Semi compatibility and common random fixed point for random multivalued operators

Neetu Vishwakarma ${ }^{1}$ and V H Badshah ${ }^{2}$
${ }^{1}$ Sagar Institute of Research and Technology-Excellence, Bhopal, M.P., India.
${ }^{2}$ School of Studies in Mathematics, Vikram University, Ujjain, M.P, India.

```
ARTICLE INFO
Article history:
Received: 14 March 2013;
Received in revised form:
17 April 2013;
Accepted: 7 May 2013;
```


ARTICLE INFO

Article history:

Received: 14 March 2013;
Received in revised form:
Accepted: 7 May 2013;

Abstract

The purpose of this paper is to establish a common random fixed point theorem for five random multivalued operators satisfying a rational inequality using the concept of weak compatibility, semi compatibility and commutativity of random multivalued operators in polish space.

© 2013 Elixir All rights reserved.

Keywords

Measurable mapping,
Polish space,
Random multivalued operators,
Random fixed point,
Weak compatibility,
Semi compatibility,
Commutativity.

Introduction: The study of random fixed point forms a central topic in this area. Bharucha - Reid [8] have been given various ideas associated with random fixed point theory area are used to form a particularly elegant approach for the solution of non linear random system. In the recent years a vast amount of mathematical activity has been carried out to obtain many remarkable results showing the existence of ransom fixed point of single and mutivalued random operators given by spacek [13], Hans [9], Itoh [10], Beg [5], Beg and Shahzad [7], Badshah and Sayyed [2, 3], Badshah and Gagrani [1], Beg and Abbas [6], Xu, H. K. [15], Tan and Yuan [14], O'Regan [11], Plubteing and Kumar [12], and others.

Preliminaries: We begin with establishing some preliminaries by (Ω, Σ). We denote a measurable space with the Σ a sigma algebra of subsets of Ω. Let (x, d) be a polish space i.e. a separable complete metric space.

Let 2^{X} be the family of all subsets of X and $\mathrm{CB}(\mathrm{X})$ denote the family of all non-empty bounded closed subsets of X .

Tele:

E-mail addresses: neetu.vishu@gmail.com

A mapping T: $\Omega \rightarrow 2^{\mathrm{X}}$ is called measurable if for any open subset C of X

$$
\mathrm{T}^{-1}(\mathrm{C})=\{\omega \in \Omega: \mathrm{T}(\omega) \cap \mathrm{C} \neq \phi\} \in \mathrm{a}
$$

A mapping $\xi: \Omega \rightarrow \mathrm{X}$ is called measurable selector of measurable mapping T: $\Omega \rightarrow 2^{\mathrm{X}}$, if ξ is measurable and for any $\omega \in \Omega, \xi(\omega) \in \mathrm{T}(\omega)$.

A mapping $\mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ is called a random multivalued operator if for every $\mathrm{x} \in X, \mathrm{~T}(., \mathrm{X})$ is measurable.
A measurable mapping f: $\Omega \times X \rightarrow X$ is called a random operator if for any $x \in X, f(., x)$ is measurable.
A measurable mapping $\xi: \Omega \rightarrow X$ is called random fixed point of random multivalued operator
$\mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})(\mathrm{f}: \Omega \times \mathrm{X} \rightarrow \mathrm{X}), \quad$ if for every $\omega \in \Omega, \xi(\omega) \in \mathrm{T}(\omega, \xi(\omega)),(\mathrm{f}(\omega), \xi(\omega))=\xi(\omega)$.
Definition 2.1 [7] Let X is a Polish space i.e. a separable complete metric space. Mappings $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ are compatible if

$$
\lim _{n \rightarrow \infty} d\left(f g\left(x_{n}\right), g f\left(x_{n}\right)\right)=0
$$

provided that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)$ and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}\left(\mathrm{X}_{\mathrm{n}}\right)$ exist in X and

$$
\lim _{n \rightarrow \infty} f\left(X_{n}\right)=\lim _{n \rightarrow \infty} g\left(X_{n}\right) .
$$

Random operators S, T: $\Omega \times \mathrm{X} \rightarrow \mathrm{X}$ are compatible if $\mathrm{S}(\omega,$.$) and \mathrm{T}(\omega,$.$) are compatible for each \omega \in \Omega$.
Definition 2.2 Let X is a Polish space. Random of $\mathrm{S}, \mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{X}$ are weakly compatible if $\mathrm{T}(\omega, \xi(\omega))=\mathrm{S}(\omega, \xi(\omega))$ for some measurable mapping $\xi: \Omega \rightarrow X$ and $\omega \in \Omega$, then $T(\omega, \mathrm{~S}(\omega, \xi(\omega))=s(\omega, \mathrm{~T}(\omega, \xi(\omega))$ for every $\omega \in \Omega$.

