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1. Introduction  

 The faults in digital circuits can be classified broadly as 

Single stuck-at-faults, Multiple stuck-at-faults, Stuck-open 

faults, stuck-on faults, Bridging faults, Path delay faults, 

Transient faults etc. Any arbitrary logic function, in general, can 

be expressed in Reed-Muller Canonical (RMC) form as  

F = (a0  a1x1*  a2 x2* … anxn*  an+1 x1* x2*  … am x1* 

x2*…xn*) 

where, xn* can be xn or its complement, an is either 0 or 1 and m 

= 2n-1.  However, there can be variations in such forms. The 

different types are Fixed Polarity RMC (FPRM), Positive 

Polarity RMC (PPRM), Generalised RMC (GRM) and 

Exclusive-OR Sum-of-Products (ESOP). The FPRM has a 

restriction that the variables in any of the product terms have to 

be of the same type namely complementary or non-

complementary. For PPRM, the complementary form of 

variables is not allowed. The GRM may contain both 

complementary and non-complementary type but the 

combination of the variables should be unique. The ESOP form 

does not have any such restriction. Also the ESOP form has the 

least number of product terms and hence needs the least number 

of AND gates and is very much suitable for hardware 

implementation. 

Extensive research has been carried out in the field of 

testing of digital circuits  to reduce the number of input vectors. 

The cardinality of the test vectors proposed by many authors 

becomes prohibitively excessive for large number of input 

variables. It was demonstrated that Single stuck-at fault 

detection can be achieved with only n+5 test vectors [6]. The 

same structure was extended for OR-bridging fault analysis [15] 

and [16]. In this paper, it is shown through Matlab simulations 

for a few specific functions that Single stuck-at, Double stuck-at, 

OR-bridging and AND-bridging fault detection and diagnosis 

could also be achieved with the same n+5 test vectors 

considering all input lines, control lines and intermediate gate 

outputs. 

Two quantitative indices, called identifiability factor and 

distinguishability factor are considered for comparison of the 

testability nature of given circuits. The identifiability factor is 

defined as the ratio of the number of faults correctly identified 

by the test set to the total number of possible faults of the type 

considered. The existence of faults can be recognized from the 

set of outputs measured which will be different from the fault -

free circuit. The distinguishability factor pertains to the identical 

set of outputs among different faults, but the output set of each 

being very much different from the non-faulty case. The 

existence of even a large percentage of indistinguishability may 

not mean the circuit is not reliable, since it is still possible to 

identify the faulty condition of the circuit and take appropriate 

remedial action. The set of binary values for an output is 

converted into its decimal equivalent for convenience in 

comparison and ease of tabulation. 

2. Literature Survey 

A PPRM network for detection of stuck-at faults with a 

universal test set of size n+4, n being the number of data inputs, 

was proposed in [1]. Though quite good for self-testing, the 

method is economical only for the specified form, which 

obviously has more number of product terms than the other 

forms in most cases. Multiple stuck-at fault detection for ESOP 

circuits was carried out in [2]. However, since the cardinality is  

2n+6+ ∑nCe,  e= 0 to j, the order of ESOP expression, the test 

set is not universal and also is too large to be practical for large 

input functions.  
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Stuck-at and bridging faults with a universal test set for 

PPRM network has been reported in [3]. Multiple fault detecting 

GRM realizations was propounded in [4]. It was shown that 

2n+s+3 test vectors, where s is the number of product terms in 

the logic function are required for Single stuck-at fault 

detections in GRM / ESOP circuits while 2n+s vectors are 

required for detection of  AND/OR-bridging faults in such 

circuits [7]. Here too, the test set is not universal as it depends 

on s, the number of product terms of the function. [5] described 

an ESOP implementation with a universal test set of size n+6 for 

single stuck-at faults only. [6] demonstrated that Single stuck-at 

fault detection can be achieved with only n+5 minimal test 

vectors. [9, 10] proved that a test sequence of length (2n+8) 

vectors is sufficient to detect all Single stuck-at and bridging 

faults. Two methods, each with a small modification in this 

scheme with ESOP RMC circuits had been proposed for analysis 

and diagnosis of Single stuck-at faults [11, 12].  It was proved 

that test vectors for multiple fault detection and diagnosis in 

digital circuits could be generated using Neural Network with 

different training algorithms [8, 13, 18]. In [15, 16] it was 

demonstrated how the suitable RMC forms help in the detection 

of various digital faults. [19] proposed a new test pattern 

generation algorithm using Neural Network which requires 

additional gates. The analysis and diagnosis of OR-bridging 

faults in any of the pairs of data and control lines and OR-

bridging faults including intermediate gate outputs  of the ESOP 

RMC circuits was proposed in [20, 21]. 

