
Rakhi Thakur et al./ Elixir Network Engg. 59 (2013) 15698-15703

15698

Introduction

 OFDM could be tracked to 1950’s but it had become very

popular at these days, allowing high speeds at wireless

communications [16]. While OFDM has become the core of

most 4G-communication systems it was essential to build

OFDM synchronizer on a suitable hard ware. The aim of our

paper is to implement this system to be suitable for all new

communication systems. FPGAs are flexible and reconfigurable

integrated circuits, whose functionality is programmed by the

designer rather than the device manufacturer. Unlike an

Application- Specific Integrated Circuit (ASIC), FPGAs can be

reprogrammed multiple times, even after deployment. The high

speed, parallel architecture provides complete control over the

degree of parallelism in the design, and arithmetic word lengths.

This flexibility is a key advantage of FPGAs over traditional

Digital Signal Processor (DSP) processors. In our

implementation, the emulation time has been made as short as

possible [17].

Synchronization Issues with OFDM

With any data communications system, a critical component

is the ability for the receiver to detect the transmission of a

packet. The effects of the Wireless channel can complicate this,

so it is important to have packet detection algorithms, which can

account for channel effects. The wireless channel also affects the

orthogonality of the sub carriers. If there is an offset between the

subcarrier frequencies at the transmitter and the subcarrier

frequencies at the receiver, the tones will no longer be

orthogonal, and this can cause significant degradation in system

performance. To maintain this orthogonality, the transmitter and

receiver must be precisely synchronized in terms of frequency.

This requires accurate frequency offset calculation at the

receiver [2].

Implementation of the Synchronizer

Packet Detection:

 The first challenge for the receiver is to detect the packet.

One possible algorithm to use is packet detection based on

power level. That is, the presence of a packet can be inferred

when the signal power exceeds a specific threshold. However,

packet detection cannot be done in this manner in wireless

systems because of the channel noise and multipath fading,

which cause the received power to vary. So another technique is

to use signal auto-correlation, taking advantage of the repetition

in the preamble, and correlating the received sequence samples

with a delayed copy of the sequence, with the delay being

equivalent to the length of one symbol. A moving average of

this correlation can be taken over a range of one symbol. If L is

the number of samples and rd is d
th

incoming sample then the

average correlation R(d) is given by :-







1

0

*)()(
L

m
Lmdmd rrdR

----------------------------------3.1

Where r*d represents the conjugate of rd and m is an integer.

For such Packet Detector received power P (d) is:
21

0

||)(





L

m

LmdrdP

--3.2

For a threshold (th) value, and ensuring correct functionality

during simulations as shown in fig.1 the ratio of square of

average correlation and square of received power M (d) should

be fall between 0 and 1.

2

2

))((

|)(|
)(

dP

dR
dM 

--3.3

Fig 1 shows the basic structure of packet detector in which

* block is used for calculating the correlation. Here a delay of 16

is provided for the incoming samples because in the case of the

STS symbols, L = 16 samples. The value threshold should be

chosen to minimize the incidence of false positive detection, and

also the incidence of undetected packets, which occur when the

receiver is unable to detect the training sequence. The value of

Tele:

E-mail addresses: rakhi082003@yahoo.co.in

 © 2013 Elixir All rights reserved

Timing and Frequency synchronization in OFDM
Rakhi Thakur and Kavita Khare

MANIT, Bhopal.

ABSTRACT

With the advent of OFDM for WLAN communications, as exemplified by IEEE 802.11a, it

has become imperative to have efficient and reliable synchronization algorithms for OFDM

WLAN receivers. The main challenges with synchronization deal with the delay spread and

frequency offset introduced by the wireless channel. In this paper, research is done into

OFDM WLAN synchronization algorithms, and a synchronizer implementation is presented.

This synchronizer performs packet detection; frequency offset estimation, and time

synchronization.

 © 2013 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 29 April 2013;

Received in revised form:

3 June 2013;

Accepted: 12 June 2013;

Keywords

Multiple-Input Multiple-Output,

Orthogonal Frequency Division

Multiplexing,

Frame Synchronization,

Symbol Timing Synchronization,

FPGA.

Elixir Network Engg. 59 (2013) 15698-15703

Network Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Rakhi Thakur et al./ Elixir Network Engg. 59 (2013) 15698-15703

15699

M (d) is then compared with this threshold, and a packet is said

to be detected if M (d) > th [3].

