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1. Introduction  

The simplest model that was thought for life 

time data was exponential distribution. It has constant 

hazard rate. Due to mathematical ease in using this 

distribution, it has widely been used for life testing and 

reliability analysis (See, Johnson and Kotz (1970)). In 

life testing and reliability, the time and cost involved in 

the experimentation, often investigators not to observe 

the complete failure times of all items put on test and 

partly observes data is called censored data. The 

procedure by which we get the part of sample data is 

called censoring scheme. There are various type of 

censoring Schemes discussed in the literature such as 

type-I censoring, type-II censoring and Hybrid 

censoring etc. Each censoring scheme has its own 

advantages. In type-II censored sample, n items are put 

on test and experiment is terminated after getting r 

failures which is pre decided ( . .,1 )i e r n  . For example, 

consider that a doctor investigate an experiment with n 

HIV- patients but after the death of first patient, some 

patient leave the experiment and go for treatment to 

other doctor/ hospital. Similarly, after the second death 

a few more leave and so on. A generalization of type -II 

censoring is progressive type-II censoring. In the 

censoring scheme, a few items following some 

probability law removed at each observed failure rate. 

Raqab et al (2001) have discussed the mechanism of this 

censoring scheme as follows: Under this general 

censoring scheme, n units are placed on a life-testing 

experiment and only ( )m n  are completely observed 

until failure. The censoring occurs progressively in m  

stages. These m  stages offer failure times of the 

m completely observed units. At the time of the first 

failure (the first stage), 
1r of the ( 1)n  surviving units 

are randomly withdrawn (censored) from the 

experiment, 
2r of the  

12n r   surviving units are 

withdrawn (censored) at the time of the second failure 

(the second stage), and so on. Finally, at the time of the 
thm failure (the thm stage), all the remaining 

1 1
 ···

m m
r n m r r


     surviving units are withdrawn. We 

will refer to this as progressive type-II right censoring 

scheme. It is clear that this scheme includes the 

conventional type-II right censoring scheme 

1 2 1(  r  0, )m mr r r n m     and the complete sampling 

scheme
1 2 1(  r  ··· 0, )mr r n m     . Progressive type cen-

soring is time and cost effective. The added advantage 

of this scheme lies in the fact that it allows the removal 

of serving unit before the termination of test. Thus, it 

suites the need of industrial and clinical settings, 

particularly in those situations where the removal of 

units prior to failure is pre planned in order to save time 

and money associated with testing 

Several authors have been considered this 

scheme for estimating the unknown parameters for 

different distributions, see, for example, Balakrishnan 

and Aggrawala (2000), Balakrishnan et al. (2004), Ng 

(2005), Mousa and Al-Sagheer (2006), and 

Balakrishnan (2007). 
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In this paper, we propose Bayes estimator of parameter 

of Exponential distribution Under SELF and GELF for 

progressive type-II censored data with random removal. 

The proposed estimator has been compared with cor-

responding Bayes estimator under SELF and MLE in 

terms of their risks based on simulated samples from 

exponential distribution. 

  

2. The Model 

Let random variable X have an exponential 

distribution (ED) with parameter  . The probability 

density function of X takes the following form  

   
( , ) , 0, 0.xf x e x                                      (1.1) 

The survival function of X is  

( ) 1 , 0, 0.xS x e x                                      (1.2) 

Let 
1 1 2 2 3 3( , ),( , ),( , )...( , )m mX R X R X R X R , denote a 

Progressive type II censored sample, where 

1 2 3X X X ,···,Xm  . With pre-determined number of 

removals, say 
1 1 2 2 3 3R r ,R r ,R r ,···,R r ,m m     the 

conditional likelihood function can be written as, 

Cohen (1963),  

r        *

1

L( ;x | R r) c f (x )[S(x )] i

m

i i

i




                            (1.3) 

Where 

*

1 1 2 1 2 3

1 2 3

1 2 3 1

 n( 1)(n 2)(n 3)

···(n 3,..., - m+1),  

and 0 (n m ··· ),

m

i i

c n r r r r r r

r r r r

r r r r r 

         

