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Introduction 

 The study of longitudinal dispersion in a straight tube has 

applications in chromatography, environmental dynamics, 

biomedical engineering and physiological fluid dynamics. The 

insertion of a catheter into an artery forms the annular region 

between the catheter wall and the arterial wall. The insertion of 

catheter will change the flow field and disturb the hemodynamic 

conditions that exist in the artery before catheterization. 

Therefore, the recordings of the flow or the pressure gradient 

measured by a transducer attached to the catheter will differ 

from that of uncatheterized artery. Therefore, it is essential to 

know catheter induced errors in order to obtain the accurate 

readings of pressure etc. The sampling system involved in the 

multiple indicator dilution technique to study the blood tissue 

exchange induces variations in the time concentration curve and 

thus recorded curve is not of the same shape as the in situ 

concentration time curve evaluated at the withdrawal site, 

(Milner and Jose, 1960). The need for correcting the errors due 

to insertion of catheter are noticed and discussed in the 

experimental works when catheters are used for measurements 

(Parrish et al., 1962, Cooper et al., 1963, Goresky and 

Silverman 1963). 

 The dispersion of a solute in a tubular flow is studied by 

Aris (1959) considering two phases of flow with velocities and 

diffusion coefficients varying with radial distance. 

Sankarasubramanian and Gill (1971) analyzed the diffusion in 

an eccentric annular region. Tsangaris and Athanassiadis (1985) 

studied the dispersion of a contaminant in oscillatory flow in 

annular region by obtaining the effective diffusion coefficient. 

Rao and Deshikachar (1987) studied the unsteady convective 

dispersion of a solute in a solute in a fully developed flow in an 

annular pipe by extending the analysis of Gill and 

Sankarasubramanian (1970). They evaluated the dispersion 

coefficient as a function of time using a generalized dispersion 

model which is valid for all the times. The studies of 

Sankarasubramanian and Gill (1971) and Rao and Deshikachar 

(1987) revealed that the axial dispersion of mean concentration 

decreased with increase in the radius of the inner cylinder. Smith 

and Walton (1992) studied dispersion of solutes in an inclined 

flow in an annulus. Nagarani et al. (2006) studied the dispersion 

of a solute in a Casson fluid in an annulus using the generalized 

dispersion model.  

It was reported (Scott Blair and Spanner (1974)) blood 

obeys Casson equation in a limited range.  No difference 

between the plots of Herschel–Bulkley and Casson fluid, except 

at very high and very low shear rates was found when plotted 

using the experimental data. It is observed that the Casson fluid 

model can be used for moderate shear rates   < 10/s in smaller 

diameter tubes whereas the Herschel– Bulkley fluid model can 

be used at still lower shear rate of flow in very narrow arteries 

where the yield stress is high (Tu et al. 1996). Further, the 

mathematical model of Herschel–Bulkley fluid also describes 

the behaviour of Newtonian fluid, Bingham fluid and power law 

fluid by taking appropriate values of the parameters viz. yield 

stress and power law index.  

In this paper, an attempt has been made to analyze the 

dispersion of a solute in Hershel-Bulkley fluid flowing in an 

annular pipe, using the generalized dispersion model. The 

objective of this study is to apply this analysis for understanding 

the dispersion of an indicator and the errors in flow 

measurements in the cardiovascular system that arises due to the 

insertion of a catheter.   

Mathematical Formulation 

 Fig 1 shows the schematic diagram of the annular geometry. 

The radius of the outer tube is ‘a’ and that of the inner tube is 

‘ka’ with k < 1. For a fully developed, laminar flow of a 

Herschel-Bulkley fluid in an annulus, the non dimensional 

convective diffusion equation, which describes the local 

concentration C  of a solute as a function of axial distance z , 

radial distance r  and time t  in non-dimensional form is given 

by 
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C0 is the reference concentration, w  is the axial velocity of the 

fluid in pipe and Dm is coefficient of molecular diffusion 

(molecular diffusivity) which is assumed to be constant, Pe =  

mD

wa 0
 is the Peclet number. 

