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Introduction  

  The data security, authentication and integrity has become 

an important and urgent need for health care information, 

confidential communication, storage and financial services etc. 

The public key cryptosystem is the most efficient way to secure 

data transaction and messaging. The challenge to implement the 

most popular public key cryptosystem, RSA is the rapidly 

growing key size. Elliptic Curve cryptography has been 

considered an alternative to RSA. A lot of implementations have 

been reported in [1-5].  The effectiveness of using elliptic curve 

is that it provides same security level with shorter keys than   in 

RSA. Therefore ECC can be used in smart cards, credit cards 

and mobile phones where area is a constraint. It is estimated that 

security level of 160 and 224 bits ECC cryptosystem is 

equivalent to the 1024 and 2048 bits RSA respectively. The 

research on different algorithms and hardware accelerations 

have focussed on efficient implementation of elliptic curve 

scalar point multiplication Q=k.P. This is the fundamental 

operation of all elliptic curve cryptosystems.  

  Two types of Finite Fields are generally used in ECC. 

Those are Finite Field over a  large prime  called as Galois Field 

GF(p) and Extended Binary Field that is known as Galois Field 

GF(2
k
). A very few hardware implementations of ECC on GF(p) 

have been reported in the literatures compared to 

implementations on GF( 2
k
)  [6-10 ]. A low power flexible 

GF(p) ECC processor has been reported in [11] which is suitable 

for RFID tags ,wireless sensors and smart cards. A flexible ECC 

processor over GF(p) has been reported in [12] which supports 

all five NIST primes with size ranges from 192 to 521. They 

have used NAF scalar multiplication algorithm and BIA to 

compute the inversion. [13 ] has reported Dual field processors 

and the design framework for ECC by using mixed projective-

affine coordinates which replaces the field inversion and 

optimization with different area/throughput requirements. 

Parallelization of high speed ECC accelerators have been 

studied in [14]. A hardware architecture for ECC over GF(p) has 

been reported in [15 ] with a new unified modular inversion 

algorithm instead of Fermat‟s Little Theorem. 

  The hardware complexity to implement ECC in GF(p) is 

little bit higher than that of in GF(2
k
) but the advantage is that 

the k-bit arithmetic unit  is capable to process any i-bit data 

where 1≤i≤k. The arithmetic operations of GF(p) can be 

performed faster than GF(2
k
)  with the instructions of general 

purpose microprocessors. Confining designs to binary fields 

limit the flexibility and may not be used for Elliptic Curve 

Digital Signature Algorithm. This algorithm in addition to EC 

point operation is based on normal integer modulo operations. 

For binary field designs these modulo operations must be done 

separately by using a processor or in a separate hardware.  

Inversion is the costliest operation among all the modular 

operations. Inversion operation can be eliminated with 

projective coordinate systems with the cost of using parallel 

multipliers [13-14]. But in small devices like smart cards where 

area is a constraint, adding more multiplier units needs more 

memory and thus increases the cost. Speeding up inversion 

operation in both fields has been gaining attention because 

inversion is the most time consuming operation when affine 

coordinates are selected. 

  In this paper we have modified the BIA over GF(p) to speed 

up the inverse computation and consequently scalar point 

multiplication of NIST recommended elliptic curve with moduli 

2
521

 -1. The paper proposes a new architecture to meet the above 

objective. The rest of the paper is organized as follows. Section 

II provides a brief mathematical back ground of Elliptic Curve 

based cryptography and Random Generators. Sections III brief 

about the methodology of the proposed method and in section 

IV results are discussed and finally conclusion is given in 

section V. 

II. ECC BACKGROUND 

2.1 ECC Algorithms structure analysis 

ECC algorithms are layered on four levels as shown in figure 1. 
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ECC Pprotocols 

EC Point multiplication 

EC  Point addition and doubling 

Finite field arithmetic: addition, subtraction, multiplication,squaring, 

inversion, reduction 

Fig.1 Hierarchical Structure of the ECC algorithms 

ECC Protocols: Top application includes key establishment, 

data encryption and decryption, signature verification schemes. 

