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1. Introduction  

The spectrum of differential operators is a fundamental problem in the theory of differential operators. For a self-adjoint 

operator T  in Hilbert space, its redial spectrum is empty. So the research of its essential spectrum and its discrete spectrum is 

the main task of the researchers. If denote by )(T Error! Reference source not found., Error! Reference source not found. 

and )(Te Error! Reference source not found. the spectrum, the discrete spectrum and the essential spectrum, respectively, 

then )()()( TTT ed    Error! Reference source not found. 

  Since last century much effort has been devoted to study of spectral analysis of operators, particular attention has been 

paid to the situation in which the spectrum of differential operators is discrete (see [1-5]). Since Molchanov established the 

celebrated criterion on the discreteness of the spectrum in 1953 (see [6]), this result has been developed by many authors. In [7], 

Muller-pfeiffer investigated the differential operator which consists of Euler differential expression. Muller-pfeiffer obtained the 

distribution of the essential and the discrete spectrum of the constant coefficient Euler differential operator and got the 

conclusion which perturbation of coefficients does not change the essential spectrum. Based on [7],  Zhong Wang and Jiong 

Sun considered the spectrum of Euler differential operator and gave some necessary and sufficient conditions on coefficients, to 

ensure that the spectrum is discrete (see [8, 9]). 

In recent years, few researchers consider the discreteness of spectrum of differential operators. In fact, it is very important 

and fundamental part for differential operators. So in this paper we continue to consider the spectrum of the following 

differential operator which consists of 2nth-order differential expression 

                                              ,0),,(,))()((:
0

)()( 


aaxxuxau
n

k

kk

k                                                                     (1.1)   

where Error! Reference source not found. are the real value functions. The method follows the general approach of ([7]). 

Here we improve the conditions in ([10]) and condition (i) of [10] are delete. In particular, we notice that not only the last 

coefficient can decide the discreteness of spectrum of differential operator when it tends to infinity according to a certain way 

and any one of the other coefficients can decide the discreteness of spectrum in the same way. 
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2. Preliminaries 

Let Hilbert space H  denote the direct sum of closed subspaces Error! Reference source not found. and Error! 

Reference source not found., i.e., Error! Reference source not found.. Define the operator Error! Reference source not 

found. onError! Reference source not found., and 

ii HAD )( , ii HAR )( , 2,1i .  

If Error! Reference source not found. is a self-adjoint operator, then the direct sum operator Error! Reference source 

not found., i.e., 

2,1),(,, 212211  iADuuuuuAuAAu ii  

is also self-adjoint, and 

)()()( 21 AAA   Error! Reference source not found., 

Error! Reference source not found.,Error! Reference source not found.. 

If Error! Reference source not found. A  is a self-adjoint realization of (1.1) in Hilbert space Error! Reference source 

not found. ),(2 aL , then 

                                                   ),(),(),( 222  NLNaLaL ,                                                                                 (2.1) 

                                                                 21 AAA  Error! Reference source not found. .                                                                                                    

Error! Reference source not found.(2.2) 

Here 1A  is a self-adjoint realization of (1.1) in Hilbert space Error! Reference source not found. and Error! Reference 

source not found. is a self-adjoint realization of  (1.1)  in Hilbert space Error! Reference source not found.. The operator 

Error! Reference source not found. A  is self-adjoint, then )()()( AAA ed   . Thus the spectrum of Error! 

Reference source not found. is discrete if and only if Error! Reference source not found. )(Ae . In addition, the 

operator Error! Reference source not found. is regular, )()( 11 AA d  Error! Reference source not found.. So the 

spectrum of Error! Reference source not found. is discrete if and only if  )( 2Ae . 

 The operator Error! No bookmark name given. is said to be semebounded from below if Error! Reference source not 

found.is a densely symmetric linear operator and there exists Error! Reference source not found. such that 

)(,||||),( 2 ADuucuAu  . If Error! Reference source not found. 0c ,  then the operator A Error! Reference source 

not found. is positive definite. If choose R Error! Reference source not found.,  then  )()(( ADEADEA    

Error! Reference source not found. is also positive definite. Next define inner product and norm in Error! Reference source 

not found. as follows: 

),)((],[ vuEAvu  , )(),(],[|||| 21 ADvuuuu A  . 

The norm Au ||||  is called the energy norm of Error! Reference source not found., complete space )||||),(( AA uADH   

Error! Reference source not found. is a Hilbert space and Error! Reference source not found. is called energy space of the 

operator Error! Reference source not found.. 

