
Anil Kumar M. N et al./ Elixir Elec. Engg. 59 (2013) 15913-15918 15913

Introduction

 The data security, authentication and integrity has become

an important and urgent need for health care information,

confidential communication, storage and financial services etc.

The public key cryptosystem is the most efficient way to secure

data transaction and messaging. The challenge to implement the

most popular public key cryptosystem, RSA is the rapidly

growing key size. Elliptic Curve cryptography has been

considered an alternative to RSA. A lot of implementations have

been reported in [1-5]. The effectiveness of using elliptic curve

is that it provides same security level with shorter keys than in

RSA. Therefore ECC can be used in smart cards, credit cards

and mobile phones where area is a constraint. It is estimated that

security level of 160 and 224 bits ECC cryptosystem is

equivalent to the 1024 and 2048 bits RSA respectively. The

research on different algorithms and hardware accelerations

have focussed on efficient implementation of elliptic curve

scalar point multiplication Q=k.P. This is the fundamental

operation of all elliptic curve cryptosystems.

 Two types of Finite Fields are generally used in ECC.

Those are Finite Field over a large prime called as Galois Field

GF(p) and Extended Binary Field that is known as Galois Field

GF(2
k
). A very few hardware implementations of ECC on GF(p)

have been reported in the literatures compared to

implementations on GF(2
k
) [6-10]. A low power flexible

GF(p) ECC processor has been reported in [11] which is suitable

for RFID tags ,wireless sensors and smart cards. A flexible ECC

processor over GF(p) has been reported in [12] which supports

all five NIST primes with size ranges from 192 to 521. They

have used NAF scalar multiplication algorithm and BIA to

compute the inversion. [13] has reported Dual field processors

and the design framework for ECC by using mixed projective-

affine coordinates which replaces the field inversion and

optimization with different area/throughput requirements.

Parallelization of high speed ECC accelerators have been

studied in [14]. A hardware architecture for ECC over GF(p) has

been reported in [15] with a new unified modular inversion

algorithm instead of Fermat‟s Little Theorem.

 The hardware complexity to implement ECC in GF(p) is

little bit higher than that of in GF(2
k
) but the advantage is that

the k-bit arithmetic unit is capable to process any i-bit data

where 1≤i≤k. The arithmetic operations of GF(p) can be

performed faster than GF(2
k
) with the instructions of general

purpose microprocessors. Confining designs to binary fields

limit the flexibility and may not be used for Elliptic Curve

Digital Signature Algorithm. This algorithm in addition to EC

point operation is based on normal integer modulo operations.

For binary field designs these modulo operations must be done

separately by using a processor or in a separate hardware.

Inversion is the costliest operation among all the modular

operations. Inversion operation can be eliminated with

projective coordinate systems with the cost of using parallel

multipliers [13-14]. But in small devices like smart cards where

area is a constraint, adding more multiplier units needs more

memory and thus increases the cost. Speeding up inversion

operation in both fields has been gaining attention because

inversion is the most time consuming operation when affine

coordinates are selected.

 In this paper we have modified the BIA over GF(p) to speed

up the inverse computation and consequently scalar point

multiplication of NIST recommended elliptic curve with moduli

2
521

 -1. The paper proposes a new architecture to meet the above

objective. The rest of the paper is organized as follows. Section

II provides a brief mathematical back ground of Elliptic Curve

based cryptography and Random Generators. Sections III brief

about the methodology of the proposed method and in section

IV results are discussed and finally conclusion is given in

section V.

II. ECC BACKGROUND

2.1 ECC Algorithms structure analysis

ECC algorithms are layered on four levels as shown in figure 1.

Analyzing the effectiveness of a new technique to speed up scalar point

multiplication over GF(p) by random numbers and statistics
Anil Kumar M. N* and V. Sridhar

Department of E&C, PET Research Foundation, PESCE, Mandya.