Definition 2.3 Let X is a Polish space. Random operators $S, T: \Omega \times X \rightarrow X$ are said to be commutative if $S(\omega,$.$) and T(\omega,$. are commutative for each $\omega \in \Omega$.

Definition 2.4 Let X is a Polish space. Random operators $\mathrm{S}, \mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{X}$ are said to be semi compatible if

$$
\mathrm{d}\left(\mathrm{~S}\left(\omega, \mathrm{~T}\left(\omega, \xi_{\mathrm{n}}(\omega)\right)\right), \mathrm{T}(\omega, \xi(\omega))\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

Whenever $\left\{\xi_{n}\right\}$ is a sequence of measurable mapping from $\Omega \times X \rightarrow X$ such that

$$
\mathrm{d}\left(\mathrm{~S}\left(\omega, \xi_{\mathrm{n}}(\omega)\right), \xi(\omega)\right) \rightarrow 0, \mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{\mathrm{n}}(\omega)\right), \xi(\omega)\right) \rightarrow 0 \quad \text { as } \mathrm{n} \rightarrow \infty \text { for each } \omega \in \Omega .
$$

Definition 2.5 Let $\mathrm{S}, \mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ be continuous random multivalued operators. S and T are said to weak compatible if they commute at their coincidence points i.e. $\mathrm{S}(\omega, \xi(\omega))=\mathrm{T}(\omega, \xi(\omega))$ implies that $\operatorname{ST}(\omega, \xi(\omega))=\operatorname{TS}(\omega, \xi(\omega))$.

S and T are said to be compatible if $\mathrm{d}\left(\mathrm{ST}\left(\omega, \xi_{n}(\omega)\right), \mathrm{TS}\left(\omega, \xi_{n}(\omega)\right)\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

S and T are called semi compatible if $\mathrm{d}\left(\operatorname{ST}\left(\omega, \xi_{\mathrm{n}}(\omega)\right), \mathrm{T}(\omega, \xi(\omega))\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ whenever $\xi_{\mathrm{n}}: \Omega \rightarrow \mathrm{X}, \mathrm{n}>0$
is a measurable mapping such that $\mathrm{d}\left(\mathrm{T}\left(\omega, \xi_{\mathrm{n}}(\omega)\right), \xi(\omega)\right) \rightarrow 0, \mathrm{~d}\left(\mathrm{~S}\left(\omega, \xi_{\mathrm{n}}(\omega)\right), \xi(\omega)\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

Clearly if the pair (S, T) is semi compatible then they are weak compatible.

Main Result:

Theorem: Let X be a polish space and $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{J}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ be random multivalued operators satisfying
$\mathrm{AB}(\omega, \mathrm{X}) \subset \mathrm{J}(\omega, \mathrm{X})$ and $\mathrm{ST}(\omega, \mathrm{X}) \subset \mathrm{J}(\omega, \mathrm{X})$ and for every $\omega \in \Omega$,
$H(\operatorname{AB}(\omega, \mathrm{x}), \mathrm{ST}(\omega, \mathrm{y})) \leq \frac{\alpha(\omega)[\mathrm{d}(\mathrm{J}(\omega, \mathrm{x}), \mathrm{AB}(\omega, \mathrm{x}))][\mathrm{d}(\mathrm{J}(\omega, \mathrm{y}), \mathrm{ST}(\omega, \mathrm{y}))]}{\mathrm{d}(\mathrm{J}(\omega, \mathrm{x}), \mathrm{J}(\omega, \mathrm{y}))}+\beta(\omega) \mathrm{d}(\mathrm{J}(\omega, \mathrm{x}), \mathrm{J}(\omega, \mathrm{y})) \quad \ldots \ldots$

For every $\omega \in \Omega$ and $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\alpha, \beta: \Omega \rightarrow \mathrm{X}$ are measurable mappings such that $\alpha(\omega)+\beta(\omega)<1$.

If either (AB, J) are semi compatible, J or AB is continuous and (ST, J) weakly compatible or (ST, J) are semi compatible, J or ST is continuous and $(\mathrm{AB}, \mathrm{J})$ are weakly compatible.

Then AB, ST and J have a unique common random fixed point. Further more if the pairs (A, B), (A, J), (B, J), (S, T), (S, J) and (T, J) are commuting mappings then $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}$ and J have a unique common random fixed point.