Lemma 2.1 [7] Let self-adjoint operator Error! Reference source not found.  be semibounded from below. Then the 

spectrum of A  is discrete if and only if a bounded set of energy space Error! Reference source not found. is precompact in 

Hilbert space Error! Reference source not found.. 
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We write space Error! Reference source not found. ),( 21 xxC l  for the set of all finite value functions on space 

),( 21 xxC l
Error! Reference source not found. that satisfy 

.|)(|sup||||
0

),( 2121

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l

k

k

xxxxC
xuu l  

write space )1)(,( 21  pxxC l

p  Error! Reference source not found. for the set of all finite value functions on space 

),( 21 xxC l
 Error! Reference source not found. that satisfy 

pl

k

x

x

pk

xxW
dxxuu l

p

1

0

)(

),(

2

121

|)(||||| 







 



, 

and Banach space Error! Reference source not found. is complete space Error! Reference source not found. with norm  

),( 21

||||
xxW l

p

 Error! Reference source not found.. 

Lemma 2.2 [7] Let  pkl 1,0 . Then the space Error! Reference source not found. is continuously embedded 

in space Error! Reference source not found.. And for arbitrary 0 Error! Reference source not found., there exists 

constant C , s.t., 

                                                            
),(

)(

),( 2121

||||||||||||
xxL

l

xxC Pk uCuu   ,                                                        

(2.3)Error! Reference source not found. 

where ),()( 21 xxWxu l

p . If Error! Reference source not found. is finite, then the embedding from Error! Reference 

source not found. to Error! Reference source not found. is compact. 

Lemma 2.3 [7] Differential operator 

),0()(,)1(: 00

0

)2(

0  



 CLDuauL
n

k

k

k

k
 

is semibounded from below and self-adjoint. The essential spectrum of Error! Reference source not found. 0L   is a 

interval ),(   Error! Reference source not found., where 





n

k

k

kb
0

2

0inf  . 

Lemma 2.4 [7] All self-adjoint extensions Error! Reference source not found. ofsymmetric operator 0A  with finite defect 

have the same essential spectrum and )()( 0AA ee   . 

Lemma 2.5 [11] Let Error! No bookmark name given. be the closure of the complex set  

}1||||),(:),{( 00  fADfffA . Then Error! Reference source not found. and )(A contains the complement of the set 

Error! Reference source not found. in complex plane. Here, the operator 0A  is the minimal operator generated by  (1.1),  the 

operator Error! Reference source not found. is the closed extension of Error! Reference source not found., andError! 

Reference source not found. )(A  denotes the regular point set. 

 

3. Main result and its proof 
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Consider the following differential expression 

                                          ,0),,(,))()(()1(:
0

)()( 


aaxxuxau
n

k

kk

k

k                                                        (3.1) 

where ),(,,,2,1),(  axnkxak   Error! Reference source not found. are the real value functions. Here we assumed 

that the following condition holds: 

(i) nkaXXaWxa k

k ,,2,1,),,()( 2   ;Error! Reference source not found. 

 (ii)  0)(  axan Error! Reference source not found..  

 In the following we set 

                                                                  ),()(,: 000   aCADuuA  .                                                                (3.2) 

Theorem 3.1 Suppose that the coefficients of symmetric differential expression (3.1) satisfy the conditions (i) and (ii) and 

                                               pknkdtbta
x

x
kkxa 



 ,1,,2,1,0,|)(|sup
1

 .                                   (3.3) 

Here }0),(min{))(( xuxu 
and Error! Reference source not found.. Then the spectrum of any self-adjoint extension 

Error! Reference source not found. of the operator  0A  is discrete if and only if 

                                                                   }.,,1,0{,)(lim
1

npdtta
x

x
p

x





                                                    (3.4) 

Proof. Proof of sufficiency. Firstly, we consider the case for np 0 ,  i.e., Error! Reference source not found.. 

For sufficiently large X , we introduce self-adjoint operators Error! Reference source not found. and Error! Reference 

source not found.. Here Error! Reference source not found.. 1A  and Error! Reference source not found. are self-adjoint 

extension of operators Error! Reference source not found. and Error! Reference source not found. respectively, and Error! 

Reference source not found., where 

],()(,))()(()1( 010

0

)()(

10 XaCADxuxauuA
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k 
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and 

),[)(,))()(()1( 020

0
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20  
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 XCADxuxauuA
n

k

kk

k

k . 

According to direct sum divided theorem, )()()( 21 AAA   Error! Reference source not found.. To study the 

discreteness of the operator Error! Reference source not found., we can consider the discreteness of the operators Error! 

