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Introduction  

 OFDM could be tracked to 1950’s but it had become very 

popular at these days, allowing high speeds at wireless 

communications [16]. While OFDM has become the core of 

most 4G-communication systems it was essential to build 

OFDM synchronizer on a suitable hard ware. The aim of our 

paper is to implement this system to be suitable for all new 

communication systems. FPGAs are flexible and reconfigurable 

integrated circuits, whose functionality is programmed by the 

designer rather than the device manufacturer. Unlike an 

Application- Specific Integrated Circuit (ASIC), FPGAs can be 

reprogrammed multiple times, even after deployment. The high 

speed, parallel architecture provides complete control over the 

degree of parallelism in the design, and arithmetic word lengths. 

This flexibility is a key advantage of FPGAs over traditional 

Digital Signal Processor (DSP) processors. In our 

implementation, the emulation time has been made as short as 

possible [17]. 

Synchronization Issues with OFDM 

With any data communications system, a critical component 

is the ability for the receiver to detect the transmission of a 

packet. The effects of the Wireless channel can complicate this, 

so it is important to have packet detection algorithms, which can 

account for channel effects. The wireless channel also affects the 

orthogonality of the sub carriers. If there is an offset between the 

subcarrier frequencies at the transmitter and the subcarrier 

frequencies at the receiver, the tones will no longer be 

orthogonal, and this can cause significant degradation in system 

performance. To maintain this orthogonality, the transmitter and 

receiver must be precisely synchronized in terms of frequency. 

This requires accurate frequency offset calculation at the 

receiver [2]. 

Implementation of the Synchronizer 

Packet Detection:  

 The first challenge for the receiver is to detect the packet. 

One possible algorithm to use is packet detection based on 

power level. That is, the presence of a packet can be inferred 

when the signal power exceeds a specific threshold. However, 

packet detection cannot be done in this manner in wireless 

systems because of the channel noise and multipath fading, 

which cause the received power to vary. So another technique is 

to use signal auto-correlation, taking advantage of the repetition 

in the preamble, and correlating the received sequence samples 

with a delayed copy of the sequence, with the delay being 

equivalent to the length of one symbol. A moving average of 

this correlation can be taken over a range of one symbol. If L is 

the number of samples and rd is d
th 

incoming sample then the 

average correlation R(d) is given by :- 
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Where r*d represents the conjugate of rd and m is an integer. 

For such Packet Detector received power P (d) is: 
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For a threshold (th) value, and ensuring correct functionality 

during simulations as shown in fig.1 the ratio of square of 

average correlation and square of received power M (d) should 

be fall between 0 and 1. 
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Fig 1 shows the basic structure of packet detector in which 

* block is used for calculating the correlation. Here a delay of 16 

is provided for the incoming samples because in the case of the 

STS symbols, L = 16 samples. The value threshold should be 

chosen to minimize the incidence of false positive detection, and 

also the incidence of undetected packets, which occur when the 

receiver is unable to detect the training sequence. The value of 
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M (d) is then compared with this threshold, and a packet is said 

to be detected if M (d) > th [3]. 

 
Figure 1: Packet Detector Block Diagram 

In accordance with the analysis [3] the threshold should be 

set at 0.5 × P (d). Because the division operation required in 

Equation 3.3 can be avoided by choosing a metric threshold 

level, which is a power of 2. For instance, choosing a threshold 

value of 0.5 will allow the calculation using a bit shift operation 

rather than a division operation. The advantage is hardware 

savings, and the value of 0.5 is actually a very good threshold 

choice. The output of the packet detection circuit includes a 

control signal indicating when a packet has been detected, as 

well as the auto-correlation and power values, which are also 

used elsewhere in the synchronizer. The packet detection output 

control signal should only become non-zero after the AGC has 

completed [16].  

