15538

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 59 (2013) 15538-15542

On Fuzzy Spaces K. Balasubramaniyan¹, S. Sriram¹ and O. Ravi² ¹Department of Engineering Mathematics, Annamalai University, Chidambaram, Tamil Nadu, India. ²Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

ARTICLE INFO

Article history: Received: 30 April 2013; Received in revised form: 3 June 2013; Accepted: 6 June 2013;

Keywords

Fuzzy γ -open set, Fuzzy closed set, Fuzzy AB-set, Fuzzy t-set, Fuzzy extremally disconnected space, Fuzzy submaximal space.

1. Introduction

Extremally disconnected spaces play an important role in set-theoretical topology, in the study of Stone-Ĉech compactification and the Stone Space of any complete Boolean algebra, the theory of Boolean algebra, axiomatic set theory, functional analysis, C*-algebra and the study of Seq(ξ) space etc.

The concept of submaximality of general topological spaces was introduced by Hewitt [8] in 1943. He discovered a general way of constructing maximal topologies. In [1], Atlas et.al. proved that there can be no dense maximal subspace in a product of first countable spaces, while under Booth's lemma there exists a dense submaximal subspace in $[0, 1]^{c}$. It is established that under the axiom of constructability any submaximal Hausdorff space is σ -discrete. Any homogeneous submaximal space is strongly σ -discrete if there are no measurable cardinals. The first systematic study of submaximal spaces was undertaken in the paper by Arhangel'skiî and Collins [2]. They gave various necessary and sufficient conditions for a space to be submaximal and showed that every submaximal space is σ -discrete [2].

The notion of fuzzy extremally disconnected spaces was studied by Ghosh [6]. In this paper, properties of fuzzy extremally disconnected spaces and fuzzy submaximal spaces are discussed.

2. Preliminaries

In the present paper, X and Y are always fuzzy topological spaces. The class of fuzzy sets on a universal set X will be denoted by I^X and fuzzy sets on X will be denoted by Greek letters as μ , ρ , η , etc. A family τ of fuzzy sets in X is called a fuzzy topology for X if

(1) 0, $1 \in \tau$

(2) $\mu \wedge \rho \in \tau$, whenever $\mu, \rho \in \tau$ and

(3) $\lor \{\mu_{\alpha} : \alpha \in I\} \in \tau$, whenever each $\mu_{\alpha} \in \tau$ ($\alpha \in I$)

Moreover, the pair (X, τ) is called a fuzzy topological space. Every member of τ

A	BS	Т	RA	C	Т	
τ	.1.	•				

In this paper, properties of fuzzy extremally disconnected spaces and fuzzy submaximal spaces are discussed.

© 2013 Elixir All rights reserved.

is called a fuzzy open set. The complement of a fuzzy open set is fuzzy closed.

Let μ be a fuzzy set in X. We denote the complement, the interior and the closure of a fuzzy set μ by μ^1 or $1 - \mu$, int(μ) and $cl(\mu)$, respectively. A fuzzy set in X is called a fuzzy point if and only if it takes the value 0 for all y $_{\in}$ X except one, say, x $_{\in}$ X. If its value at x is α (0 < $\alpha \le 1$) we denote this fuzzy point by x_{α} , where the point x is called its support [15]. For any fuzzy point x_{\in} and any fuzzy set μ , we write $x_{\in} \in \mu$ if and only if $\in \leq$ $\mu(\mathbf{x})$.

Definition 2.1. A fuzzy set μ in a space X is called

(1) *fuzzy* β *-open* [21] *if* $\mu \leq cl(int(cl(\mu)))$;

(2) fuzzy semi-open [3] if $\mu \leq cl(int(\mu))$;

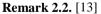
(3) fuzzy α -open [4] if $\mu \leq int(cl(int(\mu)));$

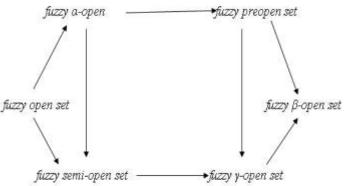
(4) fuzzy preopen [4] if $\mu \leq int(cl(\mu))$;

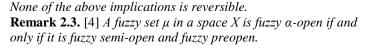
(5) *fuzzy* γ *-open* [7] *if* $\mu \leq int(cl(\mu)) \lor cl(int(\mu));$

(6) fuzzy regular open [3] if $\mu = int(cl(\mu))$.

