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1. Introduction : Inspired by work of authors in [2], We define generalized finite Hankel type transformation
by the linear operator

Hgp ()] Jnx FO Ju_p (tpxddx = F (t,) a1

where f{} belongs to a certain class of functions for which the integral exists and 0 =x<a. |f
tn (n = 1,2,3,.......} are the positive roots of the transcendental equations

thr—ﬁ’ (tyal=0 (1.2)
then the corresponding inversion formula is

2 )
for== Y ————— ¢ Jop )]
a ﬂ=1[I:|:.r+,|5’ l:tnﬂ"-\]] (1.3)
1 4 K 1 p
For7=0 and “ "4 2 : g ~ 4 2 the relations reduce to the case studied in [4] where the Kernel
Ja-g () s the Bessel functions of first kind and order & =5 .

Now we state and prove the result about orthogonality of S following lemma:
Lemma 1.1: The general solution of differential equation

{1—2r) r*—a®* - %+ 2af
o1 0 g [ T
(@-pr =0, t>=0 | jsgiven by the equation
vix)= x7 [C:I. }]’H_ﬂ {tx)+ C, Ta_g (tx}] (1.5)
where t: are the roots of /a-g &@ =0 (gee 2] ;
_d
where % = & * Then
~d
bt 37 ap @) [T Jap ()] =0 i 1) (16)

ﬂ-:
) Jiasp E:a) ifi=j
Proof: Case | £ 7 Ift; and tj are unequal roots of /a-8 @) = 0 Therefore
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fﬂ'—ﬁ (tE'.T} =0 & fﬂ'—ﬁ {t;.’l’} =0 (17)
Let
ul=x"Jo g &x),  vl= x"Ju_p (t;x) (1.8)
Thus uCx} and ¥@x) are the solutions of differential equation (1.4). For #{x}, (1.4} can be written as
[x*DE+x(1—2r)D, + (tF x* —(@® + 2 - 2af)-ri)u=0 (1.9)
and for v{x}, {1.4) can be written as

[x= DE4+x(1—2r)D, + (tf x*—(a®*+ f* - 2af —41:]')] v=10 _ (1.10)

Multiplying (1.9) by ¥} and (1.10) by “{*} and subtracting and then multiplying throughout by *~*" . we
obtain

1=3F [0, F 4 _ " —2r _ Fow ’ 2 R2Y L1-2r
x (u".v—uv")+ x (1-2r)y(u'v 14',’£:J]|-|-[1.‘E t»’,]x ur =0 (1.11)

where ' denotes differentiation w.r.t.x.
Now,
= [ (v —v'u)]= x17 (v —v"u)+ A-2r) 27 W'y —v'u)
Now we use (1.12) in (1.11) and integrating (1.11) from @ to @ to obtain

i

(1.12)

[ 17w’y —v'u) )8 = (tz—t ) l 2173w x) vix) dx
Jo , (1.13)
Making use of (1.7) and (1.8) in (1.13) we obtain

(’—LE': _ tf] ‘l;axl_“ (x’-'" fa—,ﬁ' {tfx}] ( Tf.:r B {t.l }) =0.

(1.14)
As ti # i the above equation gives
=1
1—zr T ) T . — ; :
‘L x (x Ja—g {tzx}) (x Ja—g {tjx]) dx =0 when i #j. (115)
This proves case I.
Case Il: £ =J-
Slmllarly we can prove that for t =J
| X1 a7 0] dx -z 2ep 0.

The polynomial * Ja-g ) form an orthogonal set over I = {0.a} on the real line with respect to weight
function wlx) = x 7.

Thus proof is completed.