This paper is an extension of [16], and discusses the 

analysis and diagnosis of Single stuck-at, Double stuck-at and 

AND-bridging faults including the intermediate gate outputs of 

the ESOP RMC circuits. 

3. Materials and methods 
3.1 Network Structure:  

The network structure of the scheme is the same as that 

proposed in [6] and is shown in Figure.1. It comprises literal 

complementing XOR block, an AND block, an XOR function 

tree block, which implements the required logic function as also 

two additional outputs O1 and O2 obtained through a separate 

AND gate and an OR gate. The actual data inputs to the system 

are x1, x2 …. xn. Additionally, the scheme requires four control 

inputs c1 to c4.  The literal-complementing block produces the 

complements of the literals used in the function. Only those 

literals appearing in complemented form require an XOR gate in 

this block.  

 

Figure 1. Generalized Network Structure 

The literals of each product term are combined through an 

AND gate and hence the number of AND gates required is the 

same as the number of product terms in the logic function. 

Further, each of the AND gates of this block has an additional 

input from one of the control lines depending on the number of 

gates used in the XOR tree block producing the final function F. 

Finally, all the data and complementary gate outputs are applied 

to a separate AND gate and an OR gate, producing auxiliary 

outputs O1 and O2, to aid in the detection of faults which cannot 

be differentiated by the main function output F alone. 

 

Figure. 2. Control Input Determination 

The required control lines are determined as illustrated 

above (Figure 2). Draw the XOR gate tree for the required 

product terms of the given function. Assign the numerals 1, 2 

and 3 respectively to the two inputs and the output of the final 

XOR gate producing the function output F. Consider each XOR 

gate connected to the inputs of the final XOR gate considered. 

Assign the outputs of these XOR gates with the same numbers 

as the inputs of the final XOR gate. If the output of the XOR 

gate considered is 1, then assign 2 and 3 to its inputs. Else if the 

output is numbered 2, assign 3 and 1 to its input. Now consider 

the next earlier input stage and assign the numerals in the similar 

manner according to the output points connected. 

3.2 Test Vectors:  

The test set has (n+5) vectors; each of the vectors is (n+4) 

long, „n‟ being the number of data inputs. The first four columns 

of the matrix represent the control inputs c1 to c4 while the 

remaining n columns that of the data inputs  are x1 to xn. The 

generalized test set is shown in Table 1. 

Table 1. Generalized Test Set 

 
 
 
 
 
 
 
T =  

 

 

 

 

 

 

 

 

c1 c2 c

3 

c4 x1 x2 … xn 

0 0 0 0 0 0 ... 0 

0 0 1 1 1 1 ... 1 

0 1 0 1 1 1 ... 1 

0 1 1 1 1 1 ... 1 

0 1 1 1 0 1 ... 1 

0 1 1 1 1 0 … 1 

0 1 1 1 1 1 … 1 

. . . . . .   

. . . . . .   

. . . . . .   

0 1 1 1 1 1 ... 0 

1 0 0 0 0 0 ... 0 
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Figure. 3. Circuit for F= x1  x2x3  x1’x2x3 

The network structure and the set of test vectors for the function 

F= x1 x2x3x1‟x2x3 are shown in Figure.3 and Table 2 

respectively. 

Table 2. Test vectors for  F= x1  x2x3  x1’x2x3 
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3.3 Algorithm 

Step 1: Set up the circuit as in Figure.2. 

Step 2: Determine and connect the control lines c1 to c4 as 

explained. 

Step 3: Apply the test vectors as given in Table 2, one by one. 

Step 4: For each test vector, determine the fault free outputs F, 

O1 and O2. 