The complements of the above mentioned open sets are called their respective closed sets.







Definition 2.4. [6] A space X is said to be fuzzy extremally disconnected if the closure of every fuzzy open set of X is fuzzy open in X.

Definition 2.5. [16] A subset ρ in a space X is said to be a fuzzy locally closed (briefly, a fuzzy LC) set if $\rho = \alpha \land \beta$, where α is a fuzzy open set and β is a fuzzy closed set.

Remark 2.6. [14] *Every fuzzy regular open set is fuzzy open but not conversely.*

Theorem 2.7. [3]

(1) The closure of a fuzzy open set is a fuzzy regular closed set.(2) The interior of a fuzzy closed set is fuzzy regular open set.

Lemma 2.8. [3] For a fuzzy set λ of a fuzzy topological space (X, τ) , we have

(1) $1 - int(\lambda) = cl(1 - \lambda)$,

(2) $1 - cl(\lambda) = int(1 - \lambda)$.

Lemma 2.9. [9] Let μ be a fuzzy set in a fuzzy topological space *X*. Then

(1) $int(cl(int(cl(\mu)))) = int(cl(\mu))$ and $cl(int(cl(int(\mu)))) = cl(int(\mu))$.

(2) $[int(cl(\mu))]^1 = cl(int(\mu^1))$ and $[cl(int(\mu))]^1 = int(cl(\mu^1))$.

3. Some fuzzy spaces

In this section, we obtain some new results which are related to fuzzy extremally disconnected spaces and fuzzy submaximal spaces.

Theorem 3.1. [19] For a space X, the following properties are equivalent.

(1) X is fuzzy extremally disconnected.

(2) $int(\mu)$ is fuzzy closed for every fuzzy closed subset μ of X.

(3) $cl(int(\mu)) \leq int(cl(\mu))$ for every subset μ of X.

(4) Every fuzzy semi-open set is fuzzy preopen.

(5) The closure of every fuzzy β -open subset of X is fuzzy open.

(6) Every fuzzy β -open set is fuzzy preopen.

(7) For every subset μ of X, μ is fuzzy α -open if and only if it is fuzzy semi-open.

Theorem 3.2. [19] For a subset μ of a space X, the following are equivalent.

(1) μ is a fuzzy LC set.

(2) $\mu = \lambda \wedge cl(\mu)$ for some fuzzy open set λ .

Theorem 3.3. [19] Let X be a fuzzy extremally disconnected space and $\mu \leq X$. Then

the following properties are equivalent.

(1) μ is a fuzzy open set.

(2) μ is fuzzy α -open and a fuzzy LC set.

(3) μ is fuzzy preopen and a fuzzy LC set.

(4) μ is fuzzy semi-open and a fuzzy LC set.

(5) μ is fuzzy γ -open and a fuzzy LC set.

Definition 3.4. A subset μ of a space X is called fuzzy dense if $cl(\mu)=X$.

Definition 3.5. A subset μ of a space X is called fuzzy codense if μ^1 is fuzzy dense.

Definition 3.6. A fuzzy space X is called submaximal if every fuzzy dense subset of X is fuzzy open.

Theorem 3.7. For a space (X, τ) , the following are equivalent. (1) *X* is submaximal.

(2) Every fuzzy codense subset μ of X is fuzzy closed.

Proof. (1) \Rightarrow (2) Let μ be a fuzzy codense subset of X. Since μ^1 is fuzzy dense, by (1), μ^1 is fuzzy open. Thus, μ is fuzzy closed.

(2) \Rightarrow (1) Let μ be a fuzzy dense subset of X. Since μ^1 is fuzzy codense, by (2), μ^1 is fuzzy closed. Thus, μ is fuzzy open. Hence, X is submaximal.

Theorem 3.8. Let (X, τ) be a fuzzy topological space and $\mu \leq X$. Then the following are equivalent.

(1) μ is fuzzy LC set.

(2) $\mu = \alpha \wedge cl(\mu)$ for some fuzzy open set α .

(3) $cl(\mu) - \mu$ is fuzzy closed.

(4) $(cl(\mu))^1 \lor \mu$ is fuzzy open.