 

Fig1 Schematic diagram of catheterized artery 

The initial and boundary conditions for the slug input of solute 

length
sz , in dimensionless form, are given by 
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The constitutive equation for a Herschel-Bulkley fluid relating 

the stress ( ) and rate of strain 
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where ‘n’ is the power law index. 
y

 is the non-dimensional 

yield stress of the fluid. The above relations between the shear 

stress ( ) and shear rate ( rw  / ) are appropriate for positive 

values of    and negative values of rw  / . The equivalent form 

of these relations for more general situation, where the shear 

stress and shear rate can change sign may be written as (Aroesty 

and Gross, 1972 a, b)  
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 From equation (4) it is seen that the flow of a Herschel-

Bulkley fluid in an annular region has three phases such that in 

the central core region the velocity profile is flat and hence 

forms the plug flow region.  In this plug flow region the shear 

stress does not exceed the yield stress 
y

, and the fluid does 

not flow by itself but is merely carried along by the fluid in the 

two adjacent shear flow regions as a solid body with a constant 

velocity      – the plug flow velocity. If the plug flow region is 

represented by 
21   r  where 1, 21  k , and the two 

shear flow regions by 
1 rk  and 12  r , then the 

Hershel-Bulkley  fluid’s constitutive equation (4) in these 

regions can be written as 
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where 
1  and 

2  are the yield  plane locations. The velocity 

distribution in these regions is given by 
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wher 
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is the width of the plug flow region and  

21
2                                                          (6e) 

and Ps is the steady state pressure gradient. The superscripts ‘+’ 

and ‘+ +’ represent the shear flow regions  
1 rk   

and 12  r , respectively, and the superscript ‘–’ represents 

the plug flow region
21   r . From eq (6b) and using (6d) 

and (6e), we obtain 
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which is integral equation to be solved for  
1

numerically by 

using Regula falsi method, and 
2

 can be obtained from 

equation (6d), once 
1

 is known .The mean velocity is defined 

as  
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Method of Solution 

         Let us consider the convection across the plane, which 

moves with the average velocity wm of the fluid. For this we 

need to define a new co-ordinate system (r, z1, t) with the new 

axial coordinate z1 given by 

    z1  =  z  -  wm t                                               (9) 

The solution of the equation (1), together with the conditions (2) 

is formulated as a series expansion following Gill and 

Sankarasubramanian (1970), and is given by 
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is the mean (average) concentration over a cross-section. On 

transforming the unsteady convective diffusion equation (1) into 

the moving co-ordinate system (r, z1, t) where z1 is defined by 

equation (9) and substituting equation (10) into the transformed 

unsteady convective diffusion equation, we obtain 
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It is assumed that the process of distributing Cm is diffusive in 

nature from the time ‘zero’, then as in Gill and 

Sankarasubramanian (1970) the generalized dispersion model 

for Cm can be written as 
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with dispersion coefficients Ki as suitable functions of time t. 

The first two terms on the right hand side of equation (13) 

describe the transport of Cm in axial direction z1 through 

convection and diffusion respectively, and therefore the 

coefficients K1 and K2 are termed as the longitudinal convection 

and diffusion coefficients for Cm respectively. 

Substituting equation (13) in equation (12) and rearranging the 

terms, we get 
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Comparing the coefficients of 

j

m
j

z

C
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 , j = 1, 2, .. , we get an 

infinite set of differential equations given by 
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for j = 1, 2… with  f0  = 1. 