ABSTRACT

In this paper we present a slightly modified Binary Inversion Algorithm (BIA) to speed up

scalar point multiplication of National Institute of Standards and Technology (NIST)

recommended elliptic curve with moduli 2
521

 -1. The effectiveness of the above method is

mathematically analyzed by using statistical analysis and by computing series of scalar point

multiplications Q= k.P for randomly generated k. Our method uses 2 random generators for

generating „k‟ namely, Random number generator based on Elliptic Curve Operations and

Blum-Blum-Shub Generator. The mathematical analysis shows that above technique speeds

up the inversion operation and consequently the scalar point multiplication of the above

NIST recommended curve. New architecture based on the modified BIA is proposed. The

results show that the modified BIA can be implemented in the hardware to speed up the

scalar point multiplication.

 © 2013 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 13 May 2013;

Received in revised form:

12 June 2013;

Accepted: 22 June 2013;

Keywords

Random number generators,

Elliptic curve cryptography,

Binary Inversion Algorithm,

GF(p) arithmetic operators.

Elixir Elec. Engg. 59 (2013) 15913-15918

Electrical Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail addresses: anil_mn1@rediffmail.com

 © 2013 Elixir All rights reserved

Anil Kumar M. N et al./ Elixir Elec. Engg. 59 (2013) 15913-15918 15914

ECC Pprotocols

EC Point multiplication

EC Point addition and doubling

Finite field arithmetic: addition, subtraction, multiplication,squaring,

inversion, reduction

Fig.1 Hierarchical Structure of the ECC algorithms

ECC Protocols: Top application includes key establishment,

data encryption and decryption, signature verification schemes.

Public key cryptography protocols employ point multiplication

as a fundamental operation and security is based on difficulty of

solving Elliptic Curve Discrete Logarithm Problem which is

finding scalar k, given a point P, and k.P

EC point multiplication: This includes the computation of

point multiplication Q=kP. The focus of research is the

representation of „k‟ which decides the number of point addition

and point double operations performed during point

multiplication. This contains different algorithms like Binary

scalar multiplication algorithm, Montgomery method, Non

Adjacent Form (NAF) scalar multiplication algorithm etc.

EC point addition and doubling. This layer has different point

representation in affine coordinates, projective coordinates such

as standard projective coordinates, Jacobian coordinates and

Chundnovsky projective coordinates and mixed coordinates.

There are lots of implementation using affine and projective

coordinates and effect of parallelism with different coordinate

systems with different arithmetic operations. These arithmetic

operations include addition, subtraction, multiplication,

reduction, squaring and inversion.

 Draw back of Inversion in GF(p) using Extended Euclidean

Algorithm is the requirement for computationally expensive

division operations. In Binary Inversion Algorithm, the division

operation is replaced with cheaper shifts, subtractions and

additions making this algorithm suitable for implementation in

hardware [16].Montgomery inversion algorithm is applicable if

Montgomery arithmetic is used with affine coordinates .

NIST primes: The FIPS 186-2 standard recommends elliptic

curves over the five prime fields with moduli:

 p192 = 2
192

 – 2
64

 -1

 p224 = 2
224

 -2
96

 +1

 p256=2
256

 – 2
224

+ 2
192

 + 2
96

 -1

 p384 = 2
384

 – 2
128

 -2
96

 + 2
32

 -1

 p521 = 2
521

-1

Except for p521, the powers appearing in these expressions are

all multiple of 32. This property yield reduction algorithms

especially fast on machines with word size 32.

2.2 Elliptic Curves Over GF (P). The elliptic curve arithmetic

is defined over Galois field GF(p) where p is a prime number

greater than 3. All arithmetic operations are modulo p. The

elliptic curve equation E over GF(p) is given by :y
2
 = x

3
 + ax +

b ; where p > 3, 4a
3
 + 27b

2
≠ 0, and x, y, a,b∈ GF(p). There is

also a single element named the point at infinity or the zero

point denoted O, which serves as the additive identity. For any

point P(x, y) ∈E , we have: P + O = P .

2.2.1Point addition and Point Doubling

Additions in GF(p) are controlled by the following rules:

O = -O

P(x, y) + O = P(x, y)

P(x, y) + P(x, -y) = O

The addition of two different points on the elliptic curve is

computed as shown below.