(5) $\mu \leq int[\mu \lor (cl(\mu))^1].$

Proof. (1) \Rightarrow (2) If μ is fuzzy LC set, then there exist a fuzzy open set α and a fuzzy closed set β such that $\mu = \alpha \land \beta$. Clearly, $\mu \le \alpha \land cl(\mu)$. Since β is fuzzy closed, $cl(\mu) \le cl(\beta) = \beta$ and so $\alpha \land cl(\mu) \le \alpha \land \beta = \mu$. Therefore $\mu = \alpha \land cl(\mu)$.

(2) \Rightarrow (3) Now $\operatorname{cl}(\mu) - \mu = \operatorname{cl}(\mu) \land (\mu^{1}) = \operatorname{cl}(\mu) \land [\alpha \land \operatorname{cl}(\mu)]^{1} = \operatorname{cl}(\mu) \land [\alpha^{1} \lor (\operatorname{cl}(\mu)^{1})] = \operatorname{cl}(\mu) \land \alpha^{1}$. Therefore $\operatorname{cl}(\mu) - \mu$ is fuzzy closed.

(3) \Rightarrow (4) Since $[cl(\mu) - \mu]^1 = [cl(\mu) \wedge \mu^1]^1 = (cl(\mu))^1 \vee \mu$, $(cl(\mu))^1 \vee \mu$ is fuzzy open.

(4) \Rightarrow (5) Since $\operatorname{int}[(\operatorname{cl}(\mu))^1 \lor \mu] = [\operatorname{cl}(\mu)]^1 \lor \mu, \mu \le \operatorname{int}[(\operatorname{cl}(\mu))^1 \lor \mu].$

 $(5) \Rightarrow (1)(cl(\mu))^1 = int((cl(\mu))^1) \le int[\mu_{\vee}(cl(\mu))^1]$ which implies that $\mu_{\vee} (cl(\mu))^1 \le int[\mu_{\vee} (cl(\mu))^1]$ and so $\mu_{\vee} ((cl(\mu))^1)$ is fuzzy open. Since $\mu = (\mu_{\vee} (cl(\mu))^1) \land cl(\mu), \mu$ is fuzzy LC set.

Theorem 3.9. For a space (X, τ) , the following properties are equivalent.

(1) X is fuzzy extremally disconnected.

(2) Every fuzzy regular open subset of X is fuzzy closed in X.

(3) Every fuzzy regular closed subset of X is fuzzy open in X.

Proof: (1) \Rightarrow (2) Let X be a fuzzy extremally disconnected. Let μ be a fuzzy regular open subset of X. Then $\mu = int(cl(\mu))$. Since μ is fuzzy open set, $cl(\mu)$ is fuzzy open. Thus, $\mu=int(cl(\mu))=cl(\mu)$ and hence μ is fuzzy closed.

 $(2) \Rightarrow (1)$ Suppose that every fuzzy regular open subset of X is fuzzy closed in X. Let $\mu \leq X$ be a fuzzy open set. Since int(cl(μ)) is fuzzy regular open, it is fuzzy closed. Therefore cl(int(cl(μ)))=int(cl(μ)) and then cl(int(cl(μ)))=int(cl(μ)) for μ is fuzzy open. This implies cl(int(μ)) = int(cl(μ)) and then cl(μ) = int(cl(μ)). Thus cl(μ) is fuzzy open and hence X is fuzzy extremally disconnected.

(2) \Leftrightarrow (3) Proof is similar to (1) \Leftrightarrow (2).

Theorem 3.10. *The following are equivalent for a space* (X, τ) *,*

(1) X is fuzzy extremally disconnected.

(2) The closure of every fuzzy semi-open subset of X is fuzzy open.

(3) The closure of every fuzzy preopen subset of X is fuzzy open.

(4) The closure of every fuzzy regular open subset of X is fuzzy open.

Proof: (1) \Rightarrow (2) and (1) \Rightarrow (3) Let μ be a fuzzy semi-open (fuzzy preopen) set. Then μ is fuzzy β -open and by Theorem 3.1, $cl(\mu)$ is fuzzy open in X.

(2) \Rightarrow (4) and (3) \Rightarrow (4) Let μ be any fuzzy regular open subset of X. Then μ is fuzzy semi-open and fuzzy preopen and hence by (2) and (3) respectively cl(μ) is fuzzy open in X.