Reference source not found. and Error! Reference source not found.. The operator Error! Reference source not found. is 

regular, so we have )()( 11 AA d  Error! Reference source not found.. Thus if Error! Reference source not found., then 

Error! Reference source not found., i.e., the operator Error! Reference source not found. is discrete.  

Since Error! Reference source not found.. To prove the discreteness of operator Error! Reference source not found., in 

view of Lemma 2.4 and Lemma 2.5, we must define Error! Reference source not found., that is, obtain the scope of the 

following equality: 





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n

k
X

k

kX dxuxauuAuuA
0

2)(

),[220 ||)(),(),( . 
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 By (3.4), for sufficiently large pb  and Error! Reference source not found., there exists Error! Reference source not 

found., s.t., 

                                                                    Mdxbxa
X

X
pp 

1

))(( .Error! Reference source not found.                                                                        

(3.5) 

For Error! Reference source not found. N  of both (2.1) and (2.2),  let  XN  , we have 
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From Error! Reference source not found. np  , we see that 
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n dxuxadxuxadxuxauuA                       (3.6) 

  We evaluate the following equality: 
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From (3,3), there exists constant Error! Reference source not found., 

Cdtta
X

X
k  




1

)(|  

holds. Then by Lemma 2.2, for arbitrary small Error! Reference source not found., we get  
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Thus we can obtain 
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Since Error! Reference source not found. is arbitrary small, we choose aC
2

1
  and obtain 
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where Error! Reference source not found.. Therefore, combining this and (3.6), we have 
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By Lemma 2.3 and (3.5), for arbitrary large 0pb , there exists Error! Reference source not found. X , such that 
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Combining (3.7) and (3.8), we can conclude  

 ),()( 120 CbA pe Error! Reference source not found.. 

Further, Error! Reference source not found. and  is   arbitrary small. Thus we see 

Error! Reference source not found., 
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where Error! Reference source not found. pb  is sufficiently large. Hence  )()( 20AA ee  , i.e., Error! Reference 

source not found.. So, for np  Error! Reference source not found., )()( AA d  Error! Reference source not found. 

holds true. 

 Consider the case for Error! Reference source not found.. Its proof is similarly to the case for Error! Reference source 

not found.. From (3.5), for sufficiently large Error! Reference source not found. and nb Error! Reference source not 

found., there exists Error! Reference source not found. X , we have 
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Therefore, we can conclude 

 ),()( 220 CAe . 

Further, Error! Reference source not found. andError! Reference source not found.  is arbitrary small. Thus we see 

 ),()( 220 CbA ne , 

i.e., 

 ),()( 2CbA ne  

where Error! Reference source not found. is sufficiently large. Hence Error! Reference source not found.. So, if 

Error! Reference source not found. np  ,  then Error! Reference source not found. holds true. 
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Proof of necessity. Assume that (3.4) does not holds true, then there exist a sequence 


1}{ jjx , jx Error! Reference 

source not found., and interval sequence  ]1,[  jjj xx , ,2,1j Error! Reference source not found.  such that 

                                                                   




dxxa
j

j

x

x
p

j

1

,2,1

)(sup


.                                                                             (3.10) 

where  ji  , ji  . Next choose a function ),0()( 01  Cxu  with 1|||| 1 u Error! Reference source not 

found.. Compact support of  )(1 xu Error! Reference source not found. contains in 1 Error! Reference source not found.. 

Next let 

)()( 11 xxxuxu jj  , ,2,1j ,  

then ijji xuxu ))(),((  . Thus function set  ,2,1}{ jju Error! Reference source not found. is not precompact. However, 











n

k

x

x

k

jk

n

k

k

jkjj dtutadtutaxuxAu
j

j0

1
2)(

0
0

2)( ||)(||)())(),(( . 

Therefore, from (3.3), 











n

k

x

x

k

jk

n

k

k

jkjj dtutadtutaxuxAu
j

j0

1
2)(

0
0

2)( ||)(||)())(),((

 







n

k

x

x
k

k

j
xtx

jj dttatuxuxAu
j

jjj0

1
2)(

1
)(|)(|max))(),((  

 







n

k

x

x
k

k

j
xtx

dttatu
j

j0

1
2)(

1
)(|)(|max
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0C Error! Reference source not found.. 

This means that 


1)}({ jj xu Error! Reference source not found. is bounded in energy space Error! Reference source not 

found.. So the spectrum of operator A  is discrete. Thus function set 


1)}({ jj xu  is not precompact. This is a contradiction. 

Hence  (3.4)  holds true. 
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