Frequency Offset Calculation and Carrier Frequency 

Synchronization 

In OFDM link the sub carriers are perfectly orthogonal if 

transmitter and receiver use exactly the same frequencies. Any 

deviation in frequencies causes frequency offset which can 

introduce inter channel interference (ICI) and inter symbol 

interference (ISI). Frequency error sensitivity is a weakness of 

OFDM systems, since small changes in the sub-carrier 

frequency caused by distortions in either the channel or the 

receiver can make the sub-carriers loose their orthogonality. 

Once this occurs, the interference between adjacent sub-carriers 

becomes significant and the received signal level is reduced [2]. 

Methodologies for estimating the carrier frequency offset rely on 

the fact, if two identical samples are transmitted over the 

channel, the phase difference between them at the receiver is 

proportional to the frequency offset, and also proportional to the 

separation between the two transmission times. Specifically, for 

a frequency offset of ∆f the magnitude of the phase offset at any 

time t is [5]: 

ft  2 ------------------------------------------------------------3.4 

This phase difference can be calculated by observing incoming 

samples separated by one symbol length. For the STS, the phase 

difference can be extracted from the autocorrelation value R(d) 

in Equation 3.1. R(d) can be expressed as: 
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The relationship between the 


 value in Equation 3.4 and the 

term R (d) in Equation 3.5 is given by: 

)(dR
---------------------------------------------------------3.6 

In this case, L = 16 samples, for a total time difference of 16Ts, 

where Ts is the sample period, 50 ns in 802.11a. Thus, if the 

phase difference value can be determined, an estimate of the 

frequency offset can be calculated as: 

sT
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The value  R(d) will fall between π and − π in 802.11a, and thus 

the range of possible frequency offset values is  

kHzfkHZ 625625 
 

Because of the improved precision, performing the 

calculation with a 64-sample autocorrelation is referred to as 

fine frequency offset estimation, while the method using a 16-

sample auto-correlation is referred to as coarse frequency offset 

estimation. Because of the limited range in the 64-sample case, 

the frequency offset is best estimated in two passes, first using 

the STS, and then using the LTS. The IEEE 802.11a standard 

states that the maximum tolerance for the central frequency is 

±20 parts per million (ppm), which corresponds to a maximum 

possible frequency offset of 200 kHz, when the carrier 

frequency is 5GHz. 

Frequency recovery schemes for OFDM signals can be 

divided into three categories:  

1. Non-data aided algorithms that are based on the spectral 

characteristics of the received signal. 

2. Cyclic prefix based algorithms that use the structure of the 

signal. 

3. Data aided algorithms that are based on known information 

embedded in the received signal 

Non-Data Aided Frequency Synchronizers 

The Non-data aided synchronizers can be classified as open 

loop and closed loop. In an open loop synchronizer, a non-linear 

element, such as a squaring circuit, is used to generate a 

frequency component at a harmonic of the carrier frequency. 

The signal is then filtered to isolate this harmonic and stepped 

down to the desired carrier frequency. The advantage of these 

systems is their simplicity and low cost of implementation. 

However, because of the sensitivity of OFDM signals to 

frequency offset, open loop synchronizers are generally not 

practical for OFDM receivers [6].  

Closed-loop synchronization uses comparative 

measurements on the incoming signal and a locally generated 

signal. Non-data aided algorithms do not need special 

synchronization blocks, increasing the data throughput and 

reducing the time needed to achieve synchronization by 

eliminating the wait for synchronization. For these reasons, 

these algorithms are well suited for continuous broadcast OFDM 

signals. Packet-based OFDM signals are also not well suited to 

this kind of synchronization, since the accuracy is not great 

enough to ensure orthogonal during the entire packet 

transmission time [18,19]. 

Cyclic Prefix Based Frequency Synchronization 

Cyclic prefix algorithms are based on an analysis of the 

sampled received signal before it is passed through the FFT for 

demodulation. They make use of the redundancy introduced by 

the inserted guard interval in the OFDM symbol. Since the guard 

interval is a repetition of the transmitted OFDM symbol over 

some fraction of the OFDM symbol period, these algorithms 

simply compare the samples from the data portion of the symbol 

and the corresponding samples from the guard interval portion 

of the symbol. If there is a frequency offset of Δf in the receiver 

frequency, the two values will be different by a factor of e 
j2πΔfT

 

where T is the time difference between the two values. This 

phase difference is proportional to the magnitude of the 
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frequency-offset error and can then be used as the error signal 

that drives a voltage-controlled oscillator. The computational 

complexities of these algorithms are less than the other two 

categories, therefore providing faster synchronization with lower 

hardware cost [7,8]. 