Public key cryptography protocols employ point multiplication 

as a fundamental operation and security is based on difficulty of 

solving Elliptic Curve Discrete Logarithm Problem which is 

finding scalar k, given a point P, and k.P 

EC point multiplication: This includes the computation of 

point multiplication Q=kP. The focus of research is the 

representation of „k‟ which decides the number of point addition 

and point double operations performed during point 

multiplication. This contains different algorithms like Binary 

scalar multiplication algorithm, Montgomery method, Non 

Adjacent Form (NAF)  scalar multiplication algorithm  etc.  

EC point addition and doubling.  This layer has different point 

representation in affine coordinates, projective coordinates such 

as standard projective coordinates, Jacobian coordinates and 

Chundnovsky projective coordinates and mixed coordinates. 

There are lots of implementation using affine and projective 

coordinates   and effect of parallelism with different coordinate 

systems with different arithmetic operations. These arithmetic 

operations include addition, subtraction, multiplication, 

reduction, squaring and inversion. 

  Draw back of Inversion in GF(p) using Extended Euclidean 

Algorithm is the requirement for computationally expensive 

division operations. In Binary Inversion Algorithm, the division 

operation is replaced with cheaper shifts, subtractions and 

additions making this algorithm suitable for implementation in 

hardware [16].Montgomery inversion algorithm is applicable if 

Montgomery arithmetic is used with affine coordinates .  

NIST primes: The FIPS 186-2 standard recommends elliptic 

curves over the five prime fields with moduli: 

 p192 = 2 
192

 – 2 
64

 -1 

 p224 = 2 
224

 -2 
96

 +1 

 p256=2 
256

 – 2 
224 

+ 2 
192

 + 2 
96

 -1 

 p384 = 2 
384

 – 2 
128

 -2 
96

 + 2 
32

 -1 

 p521 = 2 
521 

-1 

Except for p521, the powers appearing in these expressions are 

all multiple of 32. This property yield reduction algorithms 

especially fast on machines with word size 32.  

2.2 Elliptic Curves Over GF (P). The elliptic curve arithmetic 

is defined over Galois field GF( p) where p is a prime number 

greater than 3. All arithmetic operations are modulo p. The 

elliptic curve equation E over GF(p) is given  by :y
2
 = x

3
 + ax + 

b ; where p > 3, 4a
3
 + 27b

2
≠ 0, and x, y, a,b∈  GF(p). There is 

also a single element named the point at infinity or the zero 

point denoted O, which serves as the additive identity. For any 

point P(x, y) ∈E , we have: P + O = P . 

2.2.1Point addition and Point Doubling 

Additions in GF(p) are controlled by the following rules: 

O = -O 

P( x, y ) + O = P( x, y ) 

P( x, y ) + P( x, -y) = O 

The addition of two different points on the elliptic curve is 

computed as shown below. 

             P(x1 , y1) + P(x2 , y2) = P(x3 , y3) ; where x1 ≠ x2 

λ = (y2 – y1)/(x2 – x1) 

x3 = λ
2
 – x1 – x2 

y3 = λ(x1 – x3) – y1 

The addition of a point to itself (point doubling) on the elliptic 

curve is computed as shown below 

P(x1 , y1) + P(x1 , y1) = P(x3 , y3); 

                 λ = (3(x1)
2
 + a) /(2y1)  

x3 = λ
2
 – 2x1 

y3 = λ(x1 – x3) – y1 

2.2.3 Point Multiplication 

Scalar multiplication Q=k.P is the result of adding point P to 

itself (k-1) times  

                        Q = k.P = P + P + ……. + P. 

                                        (k-1 Times) 

The binary method is the simplest and oldest efficient method 

for point multiplication. It is based on the binary expansion of k. 

The corresponding algorithm is shown in Fig.1. 

