

Hence the lemma.

Lemma **:1.4.9**

Let U be a finite lattice with an ideal V isomorphic to $B_n.$ We identify V with the ideal $(B_n)_*=((0,1)]$ of $N(\underline{B_2},B_n)$ to obtain the chopped lattice $K=M(U,N(B_2,B_n)).$ Let m denote the generator of $V=(B_n)_*$. Then $IdK\cong M(U,N(B_2,B_n)).$ Let $u\in U.$ Then $\{y\in N(B_2,B_n)\ \big|\ (u,y)\in M(U,N(B_2,B_n))\}$ is isomorphic to $B_2.$

Proof:-

There are exactly four elements y of $N(B_2,B_n)$ satisfying that $u\Lambda m=y\Lambda m$, namely the elements of $(B_2)_{u\Lambda m}$.

They form a sublattice isomorphic to B₂.

Therefore $\{y \in N(B_2, B_n) / (u, y) \in M(U, N(B_2, B_n))\}$ is a four element set closed under co-ordinatewise meets and joins. Hence the lemma.

1.5. CONGRUENCE CLASSES

Lemma: 1.5.1

Let U be a finite lattice with an ideal V isomorphic to $\boldsymbol{B}_n.$ Then $\boldsymbol{V}\cong ((0,\!1)].$ Let us assume that U is uniform. Let K be a chopped lattice $M(\boldsymbol{U},\!N(\boldsymbol{B}_2,\!\boldsymbol{B}_n)).$ Then IdK $\cong M$ (U,N(B₂,B_n)). Then IdK is uniform.

Proof:-

A congruence Ω of IdK can be described by lemma (2.4.8) .

That is $\Omega \to (\theta, \psi)$ where θ is a congruence of U, ψ is a congruence of $N(B_2, B_n)$ and θ and ψ restrict to the same congruence of $V=(B_n)_*$.

The trivial congruences $\omega_{IdK} = (\omega_U, \omega_{N(B_-,B_-)})$ and $i_{IdK} = (i_U, i_{N(B_-,B_-)})$ are obviously uniform. We need to look at only two cases.

First case: Ω is represented by (θ, ω)

So $\theta \mid_{V} = \omega_{V}$. Let (x,y) be an element of IdK.

Then $[(x,y)](\theta,\omega) = \{ (t,y) \in IdK \mid t = x(\theta) \}.$

It $t \equiv x(\theta)$, then $t \wedge m = x \wedge m(\theta)$.

But $\theta \mid_{V} = \omega_{V}$ so $t\Lambda m = x\Lambda m$.

 $\therefore [(x,y)] (\theta,\omega) = \{ (t,y) \mid t \equiv x(\theta) \} \text{ and so}$

 $[(x,y)] \ (\theta,\omega) = [[x]\theta].$

 \therefore Each congruence class of Ω is of the same size as a congruence class of θ .

So Ω is uniform.

Second case: Ω is represented by (θ, ψ) where $\psi \neq \omega$

Let (x,y) be an element of IdK.

Then [(x,y)] $(\theta,\psi) = \{(\omega,z) \in IdK \mid x \equiv \omega(\theta) \text{ and } y \equiv z(\psi)\}.$

For a given ω , if (ω,t_1) and $(\omega,t_2) \in IdK$, then $t_1 \equiv t_2(\psi)$ because $(B_2)_{\omega}$ is in a single congruence class of ψ by lemma 2.3.8 (Claim 3).

Therefore $\{t \in N(B_2, B_n) \mid (\omega, t) \in IdK\} = (B_2)_{\omega \land m}$ by lemma 2.4.9.

Therefore $|\{t \in N(B_2,B_n) | (\omega,t) \in IdK\}| = |(B_2)_{\omega \wedge m}| = 4$. We conclude that

Therefore each congruence class of Ω is four times the size of a congruence class of θ .

Hence Ω is uniform.

Hence the lemma.

1.6. PROOF OF THE MAIN RESULT

Theorem: 1.6.1

For any finite distributive lattice D, there exists a finite uniform lattice L such that the congruence lattice of L is isomorphic to D and L satisfies the properties (P) and (Q) where

- (P) : Every join-irreducible congruence of L is of the form $\theta(0,p)$, for a suitable atom p of L.
- (Q) : If $\theta_1, \theta_2, \dots, \theta_n \in J(ConL)$ are pairwise incomparable, then L contains atoms p_1, p_2, \dots, p_n that generate an ideal isomorphic to B_n and satisfy $\theta_i = \theta$ (0, p_i), for all $i \le n$.

Proof:-

We prove the result using induction on n, where n is the number of join-irreducible elements.

Let D be a finite distributive lattice with n join-irreducible elements.

If n = 1, then $D \cong B_1$, so there is a lattice L=B₁ that satisfies the theorem1.6.1.

Let us assume that, for all finite distributive lattices with fewer than n join-irreducible elements, there exists a lattice L satisfying theorem 1.6.1 and properties (P) and (Q).

Assume that D has n join-irreducible elements.

Let q be a minimal element of J(D).

Let $q_1,q_2,...,q_k (k \ge 0)$ be all upper bounds of q in J(D).

Let D_1 be a distributive lattice with $J(D_1)=J(D)-\{q\}$.

By induction assumption there exists a lattice L_1 satisfying Con $L_1 \cong D_1$ and (P) and (Q).

If k=0, then $D\cong B_1\times D_1$ and $L=B_1\times L_1$, obviously satisfies all the requirements of the theorem and so the proof is over.

