
Rajeswari.S/ Elixir Image Processing 58A (2013) 15071-15074

15071

Introduction

Before OCR can be used, the source material must be

scanned using an optical scanner (and sometimes a specialized

circuit board in the PC) to read in the page as a bitmap (a pattern

of dots). Software to recognize the images is also required.

The character recognition software then processes these

scans to differentiate between images and text and determine

what letters are represented in the light and dark areas. Older

OCR systems match these images against stored bitmaps based

on specific fonts. The hit-or miss results of such pattern-

recognition systems helped establish OCR's reputation for

inaccuracy. Today’s OCR engines add the multiple algorithms

of neural network technology to analyse the stroke edge, the line

of discontinuity between the text characters, and the

background. Allowing for irregularities of printed ink on paper,

each algorithm averages the light and dark along the side of a

stroke, matches it to known characters and makes a best guess as

to which character it is. The OCR software then averages or

polls the results from all the algorithms to obtain a single

reading .OCR software can recognize a wide variety of fonts,

but handwriting and script fonts that mimic handwriting are still

problematic, therefore additional help of neural network k power

is required. Are taking different approaches to improve script

and handwriting recognition. As mentioned above, one possible

approach of handwriting recognition is with the use of neural

networks. Neural networks can be used, if we have a suitable

dataset for training and learning purposes. Datasets are one of

the most important things when constructing new neural

network. Without proper dataset, training will be useless. There

is also a saying about pre-processing and training of data and

neural network: “Rubbish-in, rubbish-out”. So how do we

produce (get) a proper dataset? First we have to scan the image.

After the image is scanned, we define processing algorithm,

which will extract important attributes from the image and map

them into a database or better to say dataset. Extracted attributes

will have numerical values and will be usually stored in arrays.

With these values, neural network can be trained and we can get

a good end results. The problem of well-defined datasets lies

also in carefully chosen algorithm attributes. Attributes are

important and canhave a crucial impact on end results. The most

important attributes for handwriting algorithms are:

1. Negative image of the figure, where the input is defined as 0

or 1. 0 is black, 1 is white, values in between shows the intensity

of the relevant pixel.

2. The horizontal position, counting pixels from the left edge of

the image, of the centre of the smallest rectangular box that can

be drawn with all "on" pixels inside the box.

3. The vertical position, counting pixels from the bottom, of the

above box.

4. The width, in pixels, of the box.

5. The height, in pixels, of the box.

6. The total number of "on" pixels in the character image.

7. The mean horizontal position of all "on" pixels relative to the

centre of the box and divided by the width of the box. This

feature has a negative value if the image is "left heavy" as would

be the case for the letter L.

8. The mean vertical position of all "on" pixels relative to the

centre of the box and divided by the height of the box.

9. The mean squared value of the horizontal pixel distances as

measured in 6 above. This attribute will have a higher value for

images whose pixels are more widely separated in the horizontal

direction as would be the case for the letters W or M .The mean

squared value of the vertical pixel distances as measured in 7

above.

11. The mean product of the horizontal and vertical distances for

each "on" pixel as measured in6 and 7 above. This attribute has

a positive value for diagonal lines that run from bottom left to

top right and negative value for diagonal lines from top left to

bottom right.

Tele:

E-mail addresses: raje_raje88@yahoo.co.in

 © 2013 Elixir All rights reserved

Handwritten character recognition system
Rajeswari.S

 Department of Electronics and communication Engineering, Bharath University, Chennai, India.

ABSTRACT

Character recognition, usually abbreviated to optical character recognition or shortened

OCR, is the mechanical or electronic translation of images of handwritten, typewritten or

printed text (usually captured by a scanner) into machine-editable text. It is a field of

research in pattern recognition, artificial intelligence and machine vision. Though academic

research in the field continues, the on character recognition has For many document-input

tasks, character recognition is the most cost-effective and speedy method available. And

each year, the technology frees acres of storage space once given over to file cabinets and

boxes full of paper documents. The objective of this paper is to identify handwritten

characters with the use of neural networks. We have to construct suitable neural network and

train it properly. The program should be able to extract the characters one by one and map

the target output for training purpose. After automatic processing of the image, the training

dataset has to be used to train “classification engine” for recognition purpose. The program

code has to be written in MATLAB and supported with the usage of Graphical User

Interface (GUI).