Figure 1: Packet Detector Block Diagram

In accordance with the analysis [3] the threshold should be

set at 0.5 × P (d). Because the division operation required in

Equation 3.3 can be avoided by choosing a metric threshold

level, which is a power of 2. For instance, choosing a threshold

value of 0.5 will allow the calculation using a bit shift operation

rather than a division operation. The advantage is hardware

savings, and the value of 0.5 is actually a very good threshold

choice. The output of the packet detection circuit includes a

control signal indicating when a packet has been detected, as

well as the auto-correlation and power values, which are also

used elsewhere in the synchronizer. The packet detection output

control signal should only become non-zero after the AGC has

completed [16].

Frequency Offset Calculation and Carrier Frequency

Synchronization

In OFDM link the sub carriers are perfectly orthogonal if

transmitter and receiver use exactly the same frequencies. Any

deviation in frequencies causes frequency offset which can

introduce inter channel interference (ICI) and inter symbol

interference (ISI). Frequency error sensitivity is a weakness of

OFDM systems, since small changes in the sub-carrier

frequency caused by distortions in either the channel or the

receiver can make the sub-carriers loose their orthogonality.

Once this occurs, the interference between adjacent sub-carriers

becomes significant and the received signal level is reduced [2].

Methodologies for estimating the carrier frequency offset rely on

the fact, if two identical samples are transmitted over the

channel, the phase difference between them at the receiver is

proportional to the frequency offset, and also proportional to the

separation between the two transmission times. Specifically, for

a frequency offset of ∆f the magnitude of the phase offset at any

time t is [5]:

ft  2 --3.4

This phase difference can be calculated by observing incoming

samples separated by one symbol length. For the STS, the phase

difference can be extracted from the autocorrelation value R(d)

in Equation 3.1. R(d) can be expressed as:








1

0

22 ||)(
L

m
md

fLj redR 

------------------------------------3.5

The relationship between the


 value in Equation 3.4 and the

term R (d) in Equation 3.5 is given by:

)(dR
---3.6

In this case, L = 16 samples, for a total time difference of 16Ts,

where Ts is the sample period, 50 ns in 802.11a. Thus, if the

phase difference value can be determined, an estimate of the

frequency offset can be calculated as:

sT

dR
f

162

)(






 ---3.7

The value R(d) will fall between π and − π in 802.11a, and thus

the range of possible frequency offset values is

kHzfkHZ 625625 

Because of the improved precision, performing the

calculation with a 64-sample autocorrelation is referred to as

fine frequency offset estimation, while the method using a 16-

sample auto-correlation is referred to as coarse frequency offset

estimation. Because of the limited range in the 64-sample case,

the frequency offset is best estimated in two passes, first using

the STS, and then using the LTS. The IEEE 802.11a standard

states that the maximum tolerance for the central frequency is

±20 parts per million (ppm), which corresponds to a maximum

possible frequency offset of 200 kHz, when the carrier

frequency is 5GHz.

Frequency recovery schemes for OFDM signals can be

divided into three categories:

1. Non-data aided algorithms that are based on the spectral

characteristics of the received signal.

2. Cyclic prefix based algorithms that use the structure of the

signal.

3. Data aided algorithms that are based on known information

embedded in the received signal

Non-Data Aided Frequency Synchronizers

The Non-data aided synchronizers can be classified as open

loop and closed loop. In an open loop synchronizer, a non-linear

element, such as a squaring circuit, is used to generate a

frequency component at a harmonic of the carrier frequency.

The signal is then filtered to isolate this harmonic and stepped

down to the desired carrier frequency. The advantage of these

systems is their simplicity and low cost of implementation.

However, because of the sensitivity of OFDM signals to

frequency offset, open loop synchronizers are generally not

practical for OFDM receivers [6].

Closed-loop synchronization uses comparative

measurements on the incoming signal and a locally generated

signal. Non-data aided algorithms do not need special

synchronization blocks, increasing the data throughput and

reducing the time needed to achieve synchronization by

eliminating the wait for synchronization. For these reasons,

these algorithms are well suited for continuous broadcast OFDM

signals. Packet-based OFDM signals are also not well suited to

this kind of synchronization, since the accuracy is not great

enough to ensure orthogonal during the entire packet

transmission time [18,19].