(4) \Rightarrow (1) Suppose that the closure of every regular open subset of X is fuzzy open.

Let $\mu \leq X$ be a fuzzy open set. This implies that $int(cl(\mu))$ is a fuzzy regular open set. Then $cl(int(cl(\mu)))$ is fuzzy open. Therefore $cl(int(cl(\mu))) = int(cl(int(cl(\mu))))$.

From this we have $cl(int(cl(int(\mu)))) = int(cl(int(cl(\mu))))$ since μ is fuzzy open. Thus $cl(int(\mu)) = int(cl(\mu))$ which gives $cl(\mu) = int(cl(\mu))$. Thus, $cl(\mu)$ is fuzzy open and hence X is fuzzy extremally disconnected.

Definition 3.11. A subset μ of a space (X, τ) is called (1) fuzzy t-set [17] if $int(\mu)=int(cl(\mu))$.

(2) fuzzy semi-regular if μ is a fuzzy t-set and fuzzy semi-open. (3) a fuzzy AB-set if $\mu = \alpha \land \beta$ where $\alpha \in \tau$ and β is fuzzy semiregular.

Definition 3.12. A subset μ of a space (X, τ) is said to be (1) fuzzy α^* -set [18] if $int(\mu)=int(cl(int(\mu)))$.

(2) fuzzy A-set [10] if $\mu = \alpha_{\Lambda}\beta$ where α is fuzzy open and β is a fuzzy regular closed set.

(3) fuzzy B-set [18] if $\mu = \alpha \beta$ where α is fuzzy open and β is a fuzzy t-set.

(4) fuzzy C-set [18] if $\mu = \alpha \beta$ where α is fuzzy open and β is a fuzzy α^* -set.

Proposition 3.13. Let (X, τ) be a fuzzy topological space and $\mu \le X$. Then every fuzzy t-set is fuzzy α^* -set.

Proof: Let μ be a fuzzy t-set. Then $int(\mu)=int(cl(\mu))$ and $int(cl(int(\mu))) = int(cl(int(cl(\mu)))) = int(cl(\mu))) = int(cl(\mu))$. Therefore μ is a fuzzy α^* -set.

Proposition 3.14. For a fuzzy subset α in a fuzzy topological spaces (X, τ) the following results are true.

(1) If α is a fuzzy A-set, then α is fuzzy LC set.

(2) If α is a fuzzy LC set, then α is fuzzy B-set.

(3) If α is a fuzzy B-set, then α is fuzzy C-set.

Proof: (1) It follows from the fact that every fuzzy regular closed set is fuzzy closed.

(2) Since α is a fuzzy LC set, let $\alpha = \lambda \land \beta$ where λ is fuzzy open and β is fuzzy closed. Thus β is a fuzzy t-set and hence α is a fuzzy B-set. Then we have $\beta = cl(\beta)$ and hence $int(\beta)=int(cl(\beta))$.

(3) It follows from the fact that every fuzzy t-set is fuzzy α^* -set. **Theorem 3.15.** For a space (X, τ), the following are equivalent.

(1) X is fuzzy submaximal.

(2) $cl(\mu) - \mu$ is fuzzy closed for every subset μ of X.

(3) Every subset of X is fuzzy LC set.

(4) Every subset of X is a fuzzy B-set.

(5) Every fuzzy dense subset of X is a fuzzy B-set.

Proof: (1) \Rightarrow (2) Suppose X is fuzzy submaximal. Let μ be a subset of X. Then

 $cl(cl(\mu) - \mu)^{1} = cl(cl(\mu) \wedge \mu^{1})^{1} = cl(\mu \vee (cl(\mu))^{1}) = X$ and so $(cl(\mu) - \mu)^{1}$ is fuzzy dense. By hypothesis, $(cl(\mu) - \mu)^{1}$ is fuzzy open and so $cl(\mu) - \mu$ is fuzzy closed.

(2) and (3) are equivalent by Theorem 3.8.

(3) \Rightarrow (4) It follows from the fact that every fuzzy LC set is a fuzzy B-set by Proposition 3.14.

 $(4) \Rightarrow (5)$ Obvious.