Proof: let $\xi_{0}, \xi_{1}, \xi_{2}: \Omega \rightarrow \mathrm{X}$ be three measurable mappings such that

$$
\operatorname{AB}\left(\omega, \xi_{0}(\omega)\right)=\mathrm{J}\left(\omega, \xi_{1}(\omega)\right) \quad \text { and } \quad \operatorname{ST}\left(\omega, \xi_{1}(\omega)\right)=\mathrm{J}\left(\omega, \xi_{2}(\omega)\right)
$$

In general we can choose sequences $\left\{\xi_{\mathrm{n}}\right\}$ and $\left\{\eta_{\mathrm{n}}\right\}$ of measurable mappings such that
$\operatorname{AB}\left(\omega, \xi_{2 n}(\omega)\right)=J\left(\omega, \xi_{2 n+1}(\omega)\right)=\eta_{2 \eta}(\omega)$
$\operatorname{ST}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)=\mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)=\eta_{2 \eta+1}(\omega) \quad \forall \mathrm{n}=0,1,2 \ldots \ldots \ldots \ldots \in \Omega$

Then for each $\omega \in \Omega$

$$
\begin{aligned}
& d\left(\eta_{2 n}(\omega), \eta_{2 n+1}(\omega)\right)=d\left(A B\left(\omega, \xi_{2 n}(\omega)\right), \operatorname{ST}\left(\omega, \xi_{2 n+1}(\omega)\right)\right) \\
& \leq \alpha(\omega) \frac{\left[d (J (\omega , \xi _ { 2 n } (\omega)) , \operatorname { A B } (\omega , \xi _ { 2 n } (\omega))] \left[d\left(J\left(\omega, \xi_{2 n+1}(\omega)\right), S T\left(\omega, \xi_{2 n+1}(\omega)\right)\right]\right.\right.}{d\left(J\left(\omega, \xi_{2 n}(\omega)\right), J\left(\omega, \xi_{2 n+1}(\omega)\right)\right.} \\
& +\beta(\omega) d\left(J\left(\omega, \xi_{2 n}(\omega)\right), J\left(\omega, \xi_{2 n+1}(\omega)\right)\right. \\
& \leq \alpha(\omega) \frac{\left[d (J (\omega , \xi _ { 2 n } (\omega)) , J (\omega , \xi _ { 2 n + 1 } (\omega))] \left[d\left(J\left(\omega, \xi_{2 n+1}(\omega)\right), J\left(\omega, \xi_{2 n+2}(\omega)\right)\right]\right.\right.}{d\left(J\left(\omega, \xi_{2 n}(\omega)\right), J\left(\omega, \xi_{2 n+1}(\omega)\right)\right.} \\
& \quad+\beta(\omega) d\left(J\left(\omega, \xi_{2 n}(\omega)\right), J\left(\omega, \xi_{2 n+1}(\omega)\right)\right. \\
& \leq \alpha(\omega) d\left(\eta_{2 n}(\omega), \eta_{2 n+1}(\omega)\right)+\beta(\omega) d\left(\eta_{2 n-1}(\omega), \eta_{2 n}(\omega)\right) \\
& \\
& \quad
\end{aligned}
$$

$$
\text { Where } k=\frac{\beta(\omega)}{1-\alpha(\omega)}<1
$$

Similarly we can prove

$$
\begin{aligned}
d\left(\eta_{2 n+1}(\omega), \eta_{2 n+2}(\omega)\right) & \leq \operatorname{kd}\left(\eta_{2 n}(\omega), \eta_{2 n+1}(\omega)\right) \\
& \leq k \cdot k\left(\eta_{2 n-1}(\omega), \eta_{2 n}(\omega)\right)
\end{aligned}
$$

Similarly proceeding in the same way by induction we get

$$
d\left(\eta_{2 n+1}(\omega), \eta_{2 n+2}(\omega)\right) \leq k^{2 n+1}\left(\eta_{0}(\omega), \eta_{1}(\omega)\right)
$$

Furthermore for $\mathrm{m}>\mathrm{n}$ we have

$$
\begin{aligned}
d\left(\eta_{2 n}(\omega), \eta_{2 m}(\omega)\right) & \leq d\left(\eta_{2 n}(\omega), \eta_{2 n+1}(\omega)\right)+d\left(\eta_{2 n+1}(\omega), \eta_{2 n+2}(\omega)\right)+\ldots \ldots \ldots+d\left(\eta_{2 m-1}(\omega), \eta_{2 m}(\omega)\right) \\
& \leq k^{2 n} d\left(\eta_{0}(\omega), \eta_{1}(\omega)\right)+k^{2 n+1} d\left(\eta_{0}(\omega), \eta_{1}(\omega)\right)+\ldots \ldots \ldots+k^{2 m-1} d\left(\eta_{0}(\omega), \eta_{1}(\omega)\right) \\
& \leq\left[k^{2 n}+k^{2 n+1} \ldots \ldots \ldots . .+k^{2 m-1}\right] d\left(\eta_{0}(\omega), \eta_{1}(\omega)\right)
\end{aligned}
$$

$$
\begin{gathered}
\leq \frac{k^{2 n}}{(1-k)} d\left(\eta_{0}(\omega), \eta_{1}(\omega)\right) \\
d\left(\eta_{2 n}(\omega), \eta_{2 m}(\omega)\right) \leq \frac{k^{2 n}}{(1-k)} d\left(\eta_{0}(\omega), \eta_{1}(\omega)\right) \rightarrow 0 \text { as } n, m \rightarrow \infty
\end{gathered}
$$