INPUT: A point P and an integer k  

OUTPUT: Q = k.P 

1. Q←P 

 

2. For j = L− 2… 1, 0 

2.1 Q ← 2 Q 

2.2  IF k j = 1 THEN Q←Q + P 

3. RETURN Q 

Fig.2. Binary scalar multiplication algorithm 

2.3 Random Number Generators 

  Random numbers play an important role in providing 

security for various applications. The ability to generate 

pseudorandom numbers is very important for the key generation 

in cryptographic applications. A C library for Empirical Testing 

of Random Number generators is available in [17]. A random 

number generator based on the addition of points on an elliptic 

curve over finite field is proposed in [18].This method uses the 

encryption block to perform random number generation thus 

saves the hardware cost, memory space and design time. The 

theoretical analysis show that periods of this generator is 

sufficiently long and up to 29% of gate counts can be saved 

compared to implementation of a separate random number 

generator. The generated sequences also have passed the FIPS 

140-2 statistical tests. The Blum-Blum-Shub generator[19] also 

referred to as cryptographically secure pseudorandom bit 

generator which passes the next-bit test. It is a quadratic 

congruential method for generation of pseudorandom bits for 

cryptographic purposes. The most widely used technique 

proposed by Lehmer is linear congruential method. The 

selection of parameters are very important in the generation of 

pseudo random sequences. 

III. Methodology 

  The multiplicative inverse property between the number „a‟ 

and „NOT a‟ over Mersenne‟s prime is stated below. When „x‟ 

is the multiplicative inverse of „a‟ over GF(p) where p is a 

Mersenne‟s prime, then the multiplicative inverse of „NOTa‟ is 

the complemented multiplicative inverse of x (NOT x). 

Henceforth pair refers to input „a‟ which belongs to set of 

numbers from 1 to (p-1)/2 only  and „NOTa‟ is its corresponding 

pair which belongs to set of numbers from p-1 to (p-1)/2 +1 

only. Hence there are (p-1)/2 such pairs.  Let „A‟ denote the 

occurrence of input b=‟NOTa‟ (refer fig.4) which has less 

number of subtraction and addition operations in the modified 

BIA compared to normal BIA. Let „B‟ denote the occurrence of 

input b=‟NOTa‟ which has more number of subtraction and 

addition operations in the modified BIA compared to normal 

BIA. The probability of event A is far greater than the 

probability of event B. 



Anil Kumar M. N et al./ Elixir Elec. Engg. 59 (2013) 15913-15918 15915 

  The above two properties are used to speed up the inverse 

computation of some of the numbers within the range (p-1)/2+1 

to p-1.  Instead of computing the inverse of those numbers in the 

above said range directly, we complemented the number, then 

computed the inverse and finally complemented the output. This 

is the technique used in the modified Binary Inversion 

Algorithm. This modified BIA can be easily implemented in the 

hardware (explained in the following section). We have assumed 

negligible delays of the two stage complement operation. The 

above technique is used in computation of the scalar point 

multiplication Q=k.P. The results showed better performance 

with modified BIA, with reduced number of additions and 

subtractions than with  normal Binary Inversion Algorithm. 

3.1 Modified Binary Inversion Algorithm. 
  Figure 3 and Figure 4 show the BIA and modified BIA 

respectively. The extended Euclidean algorithm uses the 

division operations to compute the inversion. The binary 

inversion algorithm replaces the divisions with cheaper shifts 

(divisions by 2) and subtractions. The modular multiplicative 

inverse b
-1

 mod p of an integer b exists if and only if b and p are 

relatively prime, that is gcd (b,p) =1. 

INPUT: Prime p and b ∈  [1, p-1] 

OUTPUT: b
-1

 mod p 

1. u=b, v=p, x1=1, x2=0 

2. while  (u !=1 and v!=1 ) do 

2.1 while u is even do 

2.1.1 u = u/2 

2.1.2      if x1 is even then x1= x1/2 

else   x1= (x1+p)/2 

2.1.3      end while 

2.2   while v is even do 

2.2.1 v= v/2 

2.2.2       if x2 is even then x2= x2/2 

else    x2 = (x2+p)/2 

2.2.3         end while 

2.3 if u≥ v then u=u-v, x1=x1-x2 

else v=v-u, x2=x2-x1 

2.4 end while 

Fig 3.  Binary Inversion Algorithm 

 INPUT: Prime p and b∈  [1, p-1] 