   

     

for 

1,2,3,···, 1.i m   from (1.1), (1.2) and (1.3), we get 

1

(1 )                                 
  mL( ;x | R r) c e

m

i i

i

r x

  

 



                 (1.4) 

   
The number 

iR of units removed at the thi  

failure, 1,2,3,···, 1,i m   follows binomial distribution 

with parameters ( )in m r   and p . Therefore,  

 

 
1

1

1 1

1 1

( )!
( ) (1 ) ,

! !

n m rrn m
P R r p p

r n m r

 
  

 
  (1.5) 

And for 1,2,3,..., 1,i m   

1

1

1

1

1 1 1 1 1

1

!

( | ,··· ) (1 p)

! !

i

l i

i l

l i

l n m r r
rl

i i i i i

i l i

l

n m r

P R r R r R r p

r n m r r





 

  


  



 


    
 

   
 




      

                                                                          (1.6) 

Now, we further suppose that 
iR is independent of 

iX for 

all i . Then the full likelihood function takes the following 

form 

( ,  p;x,  r) ( ,  x | )P( ),L L R r R r               (1.7) 

 

1 1 2 2 1 1

3 3 2 2 1 1 1 1 2 2 1 1

( ) ( ) ( | )

( | , )··· ( | ,··· ),m m m m

P R r P R r P R r R r

P R r R r R r P R r R r R r   

    

     
         

                                                                                                              

(1.8) 

From (1.5), (1.2) and (1.8), we get 

1 1

1 1

( 1)( ) ( )

11

1 1

( )!
( ) (1 )

! !

m m

i i

i l

r m n m m i r

mi

l i i

l i

n m
P R r p p

n m r r r

 

 

   



 

 
  

 
   

 
 

     

                                                                            (1.9) 

Now, using (1.1), (1.7) and (1.9), we can write the full 

likelihood function as in the following form 

1 2( ,  p;x,  r) AL ( )L (p)L                             (1.10) 

 Where 
*

11

1 1

( )!
,

! !
mi

l i i

l i

c n m
A

n m r r r


 



 

   
 

 

 does not depend on 

the parameters   and p  

1

1

( ) exp{ (1 ) },
m

m

i i

i

L r x  


                                  (1.11) 

and 

1 1

1 1

( 1)( ) ( )

2 ( ) (1 ) .

m m

i i

i l

r m n m m i r

L p p p

 

 

    
                     (1.12) 

 

3. Classical and Bayesian Estimation of 

Parameters 
 
3.1 Maximum Likelihood Estimation  

 
In this section, we have obtained the MLE of the 

parameters θ and p  based on progressive type-II censored 

data with binomial removals. We observed that from 

(1.10), (1.11) and (1.12) that likelihood function is 

multiplication of three terms, namely, ,A
1L and 

2L . Out of 

these, A  does not dependent on the parameters   and p ; 

thus, it behaves as a constant for maximum likelihood 
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estimation. 
1L  does not involve p  and can be treated as 

function of   only, where as 
2L  involves p  only. 

Therefore, the MLE’s of   can be derived by maximizing 

1L  with respect to  . Similarly, the MLE of p  can be 

obtained by maximizing
2L . Taking log of both sides of 

(1.11), we have 

1

1

( ) ln( ) (1 )
m

i i

i

L m r x  


                                         (1.13) 

The first partial derivative of 
1( )L   with respect to   is 

  

1

1

( )
(1 )

m

i i

i

L m
r x



  


  


                                             (1.14) 

Setting 1( )
0,

L 







we get the likelihood equation for . 