 P(x1 , y1) + P(x2 , y2) = P(x3 , y3) ; where x1 ≠ x2

λ = (y2 – y1)/(x2 – x1)

x3 = λ
2
 – x1 – x2

y3 = λ(x1 – x3) – y1

The addition of a point to itself (point doubling) on the elliptic

curve is computed as shown below

P(x1 , y1) + P(x1 , y1) = P(x3 , y3);

 λ = (3(x1)
2
 + a) /(2y1)

x3 = λ
2
 – 2x1

y3 = λ(x1 – x3) – y1

2.2.3 Point Multiplication

Scalar multiplication Q=k.P is the result of adding point P to

itself (k-1) times

 Q = k.P = P + P + ……. + P.

 (k-1 Times)

The binary method is the simplest and oldest efficient method

for point multiplication. It is based on the binary expansion of k.

The corresponding algorithm is shown in Fig.1.

INPUT: A point P and an integer k

OUTPUT: Q = k.P

1. Q←P

2. For j = L− 2… 1, 0

2.1 Q ← 2 Q

2.2 IF k j = 1 THEN Q←Q + P

3. RETURN Q

Fig.2. Binary scalar multiplication algorithm

2.3 Random Number Generators

 Random numbers play an important role in providing

security for various applications. The ability to generate

pseudorandom numbers is very important for the key generation

in cryptographic applications. A C library for Empirical Testing

of Random Number generators is available in [17]. A random

number generator based on the addition of points on an elliptic

curve over finite field is proposed in [18].This method uses the

encryption block to perform random number generation thus

saves the hardware cost, memory space and design time. The

theoretical analysis show that periods of this generator is

sufficiently long and up to 29% of gate counts can be saved

compared to implementation of a separate random number

generator. The generated sequences also have passed the FIPS

140-2 statistical tests. The Blum-Blum-Shub generator[19] also

referred to as cryptographically secure pseudorandom bit

generator which passes the next-bit test. It is a quadratic

congruential method for generation of pseudorandom bits for

cryptographic purposes. The most widely used technique

proposed by Lehmer is linear congruential method. The

selection of parameters are very important in the generation of

pseudo random sequences.

III. Methodology

 The multiplicative inverse property between the number „a‟

and „NOT a‟ over Mersenne‟s prime is stated below. When „x‟

is the multiplicative inverse of „a‟ over GF(p) where p is a

Mersenne‟s prime, then the multiplicative inverse of „NOTa‟ is

the complemented multiplicative inverse of x (NOT x).

Henceforth pair refers to input „a‟ which belongs to set of

numbers from 1 to (p-1)/2 only and „NOTa‟ is its corresponding

pair which belongs to set of numbers from p-1 to (p-1)/2 +1

only. Hence there are (p-1)/2 such pairs. Let „A‟ denote the

occurrence of input b=‟NOTa‟ (refer fig.4) which has less

number of subtraction and addition operations in the modified

BIA compared to normal BIA. Let „B‟ denote the occurrence of

input b=‟NOTa‟ which has more number of subtraction and

addition operations in the modified BIA compared to normal

BIA. The probability of event A is far greater than the

probability of event B.

Anil Kumar M. N et al./ Elixir Elec. Engg. 59 (2013) 15913-15918 15915

 The above two properties are used to speed up the inverse

computation of some of the numbers within the range (p-1)/2+1

to p-1. Instead of computing the inverse of those numbers in the

above said range directly, we complemented the number, then

computed the inverse and finally complemented the output. This

is the technique used in the modified Binary Inversion

Algorithm. This modified BIA can be easily implemented in the

hardware (explained in the following section). We have assumed

negligible delays of the two stage complement operation. The

above technique is used in computation of the scalar point

multiplication Q=k.P. The results showed better performance

with modified BIA, with reduced number of additions and

subtractions than with normal Binary Inversion Algorithm.

3.1 Modified Binary Inversion Algorithm.
 Figure 3 and Figure 4 show the BIA and modified BIA

respectively. The extended Euclidean algorithm uses the

division operations to compute the inversion. The binary

inversion algorithm replaces the divisions with cheaper shifts

(divisions by 2) and subtractions. The modular multiplicative

inverse b
-1

 mod p of an integer b exists if and only if b and p are

relatively prime, that is gcd (b,p) =1.