Step 5: Obtain the decimal equivalents of each of the above 

binary output sets.  

Step 6: Simulate the Single stuck-at fault at the control input, 

data input and intermediate gate outputs and get the 

corresponding decimal outputs. 

Step7: Compare the set of outputs  with the predetermined fault-

free condition outputs  

Step 8: If the two output sets match exactly, it implies that a 

fault, if present, is not identifiable or detectable; else, the fault is 

a detectable one. 

Step 9: Repeat steps 4 to 8 for Double stuck-at, OR-bridging and 

AND-bridging fault for other possible combination pairs of 

control inputs, data inputs and intermediate gate outputs in the 

network. 

Step 10: For all the faults, the identifiability factor and 

distinguishability factor are calculated as explained above.     

      

4.  Results and Discussion 

 The following ten random functions were considered 

and Single stuck-at, Double stuck-at, OR-bridging and AND-

bridging faults are simulated using MATLAB coding and the 

results are tabulated in Table 5, 6, 8 and 9. 

F1 = x1 x2x3 1‟x2x3 

F2= x1x2 x2‟x3 3‟x4  x1x2x3 

F3= x1‟  2x3‟x4 3x4‟  2‟x3 1x4x5 

F4=x1x2‟ 

 2x3x4 x4x5‟x6 2x5  2‟x5‟ 3‟x2x1 4x6 

F5 = x1‟x2x3 4x5x6  4‟x6‟x7  3x5x7 

F6=x1x2‟x3 4‟x5x6  7x8   

 1‟x6  3‟x4 1x5  

       x4x5  5x7  8x3x1  3x5‟x8 

F7 = x1x2‟x3‟ 

 4x5‟x6 7‟x8x9  1‟x4‟x9  x2x5  3x5 

F8 = x1‟x2x3‟  4‟x5‟x6 7x8‟x9‟ 

 10  6‟x7 8x10 

F9 = 

x1 2‟x3x4‟ 5‟x6x7‟ 8x9x10  10‟x11  1x3x9 

F10=x1‟x2 3x4‟x5 6x7‟x8x9 10x11‟x12  1x2x3 

4‟x7 

4.1 Single Stuck-at fault 

As an illustration, a three variable function 

F1 = x1 2x3x1‟x2x3 is considered. The simulated fault-free 

output set was found to be {F, O1, O2} = {126, 112, 127}. The 

stuck-at-0 and stuck-at-1 faults are simulated for the given 

function at lines c1, c2, c3, c4, x1, x2 , x3, zl1, za1, za2, za3, zx1 and 

zx2 and the results are shown in Table 3 and 4. 

Table 3. Stuck-at-0 for 3 variable functions 

 c1 c2 c3 c4 x1 x2 

F 126 126 120 6 120 86 

O1 112 112 112 112 0 0 

O2 126 127 127 127 127 127 

 

 x3 z l1 za1 za2 za3 zx1 zx2 

F 86 46 40 6 46 80 0 

O1 0 0 112 112 112 112 112 

O2 127 126 127 127 127 127 127 

 

Table 4. Stuck-at-1 for 3 variable functions 

 c1 c2 c3 c4 x1 x2 

F 38 126 126 126 126 126 

O1 0 112 112 112 120 116 

O2 255 127 127 127 255 255 

 

 x3 z l1 za1 za2 za3 zx1 zx2 

F 126 118 215 249 209 175 255 

O1 114 112 112 112 112 112 112 

O2 255 255 127 127 127 127 127 

The total number of possible single stuck-at faults are 

2*(nc+nx+zl+za+zx) = 2*13 = 26. 

Where  nx is the number of data inputs  

             nc is the number of control inputs 
             zl is the number of complementary functions 

             za is the number of AND gate outputs  

             zx is the number of XOR gate outputs 

For stuck-at-0 fault at c2 and for stuck-at-1 fault at c2, c3 and 

c4 the output sets obtained are same as that of fault free one. 