Solving the equation (1.14), we get the MLE of   is given 

by 

1

ˆ

(1 )
M m

i i

i

m

r x








                                                       (1.15) 

Similarly, since 
2 ( )L p  does not involved , the maximum 

likelihood estimator of p can be derived by 

maximizing (1.12) directly. The log-likelihood function of 

2 ( )L p takes the following form 
1 1

1 1

ln ln(1 )[( 1)( ) ( ) ].
m m

i i

i l

p r p m n m m i r
 

 

                (1.16) 

The first partial derivative of 
2 ( )L p with respect to p  is  

1 1

1 12

( 1)( ) ( )
( )

1

m m

i i

i l

r m n m m i r
L p

p p p

 

 

   


 
 

 
                (1.17) 

Setting 2 ( )
0,

L p

p





 we get the normal equation for p . By 

solving the above equation, we obtained  the MLE of p  as 

in the following form                                                      
1

1

1

1

ˆ .

( 1)( ) ( 1)

m

i

i

M m

i

l

r

p

m n m m i r











    




                 (1.18) 

4. Bayes Procedure 

In this section, we have obtained the Bayes estimator of 

the parameters   and p
 
based on progressively type-II 

censored data with binomial removals. In order to obtain 

the Bayes estimator, we need the prior distribution of   

and p  respectively. Here we take conjugate family of prior 

for   as gamma prior and prior for p  as beta first kind. It 

is to be mentioned here that both prior are frequently used 

in 

literature because having the property of flexibility 

computational ease. Therefore, the prior for   as:  
1

1( ) ; 0 , 0, 0.
b a ba e

g a b
b


 

 

     


                 (1.19) 

and prior for p
 
as: 

1 1

2

1
( ) (1 ) ; 0 1, 0, 0.

( , )
g p p p p

B

   
 

      

      

                                                                                 

(1.20) 

Thus, the joint prior pdf for   and p as 

1 2( , ) ( ) ( ); 0,0 1.g p g g p p                            (1.21) 

Let us consider the joint prior pdf for  and p as defined in 

(1.21), so the conjunction of likelihood (1.10) and the joint 

prior ( , )g p , by Bayes theorem, the formula for the 

evaluation of joint posterior of    and p  is obtained for 

the given sample 
1 2 3, , ,..., nx x x x  as   

1

0 0

( | , ) ( , )
( , | , )

( | , ) ( , )

L x p g p
p x r

L x p g p p

 
 

  




  

                     (1.22) 

Substituting ( , )L p  and ( , )g p  from (10) and (21) 

respectively in (22), the joint posterior pdf of ( , )p  

became 

* * *
( 1)

1 1

0

( , | , ) (1 ) ; 0,0 1.
m b

ap x r e p p p
j

  
  

 
             

                                                                                 (1.23) 

 Where 

 

* *

1 1

1
*

1

(1 ) , (1 ) ,

( 1)( ) ( )

m m

i i i i

i i

m

i

i

a a r x r x

m n m r m i

 

 

 





     

     

 


   

And 

* *

0 *( )

( ) ( , )
m b

m b B
J

a

 


 
  

 

Therefore, the marginal posterior pdf’s of  and p are 

given by  
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*
*( )

( 1)

1( | , ) ; 0, 0, 0,
( )

m b
m b aa

x r e a b
m b

   


     
      

                                                                        

(1.24) 

and 

* *1 1

2 * *

1
( | , ) (1 ) ; 0 1

( , )
p x r p p p

B

 
 

    

     

     

(1.25) 

 

respectively. Note that the posterior distribution of   is 

gamma with parameters ( )m b  and * ,a while the posterior 

distribution of p
 
is beta first kind with parameters *  and 

* . 

Usually the Bayes estimators are obtained under SELF 

2

1 1 1
ˆ ˆ( , ) ( ) ; 0.l                                            (1.26) 

 

Where ̂  is the estimate of the parameter   and the Bayes 

estimator ˆ
S of  comes out to be [ ],E  where E

 denotes 

the posterior expectation. This loss function is a symmetric 

loss function and can only be justified, if over estimation 

and under estimation of equal magnitude are of equal 

seriousness. But in real situation it may not exits. A 

number of asymmetric loss functions are also available in 

statistical literature Basu and Ebrahimi (1991) . In this 

problem we consider the General Entropy Loss Function 

(GELF), proposed by Calabria and Pulcini (1996), defined 

as follows: 

 