Thus it follows that sequence $\left\{\eta_{2 n}(\omega)\right\}$ is a Cauchy sequence. Since X is a separable complete metric space there exists a measurable mapping $\xi: \Omega \rightarrow X$ such that $\left\{\eta_{2 n}(\omega)\right\}$ and its subsequences converges to $\xi(\omega)$.

So

$$
\begin{equation*}
\mathrm{AB}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right) \rightarrow \xi(\omega), \quad \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right) \rightarrow \xi(\omega) \tag{3.2}
\end{equation*}
$$

and
$\operatorname{ST}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right) \rightarrow \xi(\omega), \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right) \rightarrow \xi(\omega)$ for each $\omega \in \Omega$

Case I: If \mathbf{J} is continuous

In this case, we have

$$
\mathrm{J}\left(\operatorname{AB}\left(\omega, \xi_{2 n}(\omega)\right)\right) \rightarrow \mathrm{J}(\omega, \xi(\omega)), \quad \mathrm{J}^{2}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right) \rightarrow \mathrm{J}(\omega, \xi(\omega))
$$

and semi compatibility of the pair $(A B, J)$ gives $(A B) J\left(\omega, \xi_{2 n}(\omega)\right) \rightarrow J(\omega, \xi(\omega))$ for each $\omega \in \Omega$.
Step 1: for each $\omega \in \Omega$

$$
\begin{aligned}
& \left.H(A B)\left(J\left(\omega, \xi_{2 n}(\omega)\right)\right), S T\left(\omega, \xi_{2 n+1}(\omega)\right)\right) \\
& \leq \alpha(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 n}(\omega)\right)\right),(\mathrm{AB}) \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right]\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right),(\mathrm{ST}) \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right]}{\mathrm{d}\left(\mathrm{JJ}\left(\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right), \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)} \\
& +\beta(\omega) \mathrm{d}\left(\mathrm{~J} \cdot \mathrm{~J}\left(\left(\omega, \xi_{2 n}(\omega)\right), \mathrm{J}\left(\omega, \xi_{2 n+1}(\omega)\right)\right)\right. \\
& d(J(\omega, \xi(\omega)), \xi(\omega)) \leq \alpha(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 n}(\omega)\right)\right), \mathrm{J}(\omega, \xi(\omega))\right][\mathrm{d}(\xi(\omega), \xi(\omega))]}{\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 n}(\omega)\right), \xi(\omega)\right)}+\beta(\omega) \mathrm{d}\left(\mathrm{~J}^{2}\left(\omega, \xi_{2 n}(\omega)\right), \xi(\omega)\right) \\
& d(J(\omega, \xi(\omega)), \xi(\omega)) \leq \beta(\omega) d\left(J^{2}\left(\omega, \xi_{2 n}(\omega)\right), \xi(\omega)\right) \\
& \mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)), \xi(\omega)) \leq \beta(\omega) \mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)), \xi(\omega)) \\
& (1-\beta(\omega)) d(J(\omega, \xi(\omega)), \xi(\omega)) \leq 0 \\
& \xi(\omega)=\mathrm{J}(\omega, \xi(\omega)) \quad \text { for each } \omega \in \Omega .
\end{aligned}
$$

Step 2: for each $\omega \in \Omega$

$$
\begin{aligned}
& H\left(\operatorname{AB}(\omega, \xi(\omega)), \operatorname{ST}\left(\omega, \xi_{2 n+1}(\omega)\right)\right) \\
& \quad \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~J}(\omega, \xi(\omega))), \operatorname{AB}(\omega, \xi(\omega))]\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 n+1}(\omega)\right)\right), \operatorname{ST}\left(\omega, \xi_{2 n+1}(\omega)\right)\right]}{\mathrm{d}\left(\mathrm{~J}(\omega, \xi(\omega)), \mathrm{J}\left(\omega, \xi_{2 n+1}(\omega)\right)\right)} \\
& \quad+\beta(\omega) \mathrm{d}\left(\mathrm{~J}(\omega, \xi(\omega)), \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)
\end{aligned}
$$