Cyclic Prefix Based Frequency Synchronization

Cyclic prefix algorithms are based on an analysis of the

sampled received signal before it is passed through the FFT for

demodulation. They make use of the redundancy introduced by

the inserted guard interval in the OFDM symbol. Since the guard

interval is a repetition of the transmitted OFDM symbol over

some fraction of the OFDM symbol period, these algorithms

simply compare the samples from the data portion of the symbol

and the corresponding samples from the guard interval portion

of the symbol. If there is a frequency offset of Δf in the receiver

frequency, the two values will be different by a factor of e
j2πΔfT

where T is the time difference between the two values. This

phase difference is proportional to the magnitude of the

Rakhi Thakur et al./ Elixir Network Engg. 59 (2013) 15698-15703

15700

frequency-offset error and can then be used as the error signal

that drives a voltage-controlled oscillator. The computational

complexities of these algorithms are less than the other two

categories, therefore providing faster synchronization with lower

hardware cost [7,8].

Data-Aided Frequency Synchronizers

Data-aided frequency synchronization provides the best

frequency tracking with the widest acquisition range, but at the

cost of requiring the use of synchronization blocks. This

increases the required overhead and reduces the data

throughput[13]. However, for packet-based transmission

systems, such as Standard 802.11a, they are required to obtain

synchronization quickly before the data information is passed to

the receiver. For Standard 802.11a systems, synchronization

must occur within the short and long training symbols, which

make up the first 16 μs of the packet. The basic algorithm

assumes a sequence of repeated training symbols. Similar to the

method used in the cyclic prefix algorithms, a comparison is

made of the phase difference between adjacent, repeated data

symbols. This phase difference is used to generate an error

signal that drives a voltage-controlled oscillator.

Coarse Time Synchronization

The function of coarse timing is to find the start of an

incoming data packet. In packet switched networks, each packet

has a preamble. This section covers each of the coarse time

synchronization possibilities .The two algorithms under

consideration are the “Basic Auto-Correlation Difference

method” and “Auto-Correlation Sum” method [9]

Basic Auto-Correlation Difference Method

This method relies on calculating R (d), and then calculating

another auto-correlation sequence, this time with a sample

separation of 2L

 





1

2

*

2)(
L

om
Lmdmd rrdR

--------------------------------------3.8

The difference between these two sequences is then calculated

as:

)()()(2 dRdRdRdiff 
--------------------------------------3.9

In this method, the 16-sample R (d) calculation is reused, and a

32-sample auto-correlator is introduced. The outputs from these

two correlators are subtracted, and the output of this subtractor is

fed to a peak detector. The location of this peak is taken to be

the timing offset point. This difference sequence typically has a

triangular peak during the LTS guard interval, and the index,

ddiffmax of this peak can be used to calculate the timing offset.

This algorithm promises improved performance, and has

relatively low hardware complexity.

Fig 2: Block Diagram for the Auto-Correlation Difference

Algorithm

Auto-Correlation Sum Method

This method calculates the sum of the incoming sequence

delayed by L, and the same sequence delayed by 2L, and this

sum is correlated with the undelayed sequence. In this method,

the calculation of R (d) is reused, with the addition of a delay

element, which delays the incoming samples by 32 clock cycles

 



 

1

0
23)()(

L

m
LmdLmdmd rrrdR

----------------3.10

Once again, a detector can be designed to determine the index,

dsumdrop, at which R3 (d) drops off to half of its peak value.

Fine Time Synchronization

Timing synchronization has two aspects. The first is

synchronization with the OFDM symbols, and the second is the

synchronization with the data symbols within each OFDM

symbol. The synchronization of the OFDM symbols requires

more than just matching the symbol timing of the transmitter

with the receiver. After calculating a coarse timing offset value

using the STS, fine time synchronization can be calculated using

the LTS. This involves adding more hardware to the circuit to

implement a cross-correlation calculator. It also involves

selecting an appropriate detection metric[10,11,12].

Cross-Correlation Calculation

Instead of correlating the incoming sequence with delayed

signal samples, it is possible to correlate the incoming sequence

with the original preamble sample values. This approach is

referred to as cross-correlation, and the calculation is given as:







1

0

*)(
L

m

mdmrcd

--4.1

The c*m terms are the complex conjugates of the preamble

sample values, L is symbol length, rd is the received sequence

and m is an integer.