INPUT: Prime p and b ∈ [1, p-1]

OUTPUT: b
-1

 mod p

1. u=b, v=p, x1=1, x2=0

2. while (u !=1 and v!=1) do

2.1 while u is even do

2.1.1 u = u/2

2.1.2 if x1 is even then x1= x1/2

else x1= (x1+p)/2

2.1.3 end while

2.2 while v is even do

2.2.1 v= v/2

2.2.2 if x2 is even then x2= x2/2

else x2 = (x2+p)/2

2.2.3 end while

2.3 if u≥ v then u=u-v, x1=x1-x2

else v=v-u, x2=x2-x1

2.4 end while

Fig 3. Binary Inversion Algorithm

 INPUT: Prime p and b∈ [1, p-1]

OUTPUT: b
-1

 mod p

 If (MSB of INPUT b==1), b=NOT b
1 u=b, v=p, x1=1, x2=0

2 while (u !=1 and v!=1) do

2.1while u is even do

 2.1.1 u = u/2

 2.1.2 if x1 is even then x1= x1/2

 else x1= (x1+p)/2

 2.1.3 end while

 2.2 while v is even do

 2.2.1 v= v/2

 2.2.2 if x2 is even then x2= x2/2

 else x2 = (x2+p)/2

 2.2.3 end while

 2.3 if u≥ v then u=u-v, x1=x1-x2

 else v=v-u, x2=x2-x1

2.4 end while

If (MSB of INPUT b==1),

 x1=NOT x1,x2=NOT x2

 end

Fig 4. Modified Binary Inversion

Algorithm

 In the modified algorithm, the most significant bit of

INPUT b is checked. If it is 0 then the above algorithm works as

normal BIA with u variable is assigned the value of b. The

output is available in any one of the variables x1 or x2. If Most

Significant Bit (MSB) is 1(input value with in the range p-1 to

(p-1)/2 +1), then the variable u is assigned the complemented

value of INPUT b. The output is available in any one of the

complemented values of x1 or x2 variables.

 Figure 5 shows the new architecture of modified Binary

Inversion Algorithm. The detailed architecture of Binary

Inversion Algorithm has been reported in [16].

Fig. 5. New architecture of modified Binary Inversion

Algorithm

 In the above architecture the MSB of input b is common to

one input of all the XOR gates shown in the boxes. If this MSB

is 0 the above architecture is a regular inverter circuit. If the

MSB is 1, then the input b is complemented and the outputs x1

and x2 are also complemented. If „n‟ is the number of bits in

prime „p‟ then our new architecture requires only an additional

3xn number of XOR gates compared to architecture of Binary

Inversion Algorithm.

IV. Results And Discussion

 The speed up calculation of point multiplication is based on

the difference in the addition and subtraction operations

obtained with modified BIA and with normal BIA. The speed up

of scalar point multiplication with modified BIA is depended on

the occurrence of those inputs b=‟NOTa‟ which has less number

of subtraction and addition operations in the modified BIA

compared to normal BIA. Both statistical analysis and point

multiplications are carried out to find the probability of

occurrence of those values of b and to evaluate the performance

of the modified BIA.

Anil Kumar M. N et al./ Elixir Elec. Engg. 59 (2013) 15913-15918 15916

4.1 Statistical Analysis: The probability of occurrence of those

values of „b‟ = „NOTa‟ which has more and lesser number of

addition and subtraction operations in BIA than modified BIA

are separately calculated. Then the average difference in the

number of additions and subtractions for the above 2 cases are

separately calculated. These obtained values are used to find

out the average difference in the addition and subtraction

operations when a scalar point multiplication operation is

analytically performed with binary scalar multiplication

algorithm (refer Fig.1).

If we assume that, on average „n‟ is the number of ones in „k‟

which is equal to n = L / 2, the binary method requires (L −1)

point doublings and n point-additions where L denotes the

number of bits of the scalar k. Usually the number of bits in „k‟

is equal to number of bits in „p‟. The point doubling and point

addition require inversion operation.

The average number of inversion is

 (L-1) + n. …………………………..(1)

 This equation is used to calculate the average difference in the

number of subtraction and addition operations between modified

BIA and BIA. Table 1 shows a detailed analysis with

Mersenne‟s prime 2
5
-1(31).

 Let „A‟ denote the occurrence of input b=‟NOTa‟ (refer fig.4)

which has less number of subtraction and addition operations in

the modified BIA compared to normal BIA.