OUTPUT: b
-1

 mod p 

 If (MSB of INPUT b==1), b=NOT b 
1 u=b, v=p, x1=1, x2=0 

2 while  (u !=1 and v!=1 ) do 

2.1while u is even do 

  2.1.1  u = u/2 

  2.1.2      if x1 is even then x1= x1/2  

 else   x1= (x1+p)/2 

                  2.1.3     end while 

         2.2   while v is even do 

          2.2.1     v= v/2 

                 2.2.2         if x2 is even then x2= x2/2  

                  else    x2 = (x2+p)/2 

  2.2.3        end while 

 

        2.3 if u≥ v then u=u-v, x1=x1-x2 

               else v=v-u, x2=x2-x1 

2.4    end  while  

If (MSB of INPUT b==1), 

         x1=NOT x1,x2=NOT x2 

      end 

Fig 4. Modified Binary Inversion 

 

Algorithm 

  In the modified algorithm, the most significant bit of 

INPUT b is checked. If it is 0 then the above algorithm works as 

normal BIA with u variable is assigned the value of b. The 

output is available in any one of the variables x1 or x2.  If Most 

Significant Bit (MSB) is 1(input value with in the range p-1 to 

(p-1)/2 +1), then the variable u is assigned the complemented 

value of INPUT b. The output is available in any one of the 

complemented values of x1 or x2 variables. 

  Figure 5 shows the new architecture of modified Binary 

Inversion Algorithm. The detailed architecture of Binary 

Inversion Algorithm has been reported in [16]. 

 
Fig. 5. New architecture of modified Binary Inversion 

Algorithm 

  In the above architecture the MSB of input b is common to 

one input of all the XOR gates shown in the boxes. If this MSB 

is 0 the above architecture is a regular inverter circuit. If the 

MSB is 1, then the input b is complemented and the outputs x1 

and x2 are also complemented. If „n‟ is the number of bits in 

prime „p‟ then our new architecture requires only an  additional  

3xn number of  XOR gates compared to architecture of Binary 

Inversion Algorithm. 

IV. Results And Discussion 

  The speed up calculation of point multiplication is based on 

the difference in the addition and subtraction operations 

obtained with modified BIA and with normal BIA. The speed up 

of scalar point multiplication with modified BIA is depended on 

the occurrence of those inputs b=‟NOTa‟ which has less number 

of subtraction and addition operations in the modified BIA 

compared to normal BIA. Both statistical analysis and point 

multiplications are carried out to find the probability of 

occurrence of those values of b and to evaluate the performance 

of the modified BIA. 
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4.1 Statistical Analysis: The probability of occurrence of those 

values of „b‟ = „NOTa‟ which has more and  lesser  number of 

addition and subtraction operations  in BIA than modified BIA    

are  separately calculated.  Then the average difference in the 

number of additions and subtractions for the above 2 cases are 

separately calculated.  These   obtained values are used to find 

out the average difference in the addition and subtraction 

operations when a scalar point multiplication operation    is 

analytically performed with binary scalar multiplication 

algorithm (refer Fig.1). 

If we assume that, on average „n‟ is the number of ones in „k‟ 

which  is equal to n = L / 2, the binary method requires (L −1) 

point doublings and n point-additions where L denotes the 

number of bits of the scalar k. Usually the number of bits in „k‟ 

is equal to number of bits in  „p‟. The point doubling and point 

addition require inversion operation.  

The average number of inversion is  

 (L-1) + n. …………………………..(1) 

 This equation is used to calculate the average difference in the 

number of subtraction and addition operations between modified 

BIA and BIA. Table 1 shows a detailed analysis with 

Mersenne‟s prime        2
5
-1(31). 

  Let „A‟ denote the occurrence of input b=‟NOTa‟ (refer fig.4) 

which has less number of subtraction and addition operations in 

the modified BIA compared to normal BIA. 

 Let „B‟ denote the occurrence of input b=‟NOTa‟ which has 

more number of subtraction and addition operations in the 

modified BIA compared to normal BIA. 

Let a1 denote the average difference in the number of 

subtraction and addition operations due to events A. 

Let b1 denote the average difference in the number of 

subtraction and addition operations due to events B. 