(5) \Rightarrow (1) Let μ be a fuzzy dense subset of X. By (5), μ is a fuzzy B-set and so $\mu = \alpha \land \beta$ where α is a fuzzy open and $int(\beta) = int(cl(\beta))$. Since $\mu \leq \beta$, $cl(\mu) \leq cl(\beta)$

and so X= cl(β). Therefore X=int(cl(β))=int(β) which implies that β =X. Hence $\mu = \alpha \land \beta = \alpha \land X = \alpha$ and so μ is fuzzy open.

Theorem 3.16. For a space (X, τ) , the following are equivalent.

(1) X is fuzzy submaximal.

(2) Every subset of X is a fuzzy B-set.

(3) Every fuzzy β -open set is a fuzzy B-set.

(4) Every fuzzy dense subset of X is a fuzzy B-set.

Proof:. (1) \Rightarrow (2) It follows from Theorem 3.15.

 $(2) \Rightarrow (3)$ Obvious.

(3) \Rightarrow (4) It follows from the fact that every fuzzy dense subset of X is fuzzy β -open.

(4) \Rightarrow (1) It follows from Theorem 3.15.

Theorem 3.17. For a space (X, τ) , the following properties are equivalent.

(1) X is fuzzy submaximal.

(2) Every subset of X is fuzzy LC set.

(3) Every subset of X is a union of a fuzzy open subset and a fuzzy closed subset of X.

(4) Every fuzzy dense subset of X is an intersection of a fuzzy closed subset and a fuzzy open subset of X.

Proof:. (1) \Rightarrow (2) It follows from Theorem 3.15.

(2) \Leftrightarrow (3) Let $\mu \leq X$. By (2), we have $\mu^1 = \alpha \wedge \beta$ where α is a fuzzy open and β is a fuzzy closed in X. This implies that $\mu = \alpha^1 \vee \beta^1$ where α^1 is fuzzy closed and β^1 is fuzzy open in X. The converse is similar.

 $(2) \Rightarrow (4)$ Obvious.

(4) \Rightarrow (1) Let $\mu \leq X$ be a fuzzy dense set. Then $\mu = \alpha \land \beta$ where α is fuzzy open and β is fuzzy closed. Since $\mu \leq \beta$ and μ is fuzzy dense, β is fuzzy dense set. Then $int(\beta)=int(cl(\beta))=int(X)=X$. Hence $\beta=X$ and $\mu=\alpha$ is fuzzy open. Thus, X is fuzzy submaximal.

Definition 3.18. A space (X, τ) is called fuzzy normal [20] if for each pair of fuzzy closed sets μ and λ in X with $\mu \overline{q} \lambda$, there exist

fuzzy open sets ρ and η in X such that $\mu \leq \rho$ and $\lambda \leq \eta$, with $\rho \overline{q} \eta$.

Remark 3.19. In a fuzzy space (X, τ) , fuzzy normality and fuzzy extermally disconnectedness are independent.

Example 3.20. Let X be any nonempty set. Define C_a : $X \rightarrow [0,1]$ such that $C_a(x)=a \forall x \in X$ and $a \in [0,1]$. Then (X, τ) is fuzzy topological space with $\tau = \{C_0, C_{4/10}, C_1\}$. (X, τ) is fuzzy normal but not fuzzy extremally disconnected.

Since the only fuzzy closed subset in X, other than C_0 and C_1 is $C_{6/10}$, there is no pair of fuzzy closed, non quasi coincident sets. Hence (X, τ) is fuzzy normal. But the closure of the fuzzy open set $C_{4/10}$ is $C_{6/10}$ which is not fuzzy open in (X, τ) . Thus (X, τ) is not fuzzy extemally disconnected.

Example 3.21. Let $C_{6/10}$ and $C_{7/10}$ be as defined in Example 3.20. Then (X, τ) is a fuzzy topological space with $\tau = \{C_0, C_{6/10}, C_{7/10} C_1\}$ and (X, τ) is fuzzy extremally disconnected but not fuzzy normal.

The fuzzy open sets in (X, τ) other than C_0 and C_1 are $C_{6/10}$ and $C_{7/10}$. Also $cl(C_{6/10}) = C_1 = cl(C_{7/10})$ which is fuzzy open. Hence (X, τ) is fuzzy extremally disconnected.

But $C_{4/10}$ and $C_{3/10}$ are fuzzy closed in X with $C_{4/10} \overline{q} C_{3/10}$ and there are no fuzzy open sets U and W in X such that $C_{4/10} \leq U$ and $C_{3/10} \leq W$ with $C_{4/10} \overline{q} C_{3/10}$. Hence (X, τ) is not fuzzy normal.