2 2 2

ˆ ˆ
ˆ( , ) ln 1 ; 0.l



 
    

 

    
                               

(1.27)  

 

The constant , involved in(27), is its shape parameter. It 

reflects departure from symmetry. When 0  , it 

considers over estimation (i.e., positive error) to be more 

serious than under estimation (i.e., negative error) and 

converse for 0  . The Bayes estimator  ˆ
G of  under 

GELF is given by, 

 
1

ˆ
G E  

 
 

    
 

                                                    (1.28) 

provided the posterior expectation exits. It may be noted 

here that for 1,   the Bayes estimator under loss (26) 

coincides with the Bayes estimator under SELF 
1l . 

Expressions for the Bayes estimators  ˆ
G and ˆ

Gp  for  and 

p  respectively under GELF can be given as 

 

1

1

0

ˆ | , ,G x r


    

 
   


 

  
 
                                    (1.29) 

 and 

 

1

1

0

ˆ | , .Gp p p x r p




 
   


 

  
 
                                    (1.30) 

Substituting the posterior pdf’s from (24) and (25) in (29) 

and (30) respectively and then simplifying, we get the 

Bayes estimators ˆ
G  and ˆ

Gp of  and p  is obtained as 

follows 

 

 

1

*

1 !1ˆ
1 !

G

m b

ma




 
 
    

  
  

(1.31) 

and 

   
   

1

* * *

* * *

1 ! 1 !
ˆ

1 ! 1 !
Gp

   

   

 
 
     

 
     

                          (1.32) 

Further, by putting 1   in (31) and (32) we respectively 

get Bayes estimators of   and p as follows, 

 

 *

!
ˆ

1 !
S

m b

a m b





 
                                                     (1.33) 

and 

 

*

* *
ˆ

Sp


 



                                                          (1.34) 

5. Algorithm to Simulate Progressive Type-II 

Censored Sample with Binomial Removal 

 
For the study of behavior of the estimators obtained in 

previous sections, we need to simulate progressive type-II 

censored samples with Binomial removals from specified 

ED. To get such a sample, we propose the use of following 

algorithm: 

 

I. Specify the value of n . 

 

II. Specify the value of m . 

 

III. Specify the value of parameters  and p . 

 

IV. Generate a random sample (
rS ) of size n  from  E  . 
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V. Generate random number 
ir  from 

1

0

, ,
i

l

l

B n m r p




 
  

 
  at 

thi  stage for 
01,2,3,..., 1.( 0)i m r    

 

VI. Get ordered sample 
0S  from 

rS  to choose the 

minimum which will be first observation in desired                                   

progressive type-II censored sample
pS . 

 

VII. Drop the observation selected at VI from 
rS to have a 

random sample *

rS  of size *n (less 1 than that  of 
rS ). 

 

VIII. Generate 
ir integers (at thi  stage) between 1  to *n  

and observations corresponding to these numbers   are 

dropped from *

rS  to have a random  sample **

rS  of size  

 

VIII. Generate 
ir integers (at thi  stage) between 1  to *n  

and observations corresponding to these numbers   are  

dropped from *

rS  to have a random  sample **

rS  of size 
** *

in n r   and re-designate the random sample  in hand as 

new random sample 
rS . 

 

IX. Repeat steps V to VIII  1m  times. 

 

X. Set 
mr  according to the following relation. 

1 1

1 1

0

0

m m

l l

l lm

n m r if n m r
r

otherwise

 

 


    

 



   

and discard all the remaining 
mr  observations. 