Taking limit $\mathrm{n} \rightarrow \infty$ and using result of step 1 and (3.3) we get

$$
\begin{aligned}
& d(\operatorname{AB}(\omega, \xi(\omega)), \xi(\omega)) \leq \alpha(\omega) \frac{[\mathrm{d}(\xi(\omega), \mathrm{AB}(\omega, \xi(\omega)))][\mathrm{d}(\xi(\omega), \xi(\omega))]}{[\mathrm{d}(\xi(\omega), \xi(\omega))]}+\beta(\omega) \mathrm{d}(\xi(\omega), \xi(\omega)) \\
& \mathrm{d}(\mathrm{AB}(\omega, \xi(\omega)), \xi(\omega)) \leq 0
\end{aligned}
$$

Implying thereby $\mathrm{AB}(\omega, \xi(\omega))=\xi(\omega)$ for each $\omega \in \Omega$.
Hence $\quad \mathrm{AB}(\omega, \xi(\omega))=\xi(\omega)=\mathrm{J}(\omega, \xi(\omega))$ for each $\omega \in \Omega$.
Therefore a measurable mapping $\mathrm{g}: \Omega \rightarrow \mathrm{X}$ such that $\mathrm{AB}(\omega, \xi(\omega))=\mathrm{J}(\omega, \mathrm{g}(\omega))$.

Step 3: for each $\omega \in \Omega$

$$
\begin{aligned}
& \mathrm{H}\left(\mathrm{AB}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \operatorname{ST}(\omega, \mathrm{g}(\omega))\right) \\
& \quad \leq \alpha(\omega) \frac{\left[\mathrm { d } \left(\mathrm{J}\left(\omega, \xi_{2 \mathrm{n}}(\omega), \mathrm{AB}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right][\mathrm{d}(\mathrm{~J}(\omega, \mathrm{~g}(\omega), \mathrm{ST}(\omega, \mathrm{~g}(\omega))]\right.\right.}{\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{J}(\omega, \mathrm{~g}(\omega))\right)} \\
& \quad+\beta(\omega) \mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{J}(\omega, \mathrm{~g}(\omega))\right)
\end{aligned}
$$

Taking limit as $\mathrm{n} \rightarrow \infty$ and using the result from above steps, we obtain that

$$
\begin{aligned}
& \mathrm{d}(\xi(\omega), \mathrm{ST}(\omega, \mathrm{~g}(\omega))) \\
& \quad \leq \alpha(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega), \xi(\omega)\right)\right][\mathrm{d}(\xi(\omega), \mathrm{ST}(\omega, \mathrm{~g}(\omega))]\right.}{\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \xi(\omega)\right)} \\
& \quad+\beta(\omega) \mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \xi(\omega)\right) \\
& \mathrm{d}(\xi(\omega), \operatorname{ST}(\omega, \mathrm{g}(\omega))) \leq \alpha(\omega) \mathrm{d}(\xi(\omega), \operatorname{ST}(\omega, \mathrm{g}(\omega)))+\beta(\omega) \mathrm{d}(\xi(\omega), \operatorname{ST}(\omega, \mathrm{g}(\omega))) \\
& (1-\alpha(\omega)) \mathrm{d}(\xi(\omega), \operatorname{ST}(\omega, \mathrm{g}(\omega))) \leq 0
\end{aligned}
$$

Implying thereby $\operatorname{ST}(\omega, \mathrm{g}(\omega))=\xi(\omega) \quad$ for each $\omega \in \Omega$.
Therefore $\operatorname{ST}(\omega, \mathrm{g}(\omega))=\mathrm{J}(\omega, \mathrm{g}(\omega))=\xi(\omega)$.

Now using the weak compatibility of (ST, J) we have

$$
\mathrm{J}(\mathrm{ST})(\omega, \mathrm{g}(\omega))=(\mathrm{ST}) \mathrm{J}(\omega, \mathrm{~g}(\omega))
$$

i.e. $\operatorname{ST}(\omega, \xi(\omega))=\mathrm{J}(\omega, \xi(\omega))$ for each $\omega \in \Omega$.

Thus $\mathrm{AB}(\omega, \xi(\omega))=\mathrm{ST}(\omega, \xi(\omega))=\mathrm{J}(\omega, \xi(\omega))$ for each $\omega \in \Omega$.
Hence $\xi(\omega)$ is a common random fixed point of random multivalued operators AB, ST and J.

Case II: if AB is continuous

In this case, we have $(\mathrm{AB}) \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right) \rightarrow \mathrm{AB}(\omega, \xi(\omega))$ and semi compatibility of the pair $(\mathrm{AB}, \mathrm{J})$ gives $(A B) J\left(\omega, \xi_{2 n}(\omega)\right) \rightarrow J(\omega, \xi(\omega))$ for each $\omega \in \Omega$.