Since Cm can be chosen to satisfy the initial condition on C, the 

initial and boundary conditions on fj’s can be obtained from 

equations (2), we have 

fj (0, r)  = 0      j = 1, 2….                              (18a) 
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and from equations (10) and (11), we have   
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Multiplying equations (15), (16) and (17) by r and integrating 

from k to 1, by using the condition (19) we get 
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Using (20), equation (15) takes the form  
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The function f1 is the most important coefficient of the series in 

equation (10). It gives the measure of deviation of the local 

concentration C from the mean concentration Cm. The solution 

to the non-homogeneous parabolic partial differential equation 

(23) and conditions (18) and (19) can be written in the form 

   f1(t, r)  =    f1s(r)  +   f1t (t, r)   (24) 

where f1s is the large time solution and f1t is the transient part 

which describes the time-dependent nature of the dispersion 

phenomenon. Substituting (24) in equation (23) we obtain  
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The corresponding boundary conditions on f1s and f1t are 
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f1t (0, r) = - f1s(r)                 (27c) 
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The solution for f1t  is obtained from the equation (26) subject to 

the conditions  (27), and is given by 
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and 
j ’s are the solutions of the equation 

0)()()()( 1111  jjjj JkYYkJ    (32) 

where J0, J1 and Y0, Y1 are the Bessel functions of first kind and 

second kind of order zero and one respectively.  
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 In the generalized dispersion model given by equation (13), 

K2 plays an important role. From the equation (21), we can see 

that it depends on the function f1. We can solve the equation (21) 

for K2 by substituting the expression for  f1s and  f1t. Once K2 (t) 

is known, then f2 (t, r) can be obtained in a similar manner to that 

f1(t, r ). In this way we can find K3 (t), f3 (t, r),  K4 (t), f4 (t, r) 

………and so on. Since the expression for f1 (t, r) and K2 (t) are 

complex in nature, it is very difficult to evaluate f2 (t, r), K3 (t),  

….. and so on. But for dispersion in a Newtonian fluid which 

corresponds to y = 0 and    n = 1, it was shown that K3 

(t  )=-1/ 23040 (Gill and Sankarasubramanian,1970), and the 

magnitude of higher order coefficients decrease further. Owing 

to the yield stress and power law index these coefficients may 

decrease further in magnitude and hence they are not evaluated. 

Neglecting K3(t) and higher order coefficients, the generalized 

dispersion model leads to  
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The initial and boundary conditions for Cm are given by 
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The solution of the mean concentration for equation (33) with 

the help of the conditions (34) is given by 
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Results And Discussion 

 In this paper the dispersion of a solute in a Herschel-

Bulkley fluid flowing in an annular pipe is analyzed using 

generalized dispersion model. Consequently the effective 

diffusion coefficient K2 which describes the total dispersion 

process in terms of a simple diffusion process as a function of 

time can be evaluated. It is observed that the dispersion 

coefficient K2 is influenced by the yield stress of the fluid, 

power law index. Further the dispersion is likely to be affected 

by the presence of a concentric tube. The effect of power law 

index on K2 is analyzed. The results are compared and found to 

be in agreement with those of  Rao et al. (1987) in the absence 

of yield stress  
y

 = 0, n = 1 and to reduce to those of Gill and 

Sankarasubramanian (1970) when 
y

 = 0, k  0 and n =1. The 

results are discussed for different fluids Newtonian (
y

 = 0, n = 

1), Power law      (
y

 = 0, n = 2), Bingham (
y

 ≠ 0, n = 1) and 

Herschel-Bulkley fluids (
y

 ≠ 0, n = 2). 

 In the present study the ratio of the radius of inner tube to 

that of the outer tube is taken to range from 0.1 to 0.5, yield 

stress in the range 0.1 to 0.3 and the length of the slug input of 

the solute is varied from 0.004 to 0.02. For Herschel-Bulkley 

and power law fluids the power law index n is taken as 2. For 

each value of k, the associated eigen value j, for j = 1, 2…… 

are evaluated from the equation (30) using standard root finding 

numerical procedure. 