Data-Aided Frequency Synchronizers 

Data-aided frequency synchronization provides the best 

frequency tracking with the widest acquisition range, but at the 

cost of requiring the use of synchronization blocks. This 

increases the required overhead and reduces the data 

throughput[13]. However, for packet-based transmission 

systems, such as Standard 802.11a, they are required to obtain 

synchronization quickly before the data information is passed to 

the receiver. For Standard 802.11a systems, synchronization 

must occur within the short and long training symbols, which 

make up the first 16 μs of the packet. The basic algorithm 

assumes a sequence of repeated training symbols. Similar to the 

method used in the cyclic prefix algorithms, a comparison is 

made of the phase difference between adjacent, repeated data 

symbols. This phase difference is used to generate an error 

signal that drives a voltage-controlled oscillator. 

Coarse Time Synchronization 

The function of coarse timing is to find the start of an 

incoming data packet. In packet switched networks, each packet 

has a preamble. This section covers each of the coarse time 

synchronization possibilities .The two algorithms under 

consideration are the “Basic Auto-Correlation Difference 

method” and “Auto-Correlation Sum” method [9] 

Basic Auto-Correlation Difference Method 

This method relies on calculating R (d), and then calculating 

another auto-correlation sequence, this time with a sample 

separation of 2L 
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The difference between these two sequences is then calculated 

as: 

)()()( 2 dRdRdRdiff 
--------------------------------------3.9 

In this method, the 16-sample R (d) calculation is reused, and a 

32-sample auto-correlator is introduced. The outputs from these 

two correlators are subtracted, and the output of this subtractor is 

fed to a peak detector. The location of this peak is taken to be 

the timing offset point. This difference sequence typically has a 

triangular peak during the LTS guard interval, and the index, 

ddiffmax of this peak can be used to calculate the timing offset. 

This algorithm promises improved performance, and has 

relatively low hardware complexity. 

 
Fig 2: Block Diagram for the Auto-Correlation Difference 

Algorithm 

Auto-Correlation Sum Method 

This method calculates the sum of the incoming sequence 

delayed by L, and the same sequence delayed by 2L, and this 

sum is correlated with the undelayed sequence. In this method, 

the calculation of R (d) is reused, with the addition of a delay 

element, which delays the incoming samples by 32 clock cycles 
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Once again, a detector can be designed to determine the index, 

dsumdrop, at which R3 (d) drops off to half of its peak value. 

Fine Time Synchronization 

Timing synchronization has two aspects. The first is 

synchronization with the OFDM symbols, and the second is the 

synchronization with the data symbols within each OFDM 

symbol. The synchronization of the OFDM symbols requires 

more than just matching the symbol timing of the transmitter 

with the receiver. After calculating a coarse timing offset value 

using the STS, fine time synchronization can be calculated using 

the LTS. This involves adding more hardware to the circuit to 

implement a cross-correlation calculator. It also involves 

selecting an appropriate detection metric[10,11,12]. 

Cross-Correlation Calculation 

Instead of correlating the incoming sequence with delayed 

signal samples, it is possible to correlate the incoming sequence 

with the original preamble sample values. This approach is 

referred to as cross-correlation, and the calculation is given as: 
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The c*m terms are the complex conjugates of the preamble 

sample values, L is symbol length, rd is the received sequence 

and m is an integer.  