The average number of subtraction and addition operations 

reduced during point multiplication is equal to (L-1+n)(p(A).a1 

– P(B).b1). 

Table 1 shows the detailed analysis with Mersenne‟s prime 2
5
 -

1. 

Table 1.  Analysis with Mersenne’s prime 2
5
 -1 

Input 

b 

Number of iterations 

with modified BIA 

Number of 

iterations with BIA 
|difference| 

16 6 5 1 

17 9 7 2 

18 6 6 0 

19 9 9 0 

20 8 9 1 

21 8 8 0 

22 5 9 4 

23 4 5 1 

24 8 10 2 

25 8 9 1 

26 7 7 0 

27 3 4 1 

28 7 10 3 

29 2 3 1 

30 0 7 7 

From the above table P(A)=9/30, P(B)=2/30, a1=18/9, b1=3/9. 

Assuming number of bits of scalar „k‟ is 5, the average number 

of subtraction and addition operations reduced during this point 

multiplication operation (denoted by „avg‟ ) = 3.9  

 

 

 

 

Table 2 shows the result with other Mersenne’s primes 
Mersenne‟s 

Prime 
P(A) P(B) a1 b1 avg 

25-1 0.3 0.066 2.33 1.5 3.899 

27-1 0.238 0.047 2.8 1.833 5.50 

213-1 0.236 0.041 2.902 2.618 10.68 

217-1 0.239 0.0426 2.914 2.648 14.3 

219-1 0.2386 0.0426 2.9309 2.7 16.06 

231-1      

  The above analysis shows that the average reduced number 

of subtraction and addition operations during a point 

multiplication operation is approximately 0.845 times of the bit 

length of scalar „k‟.  

  Because of the unfeasibility to process the whole number 

space with bigger  Mersenne‟s  primes and our objective is 

targeted to  NIST recommended curve   2
521

-1, we have 

restricted our analysis only  on  some parts of the number space 

of Mersenne‟s prime 2
521

-1 . The table 2 shows the number 

space selected and the average result. 

Table 2: Number space where analysis is performed 
Number space 

(px-1)/2+1 to (p-1)/2+1+217 

(p-1)/2 +2127 to (p-1)/2 +2127+217 

(p-1)/2 +2250 to (p-1)/2 +2250+217 

(p-1)/2 +2350 to (p-1)/2 +2350+217 

(p-1)/2 +2500 to (p-1)/2 +2500+217 

Avg=438.6 

p=2
521

-1 

4.2 Analysis by computing the point operations                 

Q=k.P with randomly generated ‘k’ 

  In this method the performance evaluation of Modified 

Binary Inversion A is performed by computing point 

multiplications Q=k.P by using binary scalar multiplication 

algorithm on the NIST recommended elliptic curve with moduli 

2
521

 -1. The curve has following parameters which are shown in 

Table 3. 

  The elliptic curve equation E over GF(p) is given  by :y
2
 = 

x
3
 + ax + b ; where p > 3, a= -3 ,4a

3
 + 27b

2
≠ 0, and x, y, a,b∈  

GF(p). 

Table 3.  Parameters of NIST recommended curve p521. 
p = 68647976601306097149819007990813932172694353\ 

00143305409394463459185543183397656052122559\        

64066145455497729631139148085803712198799971\  

 6643812574028291115057151  

r =68647976601306097149819007990813932172694353\  

00143305409394463459185543183397655394245057\  

74633321719753296399637136332111386476861244\  

0380340372808892707005449  

b = 051 953eb961  

8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3  

b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd  

3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00  

G x = c6 858e06b7  

0404e9cd 9e3ecb66 2395b442 9c648139 053fb521  

f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127  

a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66 

G y = 118 39296a78  

9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468  

17afbd17 273e662c 97ee7299 5ef42640 c550b901 

  In the above table p is the prime modulus, r is the order, b is 

the coefficient, Gx is the x coordinate of base point and Gy 

denote the y coordinate of base point. 