 © 2013 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 24 November 2012;

Received in revised form:

15 May 2013;

Accepted: 21 May 2013;

Keywords

Character recognition,

Pre-processing,

Edge detection,

Morphology,

GIU.

Elixir Image Processing 58A (2013) 15071-15074

Image Processing

Available online at www.elixirpublishers.com (Elixir International Journal)

Rajeswari.S/ Elixir Image Processing 58A (2013) 15071-15074

15072

12. The mean value of the squared horizontal distance tunes the

vertical distance for each "on “pixel. This measures the

correlation of the horizontal variance with the vertical position.

13. The mean value of the squared vertical distance times the

horizontal distance for each "on “pixel. This measures the

correlation of the vertical variance with the horizontal position.

14. The mean number of edges (an "on" pixel immediately to the

right of either an "off pixel or the image boundary) encountered

when making systematic scans from left to right at all vertical

positions within the box. This measure distinguishes between

letters like "W" or "M" and letters like "I" or "L."

15. The sum of the vertical positions of edges encountered as

measured in 13 above. This feature will give a higher value if

there are more edges at the top of the box, as in the letter "Y."

16. The mean number of edges (an "on" pixel immediately

above either an "off pixel or the image boundary) encountered

when making systematic scans of the image from bottom to top

over all horizontal positions within the box.

17. The sum of horizontal positions of edges encountered as

measured in 15 above

Fig1: Example of image defined attributes

Solution Approach

To solve the defined handwritten character recognition

problem of classification we used MATLAB computation

software with Neural Network Toolbox and Image Processing

Toolbox add-on. The computation code is divided into the next

categories:

Automatic Image Pre-processing

The image is first being converted to grayscale image

follow by the threshing technique, which make the image

become binary image. The binary image is then sent through

connectivity test in order to check for the maximum connected

component, which is, the box of the form. After locating the

box, the individual characters are then cropped into different sub

images that are the raw data for the following feature extraction

routine. The size of the sub-images are not fixed since they are

expose to noises which will affect the cropping process to be

vary from one to another. This will causing the input of the

network becomenot standard and hence, prohibit the data from

feeding through the network. To solve this problem, the sub-

images have been resize to 50 by 70 and then by finding the

average value in each 10 by10 blocks, the image can be down to

5 by 7 matrices, with fuzzy value, and become 35 inputs for the

network. However, before resize the sub-images, another

process must be gone through to eliminate the white space in the

boxes.

Read Image

This cell of codes read the image to MATLAB workspace.

I = imread('training.bmp');imshow(I);

Fig 2 Read Image

Convert to grayscale image

This cell of codes convert the RGB to gray.

Igray = rgb2gray(I); imshow(Igray)

Fig 3 Convert to grayscale image

Convert to binary image

This cell of codes convert the gray to binary image.

Ibw = im2bw(Igray,graythresh(Igray));

imshow(Ibw)

Fig 4 Convert to binary image

Edge detection

This cell of codes detect the edge of the image.

Iedge = edge(uint8(Ibw));

imshow(Iedge)

Fig 5 Edge detection

Morphology

This cell of codes perform the image dilation and image filling

on the image.

Image Dilation

se = strel('square',2);

Iedge2 = imdilate(Iedge, se);

imshow(Iedge2);

Image Filling

Ifill= imfill(Iedge2,'holes');

imshow(Ifill)

Fig 6 Morpology

Rajeswari.S/ Elixir Image Processing 58A (2013) 15071-15074

15073

Blobs analysis

This cell of codes find all the objects on the image, and find the

properties of each object.

[Ilabel num] = bwlabel(Ifill);

disp(num);

Iprops = regionprops(Ilabel);

Ibox = [Iprops.BoundingBox];

Ibox = reshape(Ibox,[4 50]);

imshow(I)

50

2.6.2 Plot the Object Location

This cell of codes plot the object locations.

hold on;

for cnt = 1:50

rectangle('position',Ibox(:,cnt),'edgecolor','r');end

Fig 7 Object location

By this, we are able to extract the character and pass to

another stage for future extraction and

proccesing

Feature Extraction

The sub-images have to be cropped sharp to the border of

the character in order to standardize the sub-images. The image

standardization is done by finding the maximum row and

column with 1sand with the peak point, increase and decrease

the counter until meeting the white space, or the line with all 0s.

This technique is shown in figure below where a character “S” is

being cropped and resized.