So, assume k > 1

The congruences of L_1 corresponding to the q_i 's are pairwise incomparable and therefore can be written in the form $\theta(0,p_i)$ and the p_i 's generate an ideal I_1 isomorphic to B_k .

The lattice $N(B_2, B_k)$ also contains an ideal $(B_k)_*$ isomorphic to B_k .

Identifying I_1 and $(B_k)_*$, We get the chopped lattice K and the lattice L=IdK.

By lemma 1.5.1., IdK is uniform.

That is L is uniform.

Let θ be a join-irreducible congruence of L.

Then we can write θ as $\theta(a,b)$ where a is covered by b.

By lemma 1.4.6., it follows that we can assume that either a, $b \in L_{_1},$ or $a,b \in N(B_{_2},B_{_k})$

In either case, there exists an atom q in L_1 or q in $N(B_2,\,B_k)$ so that

 $\theta \; (a,b) \!\! = \theta(0,\!q) \; \text{in} \; L_1 \; \text{or} \; \; \theta(a,\!b) \!\! = \!\! \theta(0,\!q) \; \; \text{in} \; N(B_2,\; B_k).$

Obviously, q is an atom of Land $\theta(a,b)=\theta(0,q)$ in L verifying (P)for L.

Let $\theta_1, \ \theta_2, \ldots, \theta_t$ be pairwise in-comparable join-irreducible congruences of L.

To verify condition (Q), we have to find atoms $p_1, p_2, ..., p_t$ of L satisfying $\theta_i = \theta(0, p_i)$ for all $i \le t$ and such that $p_1, p_2, ..., p_t$ generate an ideal of L isomorphic to B_t .

Let p denote an atom in $N(B_2, B_k)$ - I_1

In fact, there are two atoms but they generate the same congruence $\theta(0,p)$.

If $\theta(0,p)$ is not one of $\theta_1,\theta_2,\ldots,\theta_t$ then clearly we can find p_1,p_2,\ldots,p_t in L_1 as required and p_1,p_2,\ldots,p_t also serves in L. If $\theta(0,p)$ is one of $\theta_1,\theta_2,\ldots,\theta_t$ say $\theta(0,p)=\theta_t$, then let p_1,p_2,\ldots,p_{t-1} be the set of atoms establishing (Q) for $\theta_1,\theta_2,\ldots,\theta_{t-1}$ in L_1 and therefore in L.

Then $p_1, p_2, \ldots, p_{t-1}$, prepresent the congruences $\theta_1, \theta_2, \ldots, \theta_t$ and they generate an ideal isomorphic to B_t by lemma 1.4.7.

Therefore L satisfies (Q).

It is clear from this discussion that J(ConK) has exactly one more element than $J(ConL_1)$, namely, $\theta(0,p)$.

This join-irreducible congruence relates to the join-irreducible congruences of ConL, exactly as q relates to the join-irreducible elements of D.

Therefore $D \cong ConL$.

Hence the theorem.

Example : 1.6.2

The uniform construction for the four-element chain is This lattice has four congruences.

Co has 32 blocks.

C₀ is a null congruence

 C_1 has 8 blocks.

 $C_1^1 = \{ \{0,1,2,3\}, \{4,5,6,7\}, \{8,9,10,11\}, \{12,13,14,15\}, (16,17,18,19\}, \{20,21,22,23\},$

{24,25,26,27},{28,29,30,31} }.

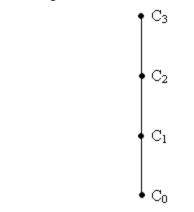
C₂ has 2 blocks.

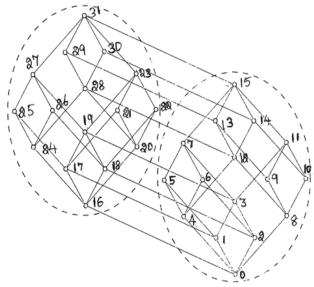
 $C_2^2 = \{ \{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}, \{16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31\} \}.$

C₃ has 1 block.

 C_3 is all congruence.

The congruence lattice of this lattice is





:. Every finite distributive lattice D can be represented as the congruence lattice of a finite uniform lattice L.

References

- [1] Gratzer, H.Lakser, and E.T.Schmidt, Congruence lattices of small planar lattices. Proc. Amer. Math. Soc. 123(1995), 2619-2623.
- [2] G.Gratzer, General Lattice Theory, Second edition, Birkhauser Verlag, Basel, 2010.
- [3] G.Gratzer and E.T.Schmidt, Congruence-preserving extensions of finite lattices into sectionally complemented lattice, Proc. Amer.Math.Soc.127(1999), 1903-1915.
- [4] G.Gratzer and F.Wehrung, Proper congruence-preserving extensions of lattices, Acta Math. Hungar. 85(1999), 175-185.
- [5] G.Gratzer and E.T.Schmidt, Regular congruence-preserving extensions. Algebra Universalis 46(2008), 119-130.
- [6] G.Gratzer, E.T.Schmidt, and K.Thomsen, Congruence lattices of uniform lattices. Houston. J.Math.29 (2011).
- [7] G.Gratzer and E.T.Schmidt, Finite lattices with isoform congruences. Tatra.Mt.Math.Publ 27(2009), 111-124.
- [8] G.Gratzer and E.T.Schmidt, Finite lattices and congruences. Algebra Universalis.
- [9] R.Freese-UACALC program-Sec:http://WWW. Math. hawaii. edu/~ralph/UACALC/.