Hence, these faults are unidentifiable. The identifiability factor = 

(26-4)/26100 = 84.62%. Also, in stuck-at-0 fault the output set  

{6, 112, 127} is repeated two times for c4 and za2 and  

{86, 0, 127} is repeated two times for x2 and x3.  

c1 c2 c3 c4 x1 x2 x3 

0 0 0 0 0 0 0 

0 0 1 1 1 1 1 

0 1 0 1 1 1 1 

0 1 1 1 1 1 1 

0 1 1 1 0 1 1 

0 1 1 1 1 0 1 

0 1 1 1 1 1 0 

1 0 0 0 0 0 0 
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These faults are indistinguishable. The distinguishability 

factor for this set is (26-4)/ 26 *100= 84.62% 

The simulated results for the ten random functions are 

tabulated in Table 5. 

Table 5. Simulation results for Single stuck-at fault 
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1 F1 3 26 84.62 84.62 

2 F2 4 34 97.06 82.35 

3 F3 5 44 95.45 95.45 

4 F4 6 54 96.30 92.59 

5 F5 7 42 97.62 73.81 

6 F6 8 82 96.34 97.56 

7 F7 9 62 98.39 83.87 

8 F8 10 64 98.44 78.13 

9 F9 11 62 98.39 79.03 

10 F10 12 64 98.44 78.13 

Average 96.11 84.55    

4.2 Double Stuck-at faults 

Double Stuck-at faults can occur quite easily due to the 

shorting of any two of the lines, especially the adjacent lines of 

the circuit.  

The network structure and test vectors are the same as those 

for the single stuck-at fault. However, in the test procedure, two 

lines at a time are considered and made to stuck-at-0 or stuck-at-

1 and simulated. Since two lines are involved, four possible 

combinations, viz. (0,0), (0,1), (1,0) and (1,1) are simulated and 

tabulated in Table 6. 

Table 6. Simulation results for Double stuck-at fault 
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1 F1 3 312 98.40 30.13 

2 F2 4 544 100 31.25 

3 F3 5 924 99.89 33.98 

4 F4 6 1404 99.93 33.26 

5 F5 7 840 100 29.64 

6 F6 8 3280 100 32.50 

7 F7 9 1860 100 32.80 

8 F8 10 1984 100 31.50 

9 F9 11 1860 100 33.12 

10 F10 12 1984 100 31.10 

Average 99.82 31.93 

4.3 AND-Bridging Faults 

The bridging faults are considered as a special case of 

multiple faults. The AND-bridging fault is simulated by shorting 

two lines at a time. A detailed numerical illustration for three 

variable AND-bridging faults is given below. 

Function considered:  F1 = x1 2x3 1‟x2 x3 

Fault-free output set {F, O1, O2} = {126, 112, 127} 

The outputs of AND-bridging faults at lines c1 in 

combination with c2, c3, c4, x1, x2 , x3, zl1, za1, za2, za3, zx1 and 

zx2 are tabulated in Table 7. 

Table 7. Simulation Results for a few Random Logic 

Functions 
 c1 c2 c1 c3 c1 c4 c1 x1 c1 x2 c1 x3 

F 126 120 6 120 86 86 
O1 112 112 112 0 0 0 

O2 126 126 126 126 126 126 

 
 c1 zl1 c1 za1 c1 za2 c1 za3 c1 zx1 c1 zx2 

F 46 40 6 46 80 0 

O1 0 112 112 112 112 112 

O2 127 126 126 126 126 126 

Control inputs:   c1 to c4;   Data inputs:   x1 to x3 

Complementary outputs: zl1;   AND gate outputs: za1, za2, 

za3XOR gate outputs: zx1 & zx2 

Total No. of Fault location pair combinations  

= (nc+ nx+zl+za+zx) C2= 13C2=78 

Total number of possible bridging faults for the given three 

variable function used is 78. 

When the Post fault outputs are identical as of fault free 

one, then those faults are termed as unidentifiable faults. From 

the simulation results it was found that the number of 

unidentifiable faults as 11. 

The Identifiability Factor is (78-11)/ 78x100 = 85.90%. 

When the post fault outputs are same for different combinations 

of faults, then those faults are termed as Indistinguishable faults. 