Fig 8 cropped and resized picture

Application Of Gui

The character recognition application can be used in two

different ways. First way is to type every command inside the

MATLAB console and workspace on hand. The second way is

to use alreadypre-prepared Graphical User Interface. The GUI

consists of two files. First file include all necessary

programming code, and the second file include visible interface

shapes and forms. The interface works like the workflow of

recognition process. First we load the image, than we select the

character and after that we click crop, pre-process, feature

extraction and finally recognize. One very stage, GUI shows us

a new image, which is unique for the each step. The images can

be viewed in the Main window, RGB, Binary, Crop to Edges

and Features window.

Fig 9 Grapical user interface

Fig 10 Read image in GIU

Fig 11 Copped image

Fig 12 Image pre-processing

Fig 13 edge detection In GIU

Fig 14 Recognized image

For test purposes I made a test also with the new set of

characters. This time they are not ordered. You can clearly see

the new word from the first six Tamil character was chosen in

which one letter is recognized correctly. If we try to recognize

Rajeswari.S/ Elixir Image Processing 58A (2013) 15071-15074

15074

 letter except the above letter on this picture, recognition will

not be correct. False recognition is in fact logical, because our

neural network is not properly trained for those characters. It is

trained only for first six Tamil characters

Conclusion

which is not easily solvable. The main arguing which I had at

the beginning was around dataset and database. I put a lot of

energy into finding already pre-prepared datasets, which could

be useful for our neural network, but at the end of my research I

end up with no training data and no neural network. The main

problem lies in pre-processing of data. Datasets from the

“internet” were quite large, they contained a lot of data (a lot of

data is excellent for training, validation and testing), but too

little information on attributes and image extractions (which

were used by them-authors of datasets). From that reason, I was

able to train the neural network, but notable to test it on my own

example. Final result was only X per cents of true classification,

which was not what I expected. Next, I decided to go on my own

and make my own recognition example, which will include also

self-testing algorithm. The bad side of own application is that, I

will not have a lot of training data, therefore output from the

character recognition can be divided into three main parts.

Image reprocessing to get the training data, training the neural

Image pre-processing to get the training data for the neural

network is based on inputtraining.bmp image which has exactly

50 characters (25 characters and 25 numbers). Every type of

character from all 50 characters is repeated only five times.

Compared with other professional neural network application 5

repetitions is very small dataset. Other datasets usually consist

of around 800 repetitions, so 800 to my 5 is quite a difference.

Another downsize is, that I prepared my training data only from

10 characters [1,2,3,4,5,A,B,C,D,E]and not from the whole

alphabet. I tried to train the network also with 32 English

alphabet characters, but the outcome from the net was not

usable. Too many characters wereclassified false. I discovered

that optimal number of characters (for such application) is about

ten. More than that is already destroying recognition result. In

any case, I am working with only a few data and a saying that

Rubbish-in, Rubbish-out is true. From the other point of view I

learned quite a lot how to construct, deal and implement

character recognition application. Training and testing the neural

network was only a matter of two MATLAB commands.

Idecided to use Multilayer Perceptron with two hidden layers of

35 and 10 neurons as a neural network. I also enclosed the whole

MATLAB program, where it can easily be seen all of

performance, training state and regression graphs ... At this point

I would like to mention, that I have 50 data (characters) on the

picture. 40 of them were used for training and last 10 were used

for simulating and testing. Final testing of the Graphical User

Interface show, that such an approach is quite userfriendly. User

does not have to type in MATLAB command all command on h

and, but can click on the buttons and test the character

recognition. GUI uses already pre -trained neural network from

precedent computation steps. The result of NN is numerical

matrix in form like[1,2,3,4,5,6,7,8,9,0]. Final result which

displays in the GUI is calculated with the help of

encoding/decoding and index mapping. Encoding is necessary,

because we can not define targets for neural network as a

characters, but only as numbers. So, at the end, numbershas to

be “translated into characters”. The last test was done on new

image test.bmp, which includes word ABECEDA and few other

characters. Most of the characters are recognized appositive

match. Those characters that are not recognized as true are on

the image also for testing purposes, because I deliberately put

there for example character P, which was not included into the

neural net training. Therefore also recognition is not possible.

References

[1] L . Behera and I. Kar. Intelligent systems and control:

Principles and applications. Oxford University

Press, India, 2009.

[2] C.M. Bishop. Neural networks for pattern recognition.

Oxford University Press, USA, 1995.

[3] J. Mantas. An overview of character recognition

methodologies. Pattern recognition, 19(6):425–430, 1986