Fig 3: Cross Correlator

In the case where the LTS is used for crosscorrelation, L = 64,

and the c*m terms are taken from the original LTS. The

crosscorrelation algorithm uses the LTS, and several detectors,

which can be used, for determining the timing point is

compared. The first of these detectors simply finds the

maximum value of
)(d

.

|))((|argmax dxamd
d

xc 
----------------------------------4.2

The second detector adds the absolute values of N successive

cross-correlation results, and attempts to maximize the sum:









 





1

0
max |)(|arg

N

p
d

xc pdxamd

-----------------------4.3

Finally, a third detector looks to find the first instance at which

)(d
 exceeds a chosen threshold, th, where th is a percentage

of the observed maximum value. The circuitry required for this

cross-correlator is composed of multipliers and adders.

Rakhi Thakur et al./ Elixir Network Engg. 59 (2013) 15698-15703

15701

Quantized Cross-Correlator

In the quantized version of the cross-correlator the

implementation of the multiply accumulate circuitry is modified

to reduce hardware complexity. Implementing this quantized

cross-correlation involved replacing the multipliers in the

original cross-correlation circuit with bit-shifters. It also

involved taking the constant values that are used in the cross-

correlator and replacing them with quantized values, all of

which are powers of 2. Once again, in the case of perfect time

synchronization, the sample value at which the cross-correlation

would be maximized would be sample 85.

Fig 5: Diagram of the Multiply-Accumulate Circuit Used in

the Quantized Version of the Cross-Correlator

Schmidl and Cox Method

In Schmidl and Cox method [5], timing synchronization is

achieved by using a training sequence whose first half is equal to

its second half in the time domain. The basic idea behind the

technique is that the symbol timing errors will have little effect

on the signal itself as long as the timing estimate is in the CP.

The two halves of the training sequence are made identical by

transmitting a PN sequence (Barker code generator) on the even

frequencies while zeros are sent on the odd frequencies [1]. The

algorithm defined in [3] has three steps, based on the equation

3.1,3.2,3.3.:In equation, the algorithm has a window length of N,

which is also the number of sub-carriers. The starting point is

the value of n, which maximizesM (d). In fact, from the

definition, P (d) expresses the cross-correlation between the two

halves of the window; in above Equation, R(d) represents the

auto-correlation of the second half. When the starting point of

the window reaches the start of the training symbol with the CP,

the values of P (d) and R (d) should be equal giving the

maximum value for the timing metric. There are two methods to

determine the symbol timing. The first one is just to find the

maximum of the metric. The second one is to find the maximum,

and the points to the left and right that is 90% of the maximum

and then compute the average of these two 90% points to find

the symbol-timing estimate or symbol/frame timing is found by

searching for a symbol in which the first half is identical to the

second half in the time domain. Then the carrier frequency offset

is partially corrected, and a correlation with a second symbol is

performed to find the carrier frequency offset [5].

Fig 6 Basic correlation process

Final Implementation

The final implementation of the synchronizer includes the

packet detection, frequency offset estimator and timing offset

estimator. On the basis of performance capability and low

hardware complexity, the Basic Auto-Correlator is preferred for

coarse time synchronization and due to low incremental cost the

quantized fine time estimator is preferred. The additional size

required by the quantized estimator is not a big issue considering

the large size of the FPGA being used[17].

Top module of synchronizer consists of quantization, Match

filtering and Output block.

Quantization block is used to reduce hardware complexity,

which involves replacing the multipliers in original cross

correlation circuit with bit shift registers. Basically quantization

is the process of mapping a large set of input values to a smaller

set, which yields two-power spectrum without loss of

information. Let us taking the 8-bit input values 8h’50 and 8h’80

real and imaginary respectively. Then the quantization block is

generating sets of values 16h’0000, 16h’8000, 16h’C000, and

16h’E000 and so on real as well as imaginary values.

The matched filter is the second block in our coding. As by

definition in communication system, which sends binary

messages from the transmitter to the receiver across a noisy

channel, a matched filter can be used to detect the transmitted

pulses in the noisy received signal. A matched filter is obtained

by correlating a known signal, or template, with an unknown

signal to detect the presence of the template in the unknown

signal. This is equivalent to convolving the unknown signal with

a conjugated time-reversed version of the template. This section

consists correlation unit, magnitude simplified unit and peak

finding unit. Correlation unit simplifies the complex

multiplication operation to addition operation. We have

designed a counter which is set at the value of 16, because the

length of the STS is 16 and it is used for enable of correlation is

set high, With our input values this unit generates the set of real

and imaginary values which are 21 bit long like 21h’025CBC,

21h’0256DA, 21h’02569A and so on real values and

21h’1EBF08, 21h’1EB926, 21h’1ECADA and so on imaginary

values.

