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1. Introduction 

  In life testing experiment, it is a common practice to 

terminate the experiment when certain number of items has 

failed or a stipulated time has elapsed. In order to overcome this 

situation we terminate most of the life tests before all the items 

fail. To avoid this many life tests are terminated before all the 

items fail. If we considered the first n ordered statistics x(1), 

x(2),……, x(n)  in a sample of size (r), in this case the sample is 

censored on the right which is also called as Type II censoring. 

Similarly we may have censoring on the left is called Type I 

censoring. For example, in many biological experiments, r 

samples from each  living things are tested for antibodies after a 

certain period of time , only „n‟ of these samples contain 

measurable amounts while remaining (n-r)  of the animal 

develop the antigen at a level too low for measurements. 

Cohen(1965) and Srivastava (1976) have obtained the likelihood 

estimates of the parameters in case of continuous distributions 

such as exponential, normal ,log-normal and logistic when 

samples are progressively censored under the assumption that 

the parameters of the distribution under consideration might 

change at each stage of censoring. In such experiments after first 

stage, the experiment is continued with the remaining surviving 

items. The idea of removing some items at every stage of 

censoring stamps from the fact that these items might be 

required for use somewhere else for related experimentation. 

Bhattrchaya and Srivastava (1974) considered the type I and 

type II censoring process. 

 Let 
nxxx ,........,, 21

be a random sample of size n from 

normal distribution with mean θ and variance σ
2 

.In some 

practical situations the prior values of mean and variance are θ0 

and σ0
2
 may be available. The preliminary testimator for the 

mean was suggested by Bancroft (1944) as: Take θ0 as the 

estimate of θ if
00:  H is accepted, otherwise the usual 

estimator x  or in other words 
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 The mean squared error criterion as 
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where α is the level of significance. Equation (1.2) can be 

written as  







 







 11010

n
x

n
P

                       (1.3) 

The distribution of x  must be known.Pandey(1977)considered 

the exponential distribution which is generally used in Life 

testing distributions, it has mean θ and variance θ
2 

.If we 

considered the improved estimator for θ as  

10,)1( 01  kkxkP  .The vale of k for which risk will be 

minimum is 
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 which is less than one. 

The value of k depends on n and 



 0
.If 



0
=1, kmin =0 and
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estimator is 
0

.The magnitude of relative efficiency will be 

maximum at 



0
=1 and level of significance α is small and 

smaller value of n.  

Epstein and Sobel (1953) and Bhattacharya and Srivastava 

(1974) considered the censoring procedure in life testing 

problem and proposed the estimator as  
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 .We know that 

0

2



xn follows a chi-square distribution with 2n degrees of 

freedom. Also if 
)()()2()1( nr xxxx   and r 

is the censored data of type II censoring. Then, 
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Since 


rnT2 follows a chi-square distribution with 2r degrees of 

freedom i.e., 
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If two populations are considered with common mean, the 

unbiased estimator for common mean in exponential distribution 

is  
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Pandey and Malik (1994) considered the improved estimator for 

θ
2 
in exponential distribution as  
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 which is in the form of  improve 

estimator of θ
2
 in exponential distribution suggested by Pandey 

and Singh (1977) as  
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If we considered the displaced exponential distribution having 

density function 
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Here A is location and  is scale parameters. The maximum 

likelihood estimators for  and A are  )1(xx   and 
(1)x  

respectively. 

We know that   


 1xxn2 follows a chi-square distribution 

with 2(n-1) degrees of freedom. The other research scholars 

have considered the preliminary estimators/adaptive estimators/ 

conditional specifications. (see Han etal (1988), Hogg (1974), 

Pandey and Singh(1977),Hirano(1973)). In section 2, proposed 

an estimator for θ
2  

in case of exponential distribution as 
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under Linex loss function.  

 

2. Estimation of θ
2 
under Linex loss function 

 Pandey and Singh (1977) considered the improved estimator for 

θ
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Similarly if considered the improved estimator for θ
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Pandey and Malik (1994) considered the improved estimator for 

θ
2 

as 
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In some cases, the over (under) estimation may exist and Varian 

(1975) proposed the Linex (linear-exponential) loss function 

which may be appropriate. The Linex loss function which rises 

exponentially on one side of zero and almost linearly on the 

other side of zero. This loss function reduces to squared error 

loss for value of a near to zero. The Linex loss function is 

  ˆ, 1 , , 0,aL a b e a a          
       

a and b are shape and scale parameter.  

If 0a  , the linex loss reduced to squared error.  

Using Linex loss function for the estimator 
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Table 2.1 to 2.4, represents the relative efficiency of the 

estimator '

2Y    with respect to 
2Y  for a = .1(.1).4, 1r

3,4,5,6, 

2r
3, 4, 5, 6.The figure 2.1 to 2.4 shows that for small values 

of a and for small values of
1r
, 

2r
the proposed estimator are 

performs better. The preliminary testimators may be proposed 

and properties can be studied.  
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4. Appendices  

Figure 2.1 Relative Efficiency of Testimator '

2Y w.r.to 
2Y  

when a=0.1 
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Figure 2.2 Relative Efficiency of Testimator '

2Y w.r.to 
2Y  

when a=0.2 
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Figure 2.3 Relative Efficiency of Testimator '

2Y w.r.to 
2Y  

when a=0.3 
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Figure 2.4 Relative Efficiency of Testimator '

2Y w.r.to 
2Y  

when a=0.4 
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