 
Fig 3: Cross Correlator 

In the case where the LTS is used for crosscorrelation, L = 64, 

and the c*m terms are taken from the original LTS. The 

crosscorrelation algorithm uses the LTS, and several detectors, 

which can be used, for determining the timing point is 

compared. The first of these detectors simply finds the 

maximum value of 
)(d

. 
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The second detector adds the absolute values of N successive 

cross-correlation results, and attempts to maximize the sum: 
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Finally, a third detector looks to find the first instance at which 

)(d
 exceeds a chosen threshold, th, where th is a percentage 

of the observed maximum value. The circuitry required for this 

cross-correlator is composed of multipliers and adders.  
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Quantized Cross-Correlator 

In the quantized version of the cross-correlator the 

implementation of the multiply accumulate circuitry is modified 

to reduce hardware complexity. Implementing this quantized 

cross-correlation involved replacing the multipliers in the 

original cross-correlation circuit with bit-shifters. It also 

involved taking the constant values that are used in the cross-

correlator and replacing them with quantized values, all of 

which are powers of 2. Once again, in the case of perfect time 

synchronization, the sample value at which the cross-correlation 

would be maximized would be sample 85. 

 
Fig 5: Diagram of the Multiply-Accumulate Circuit Used in 

the Quantized Version of the Cross-Correlator 

Schmidl and Cox Method 

In Schmidl and Cox method [5], timing synchronization is 

achieved by using a training sequence whose first half is equal to 

its second half in the time domain. The basic idea behind the 

technique is that the symbol timing errors will have little effect 

on the signal itself as long as the timing estimate is in the CP. 

The two halves of the training sequence are made identical by 

transmitting a PN sequence (Barker code generator) on the even 

frequencies while zeros are sent on the odd frequencies [1]. The 

algorithm defined in [3] has three steps, based on the equation 

3.1,3.2,3.3.:In equation, the algorithm has a window length of N, 

which is also the number of sub-carriers. The starting point is 

the value of n, which maximizesM (d). In fact, from the 

definition, P (d) expresses the cross-correlation between the two 

halves of the window; in above Equation, R(d) represents the 

auto-correlation of the second half. When the starting point of 

the window reaches the start of the training symbol with the CP, 

the values of P (d) and R (d) should be equal giving the 

maximum value for the timing metric. There are two methods to 

determine the symbol timing. The first one is just to find the 

maximum of the metric. The second one is to find the maximum, 

and the points to the left and right that is 90% of the maximum 

and then compute the average of these two 90% points to find 

the symbol-timing estimate or symbol/frame timing is found by 

searching for a symbol in which the first half is identical to the 

second half in the time domain. Then the carrier frequency offset 

is partially corrected, and a correlation with a second symbol is 

performed to find the carrier frequency offset [5]. 

 
Fig 6 Basic correlation process 

Final Implementation 

The final implementation of the synchronizer includes the 

packet detection, frequency offset estimator and timing offset 

estimator. On the basis of performance capability and low 

hardware complexity, the Basic Auto-Correlator is preferred for 

coarse time synchronization and due to low incremental cost the 

quantized fine time estimator is preferred. The additional size 

required by the quantized estimator is not a big issue considering 

the large size of the FPGA being used[17].  

Top module of synchronizer consists of quantization, Match 

filtering and Output block. 

Quantization block is used to reduce hardware complexity, 

which involves replacing the multipliers in original cross 

correlation circuit with bit shift registers. Basically quantization 

is the process of mapping a large set of input values to a smaller 

set, which yields two-power spectrum without loss of 

information. Let us taking the 8-bit input values 8h’50 and 8h’80 

real and imaginary respectively. Then the quantization block is 

generating sets of values 16h’0000, 16h’8000, 16h’C000, and 

16h’E000 and so on real as well as imaginary values. 

The matched filter is the second block in our coding. As by 

definition in communication system, which sends binary 

messages from the transmitter to the receiver across a noisy 

channel, a matched filter can be used to detect the transmitted 

pulses in the noisy received signal. A matched filter is obtained 

by correlating a known signal, or template, with an unknown 

signal to detect the presence of the template in the unknown 

signal. This is equivalent to convolving the unknown signal with 

a conjugated time-reversed version of the template. This section 

consists correlation unit, magnitude simplified unit and peak 

finding unit. Correlation unit simplifies the complex 

multiplication operation to addition operation. We have 

designed a counter which is set at the value of 16, because the 

length of the STS is 16 and it is used for enable of correlation is 

set high, With our input values this unit generates the set of real 

and imaginary values which are 21 bit long like 21h’025CBC, 

21h’0256DA, 21h’02569A and so on real values and 

21h’1EBF08, 21h’1EB926, 21h’1ECADA and so on imaginary 

values.  