Magnitude simplified unit replaces the magnitude of

complex number with the absolute value i.e. sum of real part and

imaginary part. So the output of correlation unit is of 22 bit long

and according to the preceding unit the set of outputs are

22h’039DB4, 22h’038C90, 22h’039505 and so on.

The preamble of IEEE 802.11a standard has been designed

to help detect the starting edge of the packet. This method, also

called the Delay and Correlate Algorithm, takes advantage of the

periodicity of the short training symbols at the start of the

preamble. The simplest algorithm for finding the start edge of

the incoming packet is to measure the received signal energy.

When there is no packet being received, the received signal

consists only of noise. When the packet starts, the received

energy is increased by the signal component, and then the packet

can be detected as a change in the received energy level. The

packet was set to start at n = 400 and the window length is 22,

threshold can be taken within 10 to 35, in order to satisfy the

IEEE 802.11a requirements. Once the start of the packet is

received, the cross-correlation of the periodic short training

symbols causes received signal to jump to the maximum value.

This jump gives quite a good estimate of the start of the packet.

Peak finding unit is used for finding such of the frame. In this

unit According to preamble structure of IEEE802.11a STS

counter is set to 0 to 9. On the basis of 22 bit data stream and the

received signal during the designated preamble pulse (the 1st

and the last, 10th pulse). Once the (conjugate pair) signals are

Rakhi Thakur et al./ Elixir Network Engg. 59 (2013) 15698-15703

15702

acquired, the correlation takes place. The phase information of

the two signals should yield zero: only the energy level of the

correlation result is our concern. Next, the correlation of the 2nd

preamble pulse and its counter part, conjugate of the 9th pulse is

performed. As long as the correlation is below a pre-defined

threshold, the iteration continues until the last pair of preamble

pulses (5th and 6th) in the mid section of the short preamble

time frame, completes its correlation. The iteration (recursive

correlation) will terminate if any signal pair correlation energy

level exceeds a predefined threshold. Only then, the receiver

announces the detection of signal packet.

Output block consist of a counter, which identifies the data.

The value of counter is set according to the IEEE802.11a

standards. If counter is between 0-63 the data is input data while

for the value between 64-79 the input datas are the cyclic prefix

of next signal. So at the output of output block according to the

counter we get the recovered data.

The block diagram for the final synchronizer is shown in Figure

7

Fig 7: Final synchronizer and algorithm

Fig 8: Top module of timing synchronizer

Fig 9 Internal Structure of Synchronizer

Fig 5 design summary of synchronizer
Logic utilization Used Available Utilization

Number of slices 1140 6144 18%

Flip-flops 1137 12288 9%

Number of LUTs 2006 12288 16%

Number of Bonded IOBs 44 240 18%

Number of GCLKs 1 32 3%

Total Hardware Requirements

The hardware requirements for the combination of the

packet detector, the frequency offset estimation circuitry, the

Basic Auto-Correlator, and the quantized crosscorrelator with

the detector are given in fig 9. Minimum period required for

synchronizer is 5.885ns and Maximum Frequency is

169.932MHz. Minimum input arrival time before clock is

1.516ns and Maximum output required time after clock is

3.856ns and the total memory usage is around 240 MB.

Fig 10 Simulation waveform of synchronizer

Conclusion

After a careful analysis of competing algorithms, it is

decided that the best choice for time synchronization to use the

Basic Auto-Correlation estimator. It is also decided that the

quantized cross correlator, in conjunction with the detector,

would be used for fine time synchronization.

References

[1] Rakhi Thakur and kavita khare, “Synchronization and

Preamble Concept for Frame Detection in OFDM” 3rd

International Conference on Computer Modeling and Simulation

(ICCMS 2011) IEEE 978-1-4244-9243-5/11/$26.00 C 2011 V1-

46.

[2] Rakhi Thakur and kavita khare, “Synchronization

Techniques in OFDM Systems” IRACST International Journal

of Computer Networks and Wireless Communications

(IJCNWC), ISSN: 2250-3501 Vol.2, No6, December 2012 pp

693-696.