 Let „B‟ denote the occurrence of input b=‟NOTa‟ which has

more number of subtraction and addition operations in the

modified BIA compared to normal BIA.

Let a1 denote the average difference in the number of

subtraction and addition operations due to events A.

Let b1 denote the average difference in the number of

subtraction and addition operations due to events B.

The average number of subtraction and addition operations

reduced during point multiplication is equal to (L-1+n)(p(A).a1

– P(B).b1).

Table 1 shows the detailed analysis with Mersenne‟s prime 2
5
 -

1.

Table 1. Analysis with Mersenne’s prime 2
5
 -1

Input

b

Number of iterations

with modified BIA

Number of

iterations with BIA
|difference|

16 6 5 1

17 9 7 2

18 6 6 0

19 9 9 0

20 8 9 1

21 8 8 0

22 5 9 4

23 4 5 1

24 8 10 2

25 8 9 1

26 7 7 0

27 3 4 1

28 7 10 3

29 2 3 1

30 0 7 7

From the above table P(A)=9/30, P(B)=2/30, a1=18/9, b1=3/9.

Assuming number of bits of scalar „k‟ is 5, the average number

of subtraction and addition operations reduced during this point

multiplication operation (denoted by „avg‟) = 3.9

Table 2 shows the result with other Mersenne’s primes
Mersenne‟s

Prime
P(A) P(B) a1 b1 avg

25-1 0.3 0.066 2.33 1.5 3.899

27-1 0.238 0.047 2.8 1.833 5.50

213-1 0.236 0.041 2.902 2.618 10.68

217-1 0.239 0.0426 2.914 2.648 14.3

219-1 0.2386 0.0426 2.9309 2.7 16.06

231-1

 The above analysis shows that the average reduced number

of subtraction and addition operations during a point

multiplication operation is approximately 0.845 times of the bit

length of scalar „k‟.

 Because of the unfeasibility to process the whole number

space with bigger Mersenne‟s primes and our objective is

targeted to NIST recommended curve 2
521

-1, we have

restricted our analysis only on some parts of the number space

of Mersenne‟s prime 2
521

-1 . The table 2 shows the number

space selected and the average result.

Table 2: Number space where analysis is performed
Number space

(px-1)/2+1 to (p-1)/2+1+217

(p-1)/2 +2127 to (p-1)/2 +2127+217

(p-1)/2 +2250 to (p-1)/2 +2250+217

(p-1)/2 +2350 to (p-1)/2 +2350+217

(p-1)/2 +2500 to (p-1)/2 +2500+217

Avg=438.6

p=2
521

-1

4.2 Analysis by computing the point operations

Q=k.P with randomly generated ‘k’

 In this method the performance evaluation of Modified

Binary Inversion A is performed by computing point

multiplications Q=k.P by using binary scalar multiplication

algorithm on the NIST recommended elliptic curve with moduli

2
521

 -1. The curve has following parameters which are shown in

Table 3.

 The elliptic curve equation E over GF(p) is given by :y
2
 =

x
3
 + ax + b ; where p > 3, a= -3 ,4a

3
 + 27b

2
≠ 0, and x, y, a,b∈

GF(p).

Table 3. Parameters of NIST recommended curve p521.
p = 68647976601306097149819007990813932172694353\

00143305409394463459185543183397656052122559\

64066145455497729631139148085803712198799971\

 6643812574028291115057151

r =68647976601306097149819007990813932172694353\

00143305409394463459185543183397655394245057\

74633321719753296399637136332111386476861244\

0380340372808892707005449

b = 051 953eb961

8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3

b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd

3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00

G x = c6 858e06b7

0404e9cd 9e3ecb66 2395b442 9c648139 053fb521

f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127

a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66

G y = 118 39296a78

9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468

17afbd17 273e662c 97ee7299 5ef42640 c550b901

 In the above table p is the prime modulus, r is the order, b is

the coefficient, Gx is the x coordinate of base point and Gy

denote the y coordinate of base point.

 In section 4.2.1, the steps involved in the generation of

random numbers are discussed. In section 4.2.2, the performance

evaluation of modified BIA is analyzed.