For the given example, the output sets that get repeated are as 

follows: 

{6, 112, 126}  2 times 

{62, 112, 127}  5 times 
{80, 112, 127}  2 times 

{80, 112, 127}  2 times 

{86, 0, 126}  2 times 

{86, 80, 127}  2 times 

{86, 112, 127}  5 times 
{94, 112, 127}  2 times 

{118, 112, 126}  5 times 

{118, 112, 127}  2 times 

{120, 112, 127}  4 times 

{126, 48, 127}  3 times 
{126, 80, 126}  3 times 

{126, 80, 127}  2 times 

Thus totally repetition occurs for 41 fault location combinations. 

Hence overall distinguishability factor is  

(78-41) /78 x100 = 47.44% 

However, when the individual cases are considered the 

distinguishability factor can be seen to be appreciably high as 

seen below: 

Same output set of {120, 112, 127} for the following fault 

combinations. 

AND-bridging fault at c3, za3 lines 
AND-bridging fault at za1, za3 lines 

AND-bridging fault at za2, zx1 lines 

AND-bridging fault at za2, zx2 lines 

The distinguishability for this set is  

               (78-4)/ 78 x100= 94.87%. 

Similarly, the output set {126, 80, 126} occurs 3 times, for 

which the distinguishability factor is  

(78-3)/78x100 = 96.15%. 

Further, the location of fault can also be easily diagnosed 

from the output set. For instance if the output set is {120, 112, 

127} then the fault condition would be one of the four cases 

discussed above involving c3, za1, za2, za3, zx1, zx2 and hence 

those lines only need to be checked.  
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Similarly, the fault simulations were carried out for the 

remaining nine random functions and the results are tabulated in 

Table 8. 

Table 8. Simulation results for AND-bridging faults 
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1 F1 3 78 85.90 47.44 

2 F2 4 136 95.59 36.76 

3 F3 5 231 89.18 47.62 

4 F4 6 351 90.88 52.42 

5 F5 7 210 86.19 48.10 

6 F6 8 820 91.59 58.66 

7 F7 9 465 91.40 47.74 

8 F8 10 496 90.52 33.06 

9 F9 11 465 90.75 38.49 

10 F10 12 496 89.11 47.98 

Average 90.11 45.83 

4.4 OR-Bridging Faults 

The OR-bridging fault is simulated considering two lines at 

a time with all possible combinations of control lines, data lines 

and intermediate gate outputs. The simulated results for ten 

random functions are given in Table 9. 

Table 9. Simulation results for OR-bridging faults 
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1 F1 3 78 84.62 58.97 

2 F2 4 136 98.53 52.21 

3 F3 5 231 96.54 59.74 

4 F4 6 351 96.58 67.24 

5 F5 7 210 98.57 85.71 

6 F6 8 820 98.29 70.12 

7 F7 9 465 98.28 79.14 

8 F8 10 496 98.59 85.89 

9 F9 11 465 98.71 86.88 

10 F10 12 496 98.79 80.85 

Average 96.75 72.68 

From the test results as given in Table 5, 6, 8 and 9, it was 

found that the identifiability factor for the set of random 

functions tested through MATLAB simulation was more than 

95% for all the functions of Single stuck-at, Double stuck-at, 

and OR-bridging types of faults except AND-bridging faults, 

with just n+5 test vectors compared to 2n test vectors required 

for conventional testing. It was also observed that even though 

the overall distinguishabililty factor was in the range of 31-85%, 

the individual set distinguishability factor was more than 93% as 

explained above. 

Though the overall distinguishability is small, it does not 

affect the detection capability. Further, the distinguishing 

capability for an individual output set can be quite high, as 

illustrated above. 

 

5.  Conclusion 

A test set scheme for detection of Single stuck-at, Double 

stuck-at, OR-bridging and AND-bridging faults for ESOP RMC 

logic functions have been detailed and the simulation results are 

shown.  The results conclude that n+5 test vectors can be used to 

detect Single Stuck-at, Double stuck-at, OR-bridging and AND-

bridging faults in digital circuits.  Further, the location can also 

be diagnosed through the output set. The analysis and diagnosis 

have been done through compact tabulation and two 

quantification indices. All possible combinations of the data 

lines, control lines and all intermediate gate outputs line pairs 

have been considered. Detection factor and Distinguishability 

factor can be further improved by modifying the network 

structure or using different test vectors.  
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