 The dispersion coefficient K2 in the case of a Herschel-

Bulkley fluid (from which 1/Pe
2
 is deducted) versus time for 

different values of yield stress y  is described in fig 2. It is 

noticed that the dispersion coefficient K2 increases significantly 

for small values of time and attains essentially a constant value 

for large values of time. The time taken to reach the steady state 

is observed to be dependent on the values of yield stress. As 

yield stress increases this critical value is seen to be decreasing. 

A similar observation is made in the case of Casson fluid by 

Dash et al. (2000) in tubular flow and Nagarani et al. (2006) in 

an annular flow. 

Fig 3 shows the dispersion coefficient versus time in the 

Newtonian, Power law, Bingham, Herschel-Bulkley fluids. 

Since the velocities reduce due to the non – Newtonian nature of 

the above fluids in the order mentioned, a reduction in the 

dispersion coefficient is also noticed in the same order. 
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Fig 5 Variation of mean concentration Cm with axial distance 
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Fig 7  Variation of mean concentration Cm  with t   for 

different values zs when   z = 0.01, 
y

 = 0.1, Pe = 1000, k = 

0.1, n = 2 

It is observed from fig 4 that reduction in the annular gap 

inhibits the dispersion process for all times which is also noticed 

by Rao and Deshikachar (1987). In case of Herschel-Bulkley 

fluid when yield stress is 0.1 and k varies in the range (0.2 - 0.3) 

the reduction factor in the dispersion coefficients varies in the 

range (0.0037- 0.0029) 

The mean concentration versus the axial distance for 

various values of the annular gap is plotted in fig 5. It is 

observed that in a Herschel-Bulkley fluid the peak values of 

mean concentration occur at the origin for k = 0.1. As k 

increases (i.e. the annular gap reduces) the concentration profile 

becomes blunt and further its magnitude increases. In other 

words the axial dispersion decreases with increase in the radius 

of the inner cylinder. 

The variation of Cm with axial distance z for Herschel-

Bulkley fluid (with yield stress 
y

 = 0.1 and k = 0.1) for 

various lengths of slug input of the solute is shown in fig 6.  The 

peak concentration is found to increase from 0.8431 to 1 when 

the length of the slug input solute varies from 0.004 to 0.02. It is 

observed that the solute disperses faster when length of the slug 

input of solute is smaller. Fig 7 presents the mean concentration 

versus time for different lengths of the slug input. As the length 

of the slug input increases it is observed that peak values of Cm 

increases.  

 

Fig 8 Variation of mean concentration Cm  with t   for 

different values k  when Pe = 1000, zs = 0.019,  n = 2 (a) 
y

 = 

0, z = 0.01  (b) 
y

 = 0.1, z = 0.01 (c) 
y

 = 0, z = 0.05 (d) 
y

 = 

0.1,     z = 0.05 

In fig 8 (a, c) the observation point is just outside the slug 

while in fig 8 (b, d) it is at farther distance from the slug. For 

Newtonian fluid fig (8a) the peak values of the concentration for 

different values of k are attained in a smaller interval of time 

(0.42-0.5) while in the case of Herschel-Bulkley fluid the peak 

values occurred in the interval (0.6, 1.8). In the Newtonian case 

the peak value of concentration increases from 0.25 to 0.38 

when k changes from 0.1 to 0.3 while in the Herschel-Bulkley 

fluid case it changes from 0.86 to 0.99. Fig 9 (a, b) shows the 

mean concentration against axial distance for Newtonian and 

Bingham fluids, and power law and Herschel Bulkley fluids. It 

is observed that the axial dispersion decreases due to the non-

Newtonian nature of the fluid. Fig 10(a, b) describes the mean 

concentration against time for Newtonian and Bingham fluids, 

and Power law and Herschel-Bulkley fluids. It is noticed from 

fig 10(a) that the mean concentration attains its peak value 

earlier than that of the Bingham fluid. Similarly fig 10(b) shows 
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that the peak value of mean concentration attains much faster (t 

= 0.45) in Power law fluids than in Herschel-Bulkley fluid 

(0.68). 