Anil Kumar M. N et al./ Elixir Elec. Engg. 59 (2013) 15913-15918 15917

4.2.1 Generation of Random Numbers

 Our method used two random number generators, namely

Random Number Generator based on elliptic curve operations

and Blum-Blum-Shub Generator

Random Number based on EC point operation: In the EC

point multiplication method we generated random numbers for

the above specified curve by using the initial seed value k which

is less than the order of the curve. The steps involved are

discussed below. Further details can be found in [18].

Step1: Computed Q = kn.P (n=1 initially) by using the initial

seed kn which is randomly selected and the x coordinate of the

curve generated Gx is the random number.

Step2. If the random number generated is greater than the order

of the curve then it is neglected and n= n+1.If the following

condition is satisfied then number is stored in array and the array

index is incremented.

Step3. kn= Gx + n , the above steps are repeated until 100

random numbers are generated.

Random Number generation by using Blum-Blum-Shub

Generator

 In this method we generated another set of 100 random

numbers with blum primes p=

1267650600228229401496703981519,q=126765060022822940

1496704318359.[Further details can be found in [19]]. The

generated bit sequences are grouped into 521 bits. This sequence

is then compared with the order of the curve. If it is greater than

the order of the curve, the most significant bits of these 521 bits

are inserted with 0‟s until this value is lesser than the order of

the curve. This random number is then stored in the array and

array index is incremented and the steps are repeated until 100

random numbers are generated. But the generated sequence has

to be subjected for random number testing.

4.2.2 Performance evaluation of modified BIA
 We computed the point multiplication Q =kP with the 200

random numbers generated in previous section by using EC

point operation and Blum-Blum-Shub Generator. The steps

involved are:

Step1: The point multiplication Q=k.P is performed by

substituting the first random number stored in the array.

Step2. During this point operation all the values for which

inversion has to be computed are stored in an array.

Step3. Then statistical analysis explained in section 4.1 is

performed on those values stored in the step2. The average

reduced number of subtraction and addition operations is

computed.

Step 4: The above steps are repeated for all the random numbers

generated and the average of result obtained in step 3 is

computed.

Table 4. Summary of the results
Average number of subtraction and addition operations

reduced with modified BIA according to statistical analysis
438.6

Average number of subtraction and addition operations

reduced with modified BIA when point operations are

computed with randomly generated „k‟ by using EC point

operation

442.85

Average number of subtraction and addition operations

reduced with modified BIA when point operations are

computed with randomly generated „k‟ by using Blum-Blum-

Shub Generator

446.79

 Average 442.74

The average number of subtraction and addition operations

reduced during this point multiplication operation = 442.85

 The above procedure is repeated with another set of 100

random numbers generated by using Blum-Blum_Shub

Generator.

The average number of subtraction and addition operations

reduced during this point multiplication operation = 446.79.

 Table 4 shows the summary of the results obtained when

statistical analysis and point multiplications are performed on

NIST recommended p521 elliptic curve.

V. Conclusion And Future Scope

 We have presented a new technique to speed up the

computation of scalar point multiplication by slightly modifying

the Binary Inversion Algorithm. The effectiveness of the

technique is analysed by statistical analysis and computing the

point operations Q=k.P with randomly generated „k‟. The

statistical analysis and point operations on NIST recommend

curve with moduli 2
521

-1 show that modified BIA has reduced

on average 442.74 number of subtraction and addition

operations. The results obtained from the statistical analysis on

other Mersenne‟s primes show that modified BIA has reduced

the number of addition and subtraction operations on average by

0.845 times of the bit length of scalar „k‟ which justified the

result obtained when statistical analysis and point multiplication

on NIST recommend curve with moduli 2
521

-1 are performed.

The above results show that proposed architecture of the

modified BIA can be used to speed up the scalar point

multiplication.

 Our future effort will target speeding up computation of

individual computational blocks of scalar point multiplication,

integration of the proposed architecture with the other modules

to compute scalar point multiplication in hardware.

References:

[1].C. Mclvor, M.McLoone and J.V.McCanny, “Modified

Montgomery modular multiplication and RSA exponentiatuin

techniques”, IEE Proc. Comput.Digit.Tech., Voi.151,N9.6,

November 2004

[2]QIANG Liu, Fangzhen Ma, Dong Tong, Xu Cheng, “A

regular Parallel RSA Processor”, The 47
th

 IEEE International

Midwest Symposium on Circuits and Systems.