Proposition 3.22. In a space (X, τ) , the following properties hold:

(1) Every fuzzy open set is a fuzzy AB-set.

(2) Every fuzzy semi-regular set is a fuzzy AB-set.

(3) Every fuzzy semi-regular set is a fuzzy t-set.

(4) Every fuzzy AB-set is a fuzzy B-set.

Proposition 3.23. For a subset μ of a space (X, τ) , the following properties are equivalent:

(1) μ is a fuzzy open set.

(2) μ is a fuzzy α -open set and a fuzzy AB-set.

(3) μ is a fuzzy preopen set and a fuzzy AB-set.

Proof: (1) \Rightarrow (2), (2) \Rightarrow (3) Obvious.

(3) \Rightarrow (1) Since μ is a fuzzy preopen set, $\mu \le int(cl(\mu))$. Since μ is a fuzzy AB-set,

 $\mu = \alpha \land \beta$ where $\alpha \in \tau$ and β is fuzzy semi-regular set. Now $\mu \leq int(cl(\alpha \land \beta))$

 $\leq \operatorname{int}(\operatorname{cl}(\alpha) \wedge \operatorname{cl}(\beta))$

=int(cl(α)) \land int(cl(β))

=int(cl(α)) \wedge int(β) (β is a fuzzy t-set)

Now, we have $\mu \leq \alpha$) $\mu = \alpha \land \mu$

 $\leq \alpha \wedge [int(cl(\alpha)) \wedge int(\beta)]$

 $\leq \alpha \wedge [X \wedge int(\beta)] = \alpha \wedge int(\beta) = int(\alpha) \wedge int(\beta)$ since α is fuzzy open

=int $(\alpha \land \beta)$

=int(μ)

Then $\mu \in \tau$.

Lemma 3.24. If μ is fuzzy preopen set in (X, τ) , then $\mu = \lambda \land \rho$ for some $\lambda \in \tau$ and fuzzy dense $\rho \leq X$.

Proof: If μ is fuzzy preopen set in (X, τ) then $\mu \leq \operatorname{int}(\operatorname{cl}(\mu))$. Taking $\lambda = \operatorname{int}(\operatorname{cl}(\mu))$, we have $\mu \leq \lambda$ and λ is fuzzy regular open in (X, τ) and hence fuzzy open in (X, τ) . Since $\lambda = \operatorname{int}(\operatorname{cl}(\mu))$, we have $\lambda \leq \operatorname{cl}(\mu)$ and $(\operatorname{cl}(\mu))^1 \leq \lambda^1$. Let $\rho = (\lambda - \mu)^1 = (\lambda \wedge \mu^1)^1 = -\lambda^1 \vee \mu$. We get $\operatorname{cl}(\rho) = \operatorname{cl}(\mu \vee \lambda^1) = \operatorname{cl}(\mu) \vee \operatorname{cl}(\lambda^1) \geq \lambda^1 \vee \operatorname{cl}(\mu) \geq [\operatorname{cl}(\mu)]^1 \vee \operatorname{cl}(\mu) = X$. Then ρ is fuzzy dense in (X, τ) with $\mu = \lambda \wedge \rho$. The converse is not true.

Example 3.25. Let X={a, b}and λ : X \rightarrow [0,1] be defined as $\lambda(a)=.6, \lambda(b)=.4$.

Then (X, τ) is a fuzzy topological space with $\tau = \{0_x, \lambda, 1_x\}$; $\lambda = (.6, .4)$ is fuzzy open in (X, τ) . Taking $\rho = (.4, .7)$, $cl(\rho) = 1$ and hence ρ is fuzzy dense in (X, τ) . But $\mu = \lambda \land \rho = (.6, .4) \land (.4, .7) = (.4, .4)$ is not fuzzy preopen for $\mu = (.4, .4) \leq 0_x = int(cl(.4, .4))$.

Theorem 3.26. For a space (X, τ) , the following properties are equivalent.

(1) X is fuzzy submaximal.

(2) Every fuzzy preopen set is fuzzy open.

(3) Every fuzzy preopen set is fuzzy semi-open and every fuzzy α -open set is fuzzy open.