  In section 4.2.1, the steps involved in the generation of 

random numbers are discussed. In section 4.2.2, the performance 

evaluation of modified BIA is analyzed. 
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4.2.1 Generation of Random Numbers 

  Our method used two random number generators, namely 

Random Number Generator based on elliptic curve operations 

and Blum-Blum-Shub Generator  

Random Number based on EC point operation: In the EC 

point multiplication method we generated random numbers for 

the above specified curve by using the initial seed value k which 

is less than the order of the curve. The steps involved are 

discussed below. Further details can be found in [18]. 

Step1: Computed Q = kn.P (n=1 initially) by using the initial 

seed kn which is randomly selected and the x coordinate of the 

curve generated Gx is the random number. 

Step2. If the random number generated is   greater than the order 

of the curve then it   is neglected and n= n+1.If the following 

condition is satisfied then number is stored in array and the array 

index is incremented. 

Step3.  kn=  Gx +  n ,  the  above steps are  repeated until 100 

random numbers  are  generated. 

Random Number generation by using Blum-Blum-Shub 

Generator   

  In this method we generated another set of 100 random 

numbers with blum primes p= 

1267650600228229401496703981519,q=126765060022822940

1496704318359.[ Further details can be found in [19] ].  The 

generated bit sequences are grouped into 521 bits. This sequence 

is then compared with the order of the curve. If it is greater than 

the order of the curve, the most significant bits of these 521 bits 

are inserted with 0‟s until this value is lesser than the order of 

the curve. This random number is then stored in the array and 

array index is incremented and the steps are  repeated until 100 

random numbers are generated. But the generated sequence has 

to be subjected for random number testing.   

4.2.2 Performance evaluation of modified BIA 
  We computed the point multiplication Q =kP with the 200 

random numbers generated in previous section by using EC 

point operation and Blum-Blum-Shub Generator. The steps 

involved are: 

Step1: The point multiplication Q=k.P is performed by 

substituting the first random number stored in the array. 

Step2. During this point operation all the values for which 

inversion has  to be computed  are   stored  in an array. 

Step3. Then statistical analysis explained in section 4.1 is 

performed on those values stored in the step2. The average 

reduced number of subtraction and addition operations is 

computed. 

Step 4:  The above steps are repeated for all the random numbers 

generated and the average of result obtained in step 3 is 

computed. 

Table 4.  Summary of the results 
Average number of subtraction and addition operations 

reduced with modified BIA according to statistical analysis 
438.6 

Average number of subtraction and addition operations 

reduced with modified BIA  when point operations  are 

computed with randomly generated „k‟ by using EC point 

operation 

442.85 

Average number of subtraction and addition operations 

reduced with modified BIA  when point operations  are 

computed with randomly generated „k‟ by using Blum-Blum-

Shub Generator 

446.79 

                                                 Average 442.74 

The average number of subtraction and addition operations 

reduced during this point multiplication operation  = 442.85 

  The above procedure is repeated with another set of 100 

random numbers generated by using Blum-Blum_Shub 

Generator. 

The average number of subtraction and addition operations 

reduced during this point multiplication operation = 446.79.  

  Table 4 shows the summary of the results obtained when 

statistical analysis and point multiplications are performed on 

NIST recommended p521 elliptic curve. 

V. Conclusion And Future Scope 

  We have presented a new technique to speed up the 

computation of scalar point multiplication by slightly modifying 

the Binary Inversion Algorithm. The effectiveness of the 

technique is analysed by statistical analysis and computing the 

point operations Q=k.P with randomly generated „k‟. The 

statistical analysis and point operations on NIST recommend 

curve with moduli 2
521

-1 show that modified BIA has reduced 

on average 442.74 number of subtraction and addition 

operations. The results obtained from the statistical analysis on 

other Mersenne‟s primes show that modified BIA has reduced 

the number of addition and subtraction operations on average by 

0.845 times of the bit length of scalar „k‟ which justified the 

result obtained when statistical analysis and  point multiplication 

on NIST recommend curve with moduli 2
521

-1  are  performed. 

The above results show that proposed architecture of the 

modified BIA can be used to speed up the scalar point 

multiplication.  

  Our future effort will target speeding up computation of 

individual computational blocks of scalar point multiplication, 

integration of the proposed architecture with the other modules 

to compute scalar point multiplication in hardware. 
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