Step 1: for each $\omega \in \Omega$, we have

$$
\begin{aligned}
& \mathrm{H}(\mathrm{AB})\left(\mathrm{J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{ST}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& \quad \leq \alpha(\omega) \frac{\left.\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{AB}\right) \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right)\right]\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{ST}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]}{\mathrm{d}\left(\mathrm{~J} \cdot \mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)} \\
& \quad+\beta(\omega) \mathrm{d}\left(\mathrm{~J} \cdot \mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ and using the result from above result, we get
$d(J(\omega, \xi(\omega)), \xi(\omega))$

$$
\leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~J}(\omega, \xi(\omega), \mathrm{J}(\omega, \xi(\omega))][\mathrm{d}(\xi(\omega), \xi(\omega))]}{\mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)), \xi(\omega))}+\beta(\omega) \mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)), \xi(\omega))
$$

$$
(1-\beta(\omega)) d(J(\omega, \xi(\omega)), \xi(\omega)) \leq 0
$$

$\mathrm{J}(\omega, \xi(\omega))=\xi(\omega)$ for each $\omega \in \Omega$.
Step 2: for any $\omega \in \Omega$

$$
\begin{aligned}
H(A B(\omega, \xi(\omega)) & \left., \operatorname{ST}\left(\omega, \xi_{2 n+1}(\omega)\right)\right) \\
& \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)), \mathrm{AB}(\omega, \xi(\omega)))]\left[\mathrm{d}\left(\mathrm{~J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{ST}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right]\right.}{\mathrm{d}\left(\mathrm{~J}(\omega, \xi(\omega)), \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)} \\
& +\beta(\omega) \mathrm{d}\left(\mathrm{~J}(\omega, \xi(\omega)), \mathrm{J}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)
\end{aligned}
$$

Taking limit $\mathrm{n} \rightarrow \infty$ and using the result of step 1 of case II we get

$$
\mathrm{d}(\mathrm{AB}(\omega, \xi(\omega)), \xi(\omega)) \leq \alpha(\omega) \frac{[\mathrm{d}(\xi(\omega), \mathrm{AB}(\omega, \xi(\omega)))][\mathrm{d}(\xi(\omega), \xi(\omega))]}{\mathrm{d}(\xi(\omega), \xi(\omega))}+\beta(\omega) \mathrm{d}(\xi(\omega), \xi(\omega))
$$

Hence

$$
\operatorname{AB}(\omega, \xi(\omega))=\xi(\omega) \quad \text { for each } \omega \in \Omega .
$$

Thus $\mathrm{AB}(\omega, \xi(\omega))=\mathrm{J}(\omega, \xi(\omega))=\xi(\omega)$ for each $\omega \in \Omega$
Step 3: for any $\omega \in \Omega$ there exist a measurable mapping $g^{\prime}: \Omega \rightarrow X$:

$$
\mathrm{AB}(\omega, \xi(\omega))=\mathrm{J}(\omega, \xi(\omega))=\mathrm{J}\left(\omega, \mathrm{~g}^{\prime}(\omega)\right)=\xi(\omega)
$$

for any $\omega \in \Omega$

$$
\begin{aligned}
& H\left(\operatorname{AB}\left(\omega, \xi_{2 n}(\omega)\right), \operatorname{ST}\left(\omega, g^{\prime}(\omega)\right)\right) \\
& \leq \alpha(\omega) \frac{d\left(J\left(\omega, \xi_{2 n}(\omega)\right), \operatorname{AB}\left(\omega, \xi_{2 n}(\omega)\right)\right) d\left(J\left(\omega, g^{\prime}(\omega)\right), \operatorname{ST}\left(\omega, g^{\prime}(\omega)\right)\right)}{d\left(J\left(\omega, \xi_{2 n}(\omega)\right), J\left(\omega, g^{\prime}(\omega)\right)\right)} \\
&+\beta(\omega) d\left(J\left(\omega, \xi_{2 n}(\omega)\right), J\left(\omega, g^{\prime}(\omega)\right)\right)
\end{aligned}
$$

Taking limit $\mathrm{n} \rightarrow \infty$ and using the result from above step, we obtain that

$$
d\left(\xi(\omega), \operatorname{ST}\left(\omega, \mathrm{g}^{\prime}(\omega)\right)\right) \leq \alpha(\omega) \frac{\mathrm{d}(\xi(\omega), \xi(\omega)) \mathrm{d}\left(\xi(\omega), \operatorname{ST}\left(\omega, \mathrm{g}^{\prime}(\omega)\right)\right)}{\mathrm{d}(\xi(\omega), \xi(\omega))}+\beta(\omega) \mathrm{d}(\xi(\omega), \xi(\omega))
$$