Proof. (1) \Rightarrow (2) It follows from the previous lemma.

(2) \Rightarrow (3) Suppose that every fuzzy preopen set is fuzzy open. Then every fuzzy preopen set is fuzzy semi-open.

Let $\mu \leq X$ be a fuzzy α -open set. Since every fuzzy α -open set is fuzzy preopen set, by (2), μ is fuzzy open.

(3) \Rightarrow (1) Let μ be a fuzzy dense subset of X. Since $cl(\mu)=X, \mu$ is fuzzy preopen. By (3), μ is fuzzy semi-open. Thus μ is fuzzy preopen and fuzzy semi-open implies μ is fuzzy α -open. Again by (3), μ is fuzzy open and hence, X is fuzzy submaximal.

Theorem 3.27. For a space (X, τ) , the following properties are equivalent.

(1) X is fuzzy submaximal and fuzzy extremally disconnected.
(2) Any fuzzy β-open subset of X is fuzzy open.

Proof: (1) \Rightarrow (2) Since X is fuzzy extremally disconnected, by Theorem 3.1, every fuzzy β -open set is fuzzy preopen. Again by Theorem 3.26, every fuzzy preopen set is fuzzy open since X is fuzzy submaximal. Thus, every fuzzy β -open set is fuzzy open.

(2) \Rightarrow (1) Let μ be any fuzzy β -open subset of X. By assumption μ is fuzzy open and hence fuzzy preopen. Then by Theorem 3.1 X is fuzzy extremally disconnected. Let μ be any fuzzy preopen subset of X. Then μ is fuzzy β -open and by assumption μ is fuzzy open. Hence by Theorem 3.26, X is fuzzy submaximal.

Corollary 3.28. If a space (X, τ) is fuzzy submaximal and fuzzy extremally disconnected, the following are equivalent for a subset $\mu \leq X$.

(1) μ is fuzzy β -open.

(2) μ is fuzzy semi-open.

(3) μ is fuzzy preopen.

- (4) μ is fuzzy α -open.
- (5) μ is fuzzy open.

Proof: It follows from the previous theorem.

Theorem 3.29. If a space (X, τ) is fuzzy submaximal and fuzzy extremally disconnected, the following properties are equivalent for a subset $\mu \leq X$.

(1) μ is fuzzy semi-open.

(2) μ is fuzzy AB-set.

Proof: (1) \Rightarrow (2) Let μ be a fuzzy semi-open set of X. By assumption on X and Corollary 3.28 μ is fuzzy open. Hence by Proposition 3.22, μ is a fuzzy AB-set.

(2) \Rightarrow (1) Let μ be a fuzzy AB-set. Then $\mu = \lambda \land \rho$ where $\lambda \in \tau$ and ρ is fuzzy semiregular and hence ρ is fuzzy semi-open X. By assumption on X, ρ is fuzzy open in X and $\mu = \lambda \land \rho$ is fuzzy open and therefore fuzzy semi-open in X.

Theorem 3.30. For any fuzzy topological space, the following are equivalent.

(1) *X* is fuzzy extremally disconnected.

- (2) for each fuzzy closed set λ , int(λ) is fuzzy closed.
- (3) for each fuzzy open set λ , we have $cl(\lambda) + cl(1 cl(\lambda)) = 1$.

(4) for every pair of fuzzy open sets λ , μ in X with $cl(\lambda) + \mu = 1$, we have $cl(\lambda) + cl(\mu) = 1$.

Proof: (1) \Rightarrow (2) Let λ be any fuzzy closed. Then $1 - \lambda$ is fuzzy open. By (1), cl $(1-\lambda)$ is fuzzy open. Since cl $(1-\lambda) = 1 - int(\lambda)$, int (λ) is fuzzy closed.

(2) \Rightarrow (3) Let λ be any fuzzy open. Then $1 - \lambda$ is fuzzy closed. By (2), int $(1 - \lambda)$

is fuzzy closed. Thus $cl(int(1 - \lambda)) = int(1 - \lambda)$. Now

 $cl(\lambda) + cl(1 - cl(\lambda)) = cl(\lambda) + cl(int(1 - \lambda))$

 $= cl(\lambda) + int(1 - \lambda)$

$$= cl(\lambda) + 1 - cl(\lambda)$$

= 1.