[3] Rakhi Thakur,Kavita Khare et al. “Frame Detection For

Synchronization In OFDM” International Journal of Engineering

Science and Technology (IJEST) Vol. 3 No. 7 July 2011pp

5955-5957.

[4] Rakhi Thakur,Kavita Khare et al. “Data randomization for

synchronization in OFDM system” International Conference on

Computing, Communication and Control (ICAC3) January2011

pp28-29.

[5] T.M.Schmidl,D.C.Cox, “Robust Frequency and Timing

Synchronization for OFDM” IEEE Transuctions. On

communications, dec1997 vol 45, no.12 pp 1613-1621.

[6] H. Minn, M. Zeng and V.K. Bharagava, ” On timing Offset

Estimation for OFDM Systems”, IEEE Communication Letters,

July2000, vol 4 no.7, pp. 242-244.

[7] P. H. Moose, “A technique for orthogonal frequency

division multiplexing frequency offset correction,” IEEE

Transactions on Communications, October 1994 vol. 42.

[8] Byungjoon Park, P., Hyunsoo, C., Changeon, K., and

Daesik, H “A novel timing estimation method for OFDM

systems” IEEE Global Telecommunications Conference, 2002

vol. 1pp. 269-272.

[9] Seung Duk choi jung Min Choi and Jae Hong Lee “An

initial timing offset estimation method for OFDM Systems in

rayleigh fading channel”2006 IEEE.

[10] Yasamin Mostofi, Donald C. Cox “Analysis of the Effect of

Timing Synchronization Errors on Pilotaided OFDM Systems”

IEEE Communications Society 2003.

[11] Yasamin Mostofi and Donald C. Cox “Timing

Synchronization in High Mobility OFDM system IEEE

communication society 2004 pp 2402-2406”.

Rakhi Thakur et al./ Elixir Network Engg. 59 (2013) 15698-15703

15703

[12] A. I. Bo, G. E. Jian-hua, and Wang Yong, “Symbol

Synchronization Technique in COFDM Systems” IEEE

Transactions On Broadcasting, Vol. 50, NO. 1, March 2004.

[13] Ch. Nanda Kishore1 and V. Umapathi Reddy“A Frame

Synchronization and Frequency Offset Estimation Algorithm for

OFDM System and its Analysis”Hindawi Publishing

Corporation EURASIP Journal on Wireless Communications

and Networking Volume 2006, Article ID 57018, Pages 1–16

DOI 10.1155/WCN/2006/57018.

[14] Ang Ken Li,YewKuan Min ,varun Jeoti “Astudy of frame

finding timing synchronization for Wimax applications,

international conference on intelligent and advanced systems

2007,IEEE

[15] Yasamin Mostofi and Donald C. Cox “A Robust Timing

Synchronization Design in OFDM Systems–Part I: Low-

Mobility Cases” IEEE Transactions On Wireless

Communications, Vol. 6, No. 11, November 2007.

[16] David Perels, Christoph studer, and W.fichtner

“Implementation of low complexity Frame-Start detection

algorithm for MIMO system,2007 IEEE.

[17] A. Omri and R. Bouallegue “New Transmission Scheme

For MIMO-OFDM System” International Journal of Next-

Generation Networks (IJNGN) Vol.3, No.1, March 2011 pp 11-

19.

[18] Julien Lamoureux and Wayne Luk, “An Overview of Low-

Power Techniques for Field-Programmable Gate Arrays”,

NASA/ESA Conference on Adaptive Hardware and Systems

IEEE 2008 pp 338- 345

[19] Ahmad R. S. Bahai and Burton R. Saltzberg the technical

handbook “Multi Carrier Digital Communication theory and

application of OFDM.

[20] Juha Heiskala and john Terry A theoretical and practical

Handbook “OFDM Wireless LANs”.

 Rakhi Thakur completed her

graduation in Electronics and Tele-communication in 2002, and

post graduation in Microwave Engineering in 2005 from

R.G.P.V. University. She is a research scholar in MANIT,

Bhopal. Her research interests are VLSI and Embedded System

for Mixed applications. Earlier she was HOD of EC department

in SRIST, Jabalpur but since April 2010 she is in Govt.

Polytechnic College Jabalpur.