Implying thereby $\operatorname{ST}\left(\omega, \mathrm{g}^{\prime}(\omega)\right)=\xi(\omega)$ for each $\omega \in \Omega$.
Therefore $\operatorname{ST}\left(\omega, \mathrm{g}^{\prime}(\omega)\right)=\mathrm{J}\left(\omega, \mathrm{g}^{\prime}(\omega)\right)=\xi(\omega)$ for each $\omega \in \Omega$.
Now using the weak compatibility of (ST, J) we have

$$
\mathrm{J}(\mathrm{ST})\left(\omega, \mathrm{g}^{\prime}(\omega)\right) \rightarrow(\mathrm{ST}) \mathrm{J}\left(\omega, \mathrm{~g}^{\prime}(\omega)\right)
$$

i.e. $\operatorname{ST}(\omega, \xi(\omega)) \rightarrow \mathrm{J}(\omega, \xi(\omega))$ for each $\omega \in \Omega$.
thus $\mathrm{AB}(\omega, \xi(\omega))=\operatorname{ST}(\omega, \xi(\omega))=\mathrm{J}(\omega, \xi(\omega))=\xi(\omega)$ for each $\omega \in \Omega$.
Hence $\xi(\omega)$ is a common random fixed point of random multivalued operators AB, ST and J .
If the mapping ST of J is continuous instead of AB or J then this proof that $\xi(\omega)$ is common random fixed point of AB, ST and J is similar.

Uniqueness: Let h: $\Omega \rightarrow \mathrm{X}$ is another common random fixed point of random multivalued operators AB, ST and J . Then for each $\omega \in \Omega$.

$$
\begin{aligned}
\mathrm{H}(\mathrm{AB}(\omega, \xi(\omega)) & , \mathrm{ST}(\omega, \mathrm{~h}(\omega))) \\
& \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)), \mathrm{AB}(\omega, \xi(\omega)))][\mathrm{d}(\mathrm{~J}(\omega, \mathrm{~h}(\omega)), \mathrm{ST}(\omega, \mathrm{~h}(\omega))]}{\mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)) \mathrm{J}(\omega, \mathrm{~h}(\omega)))} \\
& +\beta(\omega) \mathrm{d}(\mathrm{~J}(\omega, \xi(\omega)), \mathrm{J}(\omega, \mathrm{~h}(\omega)))
\end{aligned}
$$

Taking limit $\mathrm{n} \rightarrow \infty$ and using the result we obtain that

$$
\mathrm{d}(\xi(\omega), \mathrm{h}(\omega)) \leq \alpha(\omega) \frac{[\mathrm{d}(\xi(\omega), \xi(\omega))][\mathrm{d}(\mathrm{~h}(\omega), \mathrm{h}(\omega))]}{\mathrm{d}(\xi(\omega), \mathrm{h}(\omega))}+\beta(\omega) \mathrm{d}(\xi(\omega), \mathrm{h}(\omega))
$$

Yielding thereby

$$
\xi(\omega)=\mathrm{h}(\omega)
$$

Hence $\xi(\omega)$ is a unique common random fixed point AB, ST and J .
Finally we need to show that $\xi(\omega)$ is a common random fixed point of random multivalued operators A, B, S, T and J . For this $\xi(\omega)$ is the unique common random fixed point of both the pair (AB, J) and (ST, J).

Then

$$
\begin{aligned}
& \mathrm{A}(\omega, \xi(\omega))=\mathrm{A}(\omega, \mathrm{AB}(\omega, \xi(\omega)))=\mathrm{A}(\omega, \mathrm{BA}(\omega, \xi(\omega)))=\mathrm{AB}(\omega, \mathrm{~A}(\omega, \xi(\omega))) \\
& \mathrm{A}(\omega, \xi(\omega))=\mathrm{A}(\omega, \mathrm{~J}(\omega, \xi(\omega)))=\mathrm{J}(\omega, \mathrm{~A}(\omega, \xi(\omega))) \\
& \mathrm{B}(\omega, \xi(\omega))=\mathrm{B}(\omega, \mathrm{AB}(\omega, \xi(\omega)))=\mathrm{BA}(\omega, \mathrm{~B}(\omega, \xi(\omega)))=\mathrm{AB}(\omega, \mathrm{~B}(\omega, \xi(\omega))) \\
& \mathrm{B}(\omega, \xi(\omega))=\mathrm{B}(\omega, \mathrm{~J}(\omega, \xi(\omega)))=\mathrm{J}(\omega, \mathrm{~B}(\omega, \xi(\omega)))
\end{aligned}
$$

This shows that $\mathrm{A}(\omega, \xi(\omega))$ and $\mathrm{B}(\omega, \xi(\omega))$ is a common random fixed point of $(\mathrm{AB}, \mathrm{J})$ yielding thereby

$$
\mathrm{A}(\omega, \xi(\omega))=\xi(\omega)=\mathrm{B}(\omega, \xi(\omega))=\mathrm{J}(\omega, \xi(\omega))=\mathrm{AB}(\omega, \xi(\omega))
$$