(3) \Rightarrow (4) Assume for any open set λ , $cl(\lambda) + cl(1 - cl(\lambda)) = 1$. Suppose λ and μ

be any two fuzzy open sets such that $cl(\lambda) + \mu = 1$.

Then $cl(\lambda) + \mu = 1$

 $\Rightarrow \operatorname{cl}(\lambda) + \mu = \operatorname{cl}(\lambda) + \operatorname{cl}(1 - \operatorname{cl}(\lambda))$

 $\Rightarrow \mu = \operatorname{cl}(1 - \operatorname{cl}(\lambda))$

 \Rightarrow cl(μ) = cl(1 - cl(λ))

 \Rightarrow cl(μ) = 1 – cl(λ)

 $\Rightarrow \operatorname{cl}(\mu) + \operatorname{cl}(\lambda) = 1.$

(4) \Rightarrow (1) Let λ be any fuzzy open set and put $cl(\lambda) + \mu = 1$. That is, $\mu = 1 - cl(\lambda)$.

by (4), $cl(\mu) + cl(\lambda) = 1$.

 $cl(\lambda) = 1 - cl(\mu).$

 $cl(\lambda)$ is fuzzy open in X.

That is, X is fuzzy extremally disconnected.

References

[1] O. T. Alas, M. Sanchis, M. G. Tha_cenko, V. V. Thachuk and R. G. Wilson, Irresolvable and submaximal spaces, Homogeneity versus _-discreteness and new ZFC examples, Topology Appl., 107(2000), 259-273.

[2] A.V. Arhangel' ski_*i* and P. J. Collins, On submaximal spaces, Topology Appl., 64(3)(1995), 219-241.

[3] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math. Anal. Appl., 82 (1981), 14-32.

[4] A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy sets and Systems, 44(2)(1991), 303-308.
[5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.

[6] B. Ghosh, Fuzzy extremally disconnected spaces, Fuzzy sets and Systems, 46 (1992), 245-254.

[7] I. M. Hanafy, Fuzzy -open sets and fuzzy -continuity, J. Fuzzy Math., 7(2) (1999), 419-430.

[8] E. Hewitt, A problem of set-theoretic topology, Duke Math. J., 10(1943), 309-33.

[9] B. S. In, On fuzzy FC compactness, Commun. Korean Math. Soc., 13(1) (1998), 137-150.

[10] S. Jafari, K. Viswanathan, M. Rajamani and S. Krishna prakash, On decomposition of fuzzy A-continuity, J. Nonlinear Sci. Appl., 1(4)(2008), 236-240.

[11] A. Kato, A new construction of extremally disconnected topologies, Topology and its Appl., 58(1994), 1-16.

[12] T. Noiri, A note on mappings of extremally disconnected spaces, Acta Math Hungar., 46(1985),83-92.

[13] H. A. Othman, On fuzzy sp-open sets, Advances in Fuzzy systems, (2011), 1-5.

[14] J. H. Park and J. K. Park, On regular generalized fuzzy closed sets and generalizations of fuzzy continuous functions, Indian J. Pure Appl. Math., 34(7)(2003), 1013-1024.

[15] P. M. Pu and Y. M. Liu, Fuzzy Topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(2) (1980), 571-599.

[16] M. Rajamani, On decomposition of fuzzy continuity in fuzzy topological spaces, Acta Ciencia Indica, XXVII(4) (2001), 545-547.

[17] M. Rajamani and M. Sheik John, A decomposition of generalized fuzzy continuity, Acta Ciencia Indica, XXVIIIM(2)(2002), 227-228.

[18] M. Rajamani and V. Inthumathi, A decomposition of a weaker form of fuzzy continuity (Preprint).

[19] K.Balasubramaniyan, S.Sriram and O. Ravi, On Fuzzy Slightly γ -Continuous Functions, Global Journal of Advances in Pure and Applied Mathematics, Vol. 1, 2012, pp.105 -121.

[20] K. Balasubramaniyan, S.Sriram and O. Ravi, Mildly Fuzzy Normal Spaces and Some Functions, Accepted for publication in Journal of Mathematical and Computational Science.

[21] S. S. Thakur and S. Singh, Fuzzy semipreopen sets and fuzzy semi-precontinuity, Fuzzy sets and Systems, 98(3) (1998), 383-391.

[22] L. A. Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.