[3]Jin Hua Hong, Cheng-Wen Wu, “Cellular-Array Modular

Multiplier for fast RSA Public-Key Cryptosystem based on

modified Booth‟s Algorithm”, IEEE Transactions on VLSI

systems, Vol.11, No.3, June 2003.

[4]Andre Vandemeulebroecke, Etienne Vanzieleghem, Tony

Denayer, Paul G, “ A new carry free division algorithm and its

application to a single chip 1024-b RSA processor”, IEEE

Journal of Solid State Circuits, Vol.25, No.3, June 1990.

[5]Ming-Der Shieh, Jun-Hong Chen, Hao-Hsuan Wu,Wen-

Ching Lin, “A new modular exponentiation architecture for

efficient design of RSA cryptosystem”, IEEE Transactions on

VLSI systems, Vol.16, No.9, September 2008.

[6].William N Chelton, Mohammed Benaissa, “Fast Elliptic

Curve cryptography on FPGA”, IEEE Transactions on VLSI

systems, Vol.16, No2. February 2008.

[7]. William N Chelton, Mohammed Benaissa, “Design of

Flexible GF(2
m
 Elliptic Curve Cryptography Processors”, IEEE

transactions of VLSI systems, Vol.14, No.6, June 2006.

[8].Ray C.C. Cheung, Nicolas Jean-baptiste Telle, Wayne Luk,

Peter Y.K. Cheung, “Customizable Elliptic Curve

Cryptosystems”, IEEE Transactions on VLSI systems, Vol.13,

No.9, September 2005.

[9].Alireza Hodjat, David D. Hwang, Ingrid Verbauwhede, “A

scalable and high performance elliptic curve processor with

resistance to timing attacks”, ITCC‟05.

Anil Kumar M. N et al./ Elixir Elec. Engg. 59 (2013) 15913-15918 15918

[10]Philip H. W. Leong, Ivan K.H.Leung, “A Microcoded

Elliptic Curve Processsor using FPGA Technology”,. IEEE

Transactions on VLSI systems, Vol.10, No.5, October 2002.

[11]. Hamid Reza Ahmadi, Ali Afzali-Kusha, “ Low-power

flexible GF(p) Elliptic curve cryptography processor”,

[12]. Kendall Ananyi, Hamad Alrimeigh, Daler Rakhmatov, “

Flexible hardware processor for Elliptic curve cryptography”,

IEEE transactions on VLSI systems, Vol.17, No.8, August 2009.

[13]. Jyu-Yuan Lai, Chih-Tsun Huang, “Elixir: High throughput

cost effective dual field processors and the design framework for

ECC”. IEEE Transactions on VLSI systems, Vol.16, No.11,

October 2008

[14]. Kimmo Jarvinen, Jorma Skytta, “On parallelization of

High-speed processors for Elliptic curve cryptograpgy”, IEEE

Transactions on VLSI systems, Vol.16, No.9, September 2008

[15]. Ciaran J McIvor, Maire McLoone, John V.McCanny, “

Hardware Elliptic Curve Cryptographic Processor Over GF(p)”,

IEEE Transactions on Circuits and Systems , Vol.53, No.9, ,

September 2006

[16].Santhosh Ghosh, Monjur Alam, Indranil Sen Gupta,

Dipanwita Roy Chowdhury, “ A robust GF(p) parallel arithmetic

unit for public key cryptography”, 10
th

 Euromicro Conference

on Digital System Design Architectures, methods and

tools(DSD 2007).

[17].Pierre Lecuyer and Richard Simard. “ A C Library for

Empirical testing of random number generators”, ACM

Transactions on Mathematical Software, Vol.33, No.4, Article

22, August 2007.

[18].Lap-Piu Lee, Kwok-Wo Wong, “A random number

generator based on elliptic curve operations”, An International

Journal of computer and mathematics with applications.

www.ElsevierMathematics.com.

[19]. Junod P, “ Cryptographic secure PRBG: The Blum-Blum-

Shub Generator.” August 1999. http://crypto.junod.info/bbs.pdf