In the view of uniqueness of the common random fixed point of the pair ($\mathrm{AB}, \mathrm{J})$.
Similarly using the commutativity of (S, T), (S, J) and (T, J) it can be shown that

$$
\mathrm{S}(\omega, \xi(\omega))=\xi(\omega)=\mathrm{T}(\omega, \xi(\omega))=\mathrm{J}(\omega, \xi(\omega))=\mathrm{ST}(\omega, \xi(\omega))
$$

Now we need to show that

$$
A(\omega, \xi(\omega))=S(\omega, \xi(\omega)) \text { and } B(\omega, \xi(\omega))=T(\omega, \xi(\omega))
$$

also remains a common random fixed point of both the pair (AB, J) and (ST, J).
For this

$$
\begin{aligned}
& H(\operatorname{AB}(\omega, A(\omega, \xi(\omega))), \mathrm{ST}(\omega, \mathrm{~S}(\omega, \xi(\omega)))) \\
& \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~J}(\omega, \mathrm{~A}(\omega, \xi(\omega))), \mathrm{AB}(\omega, \mathrm{~A}(\omega, \xi(\omega))))][\mathrm{d}(\mathrm{~J}(\omega, \mathrm{~S}(\omega, \xi(\omega))), \mathrm{ST}(\omega, \mathrm{~S}(\omega, \xi(\omega))))]}{\mathrm{d}(\mathrm{~J}(\omega, \mathrm{~A}(\omega, \xi(\omega))), \mathrm{J}(\omega, \mathrm{~S}(\omega, \xi(\omega))))} \\
& +\beta(\omega) \mathrm{d}(\mathrm{~J}(\omega, \mathrm{~A}(\omega, \xi(\omega))), \mathrm{J}(\omega, \mathrm{~S}(\omega, \xi(\omega)))) \\
& d(\mathrm{~A}(\omega, \xi(\omega)), \mathrm{S}(\omega, \xi(\omega))) \leq 0 \\
& A(\omega, \xi(\omega))=\mathrm{S}(\omega, \xi(\omega)) \quad \text { for each } \omega \in \Omega
\end{aligned}
$$

Similarly it can be show that

$$
\mathrm{B}(\omega, \xi(\omega))=\mathrm{T}(\omega, \xi(\omega)) \quad \text { for each } \omega \in \Omega
$$

Thus $\xi(\omega)$ is a unique common random fixed point of random multivalued operators A, B, S, T and J.

References

1. Badshah, V.H. And Gagrani, S., Common random fixed points of random multi valued operators on Polish space, Journal of Chungcheong Mathematical society, Korea 18(1), 2005, 33-40.
2. Badshah, V.H. and Sayyed, F., Random fixed point of random multivalued operators on Polish space, Kuwait J. of science and Engineering, 27 (2000), 203-208.
3. Badshah V.H. Sayyed, F., Common random fixed point of random multivalued operators on Polish space, Indian Jour. Pure Appl. Math. 33(4), (2001), 573-582.
4. Badshah, V.H. and Shrivastava, N., Semi compatibility and random fixed points on Polish spaces, Varahmihir Jour. Math. Sci. Vol. 6 No. 2(2006), 561-568.
5. Beg, I., Random fixed points of random multivalued operators satisfying semi-contractivity conditions, MathJapan., 46(1), (1997), 151-155.
6. Beg, I. and Abbas M., Common random fixed point of compatible random operators, Int. Jour. Math. Math. Sci, Vol. 2006, Article ID 23486, 1-15.
7. Beg, I. and Shahzad, N., Random fixed points of random multi-valued operators on Polish Spaces, Non-Linear Analysis, 20 (1993) 335-347.
8. Bharucha-Raid, A.T., Random Integral equations, Academic Press, New York, 1972.
9. Hans, O., Reduzierende Zufallige transformation, Czechoslovak Math. Jour. 7(1957), 154-158.
10. Itoh, S., A random fixed point theorem for a multi valued contraction mapping, Pacific, J. Math. 68(1977), 85-90.
11. O'Regan, D.Shahzad, N., Agrawal, R.P., Random fixed point theory in spaces with two metrices, Jour Appl.Math. Sto. Anal. 16(2), (2003), 171-176.
12. Plubtieng, S. and Kumar, P., Random fixed point theorems for multivalued non-expansive non-self random operators, Jour, Appl Math. Sto.Anal. Vol. 2006, Article Id: 43796, 1-9
13. Spacek, A., Zufallige Gleichungen, Czechoslovak Math. Jour. 5 (1955), 462-466
14. Tan, K.K. and Yuan, X.Z., on deterministic and random fixed point, Proc. Amer. Math. Soc. 119 (1993), 849-856.
15. Xu. H.K., Multivalued non expansive mappings in Banach spaces, Nonlinear Analysis 43 (2001), No. 6, 693-706.