Magnitude simplified unit replaces the magnitude of 

complex number with the absolute value i.e. sum of real part and 

imaginary part. So the output of correlation unit is of 22 bit long 

and according to the preceding unit the set of outputs are 

22h’039DB4, 22h’038C90, 22h’039505 and so on.  

The preamble of IEEE 802.11a standard has been designed 

to help detect the starting edge of the packet. This method, also 

called the Delay and Correlate Algorithm, takes advantage of the 

periodicity of the short training symbols at the start of the 

preamble. The simplest algorithm for finding the start edge of 

the incoming packet is to measure the received signal energy. 

When there is no packet being received, the received signal 

consists only of noise. When the packet starts, the received 

energy is increased by the signal component, and then the packet 

can be detected as a change in the received energy level. The 

packet was set to start at n = 400 and the window length is 22, 

threshold can be taken within 10 to 35, in order to satisfy the 

IEEE 802.11a requirements. Once the start of the packet is 

received, the cross-correlation of the periodic short training 

symbols causes received signal to jump to the maximum value. 

This jump gives quite a good estimate of the start of the packet.   

Peak finding unit is used for finding such of the frame. In this 

unit According to preamble structure of IEEE802.11a STS 

counter is set to 0 to 9. On the basis of 22 bit data stream and the 

received signal during the designated preamble pulse (the 1st 

and the last, 10th pulse). Once the (conjugate pair) signals are 
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acquired, the correlation takes place. The phase information of 

the two signals should yield zero: only the energy level of the 

correlation result is our concern. Next, the correlation of the 2nd 

preamble pulse and its counter part, conjugate of the 9th pulse is 

performed. As long as the correlation is below a pre-defined 

threshold, the iteration continues until the last pair of preamble 

pulses (5th and 6th) in the mid section of the short preamble 

time frame, completes its correlation. The iteration (recursive 

correlation) will terminate if any signal pair correlation energy 

level exceeds a predefined threshold. Only then, the receiver 

announces the detection of signal packet.  

Output block consist of a counter, which identifies the data. 

The value of counter is set according to the IEEE802.11a 

standards. If counter is between 0-63 the data is input data while 

for the value between 64-79 the input datas are the cyclic prefix 

of next signal. So at the output of output block according to the 

counter we get the recovered data. 

The block diagram for the final synchronizer is shown in Figure 

7 

Fig 7: Final synchronizer and algorithm 

 
Fig 8: Top module of timing synchronizer 

 
Fig 9 Internal Structure of Synchronizer 

Fig 5 design summary of synchronizer 
Logic utilization Used Available Utilization 

Number of slices 1140 6144 18% 

Flip-flops 1137 12288 9% 

Number of LUTs 2006 12288 16% 

Number of Bonded IOBs 44 240 18% 

Number of GCLKs 1 32 3% 

Total Hardware Requirements 

The hardware requirements for the combination of the 

packet detector, the frequency offset estimation circuitry, the 

Basic Auto-Correlator, and the quantized crosscorrelator with 

the detector are given in fig 9. Minimum period required for 

synchronizer is 5.885ns and Maximum Frequency is 

169.932MHz. Minimum input arrival time before clock is 

1.516ns and Maximum output required time after clock is 

3.856ns and the total memory usage is around 240 MB. 

 
Fig 10 Simulation waveform of synchronizer 

Conclusion 

After a careful analysis of competing algorithms, it is 

decided that the best choice for time synchronization to use the 

Basic Auto-Correlation estimator. It is also decided that the 

quantized cross correlator, in conjunction with the detector, 

would be used for fine time synchronization. 
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