 

6. Simulation Studies  

 

The estimators ˆ ,M
ˆ
G and ˆ

S  are the mle and 

corresponding the Bayes estimators under GELF and 

SELF of   respectively. Similarly, the estimators ˆ ˆ,M Gp p  

and ˆ
Sp  are mles and corresponding the Bayes estimators 

under GELF and SELF of p  respectively. We shall 

compare the estimators obtained under GELF with 

corresponding Bayes estimators under SELF and their 

mles. The comparisons are based on the simulated risks 

(average loss over sample space) under GELF and SELF 

both and the risks of the estimators are estimated on the 

basis of Monte-carlo simulation study of 2000 samples. It 

may be noted that the risks of the estimators will be the 

function of , , , , , , ,n m p a b   and .  In order to consider 

variation in the values of these parameters, we have 

obtained the simulated risks for 12[2]18,m  when 

20, 2, 1.5n       and 0.3.p   The hyper parameter are 

chosen in such a way that the prior mean is same as the 

true value of the parameter with belief in considering as 

prior mean is strong or weak in the sense that the prior 

variance is small and large. Generating the progressive 

sample as mentioned in section 5, the simulated risks 

under SELF and GELF have been obtained for selected 

values of , , , , , , ,n m a b p   and  . After extensive study of 

numerical results conclusion are drawn regarding the 

behavior of proposed estimator which are summarized in 

various graphs. 

 
7. Discussion of the Results 

 

From figure (1) it is clear that the risks of all estimators of 

  decreases and the risk of all estimators of p  increases as 

m  increases in GELF and SELF for the situation when 

over estimation is to be considered more serious than 

under estimation and vice-versa or equal importance is to 

be given for over and under estimation. When 1.5    i.e, 

under estimation is to be considered more serious than 

over estimation, the performance of the Bayes estimator 

under GELF is well in comparison to the Bayes estimator 

under SELF and corresponding MLE’s in terms of their 

smaller risks. Such type of trend has noticed for both 

considered loss functions. When we considered the prior 

mean as the true value of the parameter and our belief in 

considering the this prior mean is strong in the sense that 

the prior variance is small, it is observed that Bayes 

estimators under GELF perform well in comparison to 

Bayes estimator under SELF and corresponding MLE’s, 

for 1.5.    But when we considered the prior mean is 

same as true value of the parameter and our belief in 

considering is weak in the sense that prior variance is 

large, it observed that performance of all the estimators of 

  and p  behave same as discussed above (see figure 3). 

But there is increment in the magnitude of risk of all 

estimators has noticed. Further when 1.5   i.e, over 

estimation is to be considered more serious than under 

estimation, the Bayes estimators under SELF perform well 

in comparison to the Bayes estimators under GELF and 

their corresponding MLE’s (see figures 2 and 4). It is also 

observed that Bayes estimator under GELF has smaller 

risk in comparison to the risk of MLE’s in the both loss 

functions. For variation of the hyper parameters, 

performance of all estimators of   and p  followed same 

trend of 1.5.     

 

8. Conclusions 

 
It is expected that the estimator obtained under a particular 

loss function shall in general perform better than the 

estimators obtained under other loss functions. We have 

seen above that risk under GELF and SELF for the 

estimators ˆ
G  and ˆ

Gp  are always less than those of ˆ ,M  

ˆ ,Mp  ˆ
S and ˆ ,Sp  when 1.5,    the risks associated with 
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ˆ
G  and ˆ

Gp  are always smaller than the risk associated with 

other estimators. On other hand if 1.5   risk associated 

with ˆ
S  and ˆ

Sp  are noted to be smaller than other 

estimators. 

1. ˆ
G  and ˆ

Gp  may be used as an estimator of   and p  

when under estimation is to be considered more  serious 

than over estimation.  

2. ˆ
S and ˆ

Sp  may be used as an estimator of   and p  

when over estimation is to be considered more serious than 

under estimation.  
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Figure 1: Risk of estimators of   and p  under SELF 

and GELF for fixed 

20, 1.5, .4, 5, 10, 2, 6.n p a b           

 
 

 
 

Figure 2: Risk of estimators of   and p  under SELF 

and GELF for fixed 

20, 1.5, .4, 5, 10, 2, 6.n p a b          
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Figure 3: Risk of estimators of   and p  under SELF 

and GELF for fixed 

20, 1.5, .4, .25, .50, 2, 6.n p a b         
 

 

 
 

Figure 4: Risk of estimators of   and p  under SELF 

and GELF for fixed    

20, 1.5, .4, .25, .5, 2, 6.n p a b          

 

 

 

 