 

Fig 9 Variation of mean concentration Cm  with axial 

distance z   for different fluids when k =0.1, zs = 0.02, t = 0.3 

 

Fig 10 Variation of mean concentration Cm  with t   for  

different fluids when k = 0.1,  zs = 0.02, z = 0.05 

Applications To Catheterized Artery 

 The analysis of this mathematical model can be applied to 

understand the dispersion of an indicator in a catheterized artery 

of radius ‘a’ and catheter of radius ka which is inserted 

coaxially. The objective is to estimate the catheter induced error 

in the measured values based on the concept of longitudinal 

dispersion of substance due to the combined action of the 

convection and the diffusion. The ratio of the radius of the 

catheter to that of the artery (k) is varied from 0.1 to 0.3 to 

understand the impact of the size of the catheter on the mass 

transport process. The values of the yield stress are varied from 

0.1 to 0.3. The variation of K2 versus k for different values of 

yield stress is described in table 1.  

Table 1 Variation of effective diffusivity coefficient for 

steady state dispersion with catheter radius (k) and yield 

stress ( y ) of the fluid 

 y = 0 y = 0.1 y =0.2 y =0.3 

k = 0 5.21 10-3 4.58 10-3 2.41 10-3 2.67 10-4 

k = 0.1 4.56 10-3 6.25 10-4 5.32  10-4 1.86  10-4 

k = 0.2 2.77 10-3 2.84 10-4 1.14 10-4 5.23  10-5 

k = 0.3 1.45 10-3 4.91 10-5 2.41  10-5 1.25  10-5 

 It is seen from the table that presence of a catheter reduces 

the dispersion when the annular gap is 0.1. Further it decreases 

with the size of the catheter. In Newtonian fluid when the 

annular gap is 0.3, due to insertion of a larger catheter there is a 

fourfold reduction in dispersion coefficient. Further increase in 

the value of yield stress reduces the dispersion coefficient more. 

When the yield stress of the fluid is y  = 0.3, it is noticed that 

dispersion coefficient reduces five times that of the Newtonian 

case.  

The combined effect of yield stress and size of the catheter on 

coefficient of dispersion is significant. It is noticed that the 

dispersion coefficient in the presence of large catheter (annular 

gap k = 0.3 and yield stress 
y

 = 0.3) is reduced by four 

hundred times of the Newtonian case in the absence of a 

catheter. 

Conclusions 

 Dispersion of a solute in an annular region in a Herschel-

Bulkley fluid is analyzed employing the generalized dispersion 

model. Thus, the effective diffusion coefficient describes the 

entire dispersion process in terms of a simple diffusion 

processes. The dispersion coefficient is dependent on yield stress 

of the fluid, power law index of the fluid and the annular gap. In 

fact, it is observed that the yield stress and presence of a catheter 

inhibits the rate of dispersion. The dispersion coefficient is 

observed to be decreasing due to the non- Newtonian nature. 

The steady state value of dispersion is found to decrease in 

Newtonian, Bingham, Power law and Hershel-Bulkley fluids 

consecutively. The peak value of the mean concentration 

increases from 0.83 to 0.99 when k increases from 0.1 to 0.3 

when   
y

 = 0.1, zs = 0.019 at t =0.03 in Herschel-Bulkley fluid. 

The analysis of this model can be applied to understand the role 

played by the size of the catheter when inserted into an artery 

and the effect of non-Newtonian nature of the fluid.  The 

insertion of a catheter of small size  k  0 leads to a five fold 

reduction in the dispersion coefficient to that of the 

corresponding value in an uncatheterized artery when blood is 

modeled as a Hershel-Bulkley fluid (i.e. 
y

 = 0.1, n = 2). The 

combined effect of non-Newtonian rheology and the insertion of 

a catheter in an artery on the dispersion coefficient are to reduce 

the effective dispersion coefficient significantly. 
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