2. Two spaces IU} and Ir(n :

Let I = (0.a) e define for * €1,

ﬁ'm,ﬂﬂ‘= x2f-1-1r o paa-arp L 2f-1-r 2.1)
Now we compare with & where ¥ =@ — 8 —7 8, s linear operator for finite Hankel type transform for
1
vZE -
2.
Therefore,
@-p-r 2-m @z @-pz-(-r)
g—pl-rz-—=Sta—-—pl=z——+r=a—-0Gl=z—\-—r
2 2 2 . (2.2)
0 Ly 1 A
r=20, a=—+— f=——= . -
For 4- 2, 4 2 ©ET converts to linear operator for finite Hankel type transform.

Now, we define for a non-negative integer ™
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1
V2 xITEE (e Ja—g \Va ﬂx‘] ]
P, ()= ( g [ap ~: n=1.2,...

a f3a+,6' [a}ra,,t?m,] (2.3)
from inversion formula for G, where /-8 is the (@ — BY*® order Bessel type function of first kind and
Yagn denote all positive roots of Ja-g @3 =0 it
0 < Yagr = Yafa = Yafa = a_r]d‘;l”’l = _}T:r,,t?m' (2.4)
Then

BoprWn= An ¥y . n=012,.... (2.5)

One can easily note that lAnl = 0 asn =@
The sequence {#ni=o of smooth functions in Lz (I} form a complete orthonormal system on it.

Definition 2.1:

We define /U7 as the collection of all complex valued smooth function ® ¢} defined on ! such that
(1) For any non-negative integer k

1

P @)= p (B 5, 0)) = [l £ or 0@ <0 25
(i) For each pair of non-negative integers - &

(8% @ %n) = (6,85 5, ) - (2.7)
Note that every member of sequence &nJ%=s of eigen functions is a member of J{)-
The operator Ba.gr s continuous linear mapping of /) into itself. Continuity is established from the fact that
(Bapr Pv o Wn)= (D0 Bapr Wn)= An (Pr,Wn) =0
as ¥ = @ \whenever {@n}#=0 converges to the zero function in /{} J{2 s a linear space under addition and
multiplication by a complex number. 2e is a norm and {Px}z=e is a separating collection of seminorms, hence
it is a countable multinorm on /U We equip with / (1) the topology generated by £xYi=s . Thus/ (1) is a
countably multinormed space. Every Cauchy sequence in / (1) converges in it hence / (1) is complete and
therefore it is a Frechet space. Also / (1) is a testing function space.
Lemma 2.2; Let ® €J{U) then for 0 < x < a, $ can have series expansion

pI= D (60, Uy @) P, @ .
n=o (2.8)

This converges in /7 (1).
Lemma 2.3: dar s self adjoining differential operator.

That is
(ﬂ'm,ﬂ,r @y ‘:ﬁ:) = (‘Jﬁv ‘ﬂ'rx,,t?,r gb:) (2_9)
A b']‘t qﬂ']‘t } ; } .
Lemma 2.4: For bn to be complex numbers, the series #=o converges in /(1) if and only if the series
D Vil 1B P
n=e converges for every non-negative integer k-
Proof : By using (2. 7) we have
e q -
ﬁaﬁ,.,, Z by, U = | Z by 8% g, n| dx
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by Em *’1{:{1 ‘A'f.rfn Py ﬁm dx

gl
in-

But due to orthonormality we have
q
ﬂ'g,,t?,r Z b Yn

~1

l
Jo e
Now we define the dual space /' (I} as the collection of all linear continuous functional on /U2 Since /U js
testing function space, /" {1} is space of generalized functions. As usual, the number that f € J assigns to
any @ €JU) js denoted by {f- @} We define
F.e)= (F.&, ¢ €]U). (2.10)

q
dx = Zlnlnlz Ib'nlz .
n=p

For any complex number »
(bf.d)=Db (f.¢)= (f, b ¢). (2.11)
Definitely /" {I) is linear space. As /{7 is complete f (I} is also complete by the Theorem 1.8.3 of Zemanian
[5]. We define the generalized differential operator Bapionl (f } through
(F B pr®) = (. Boprd) = Bogy f.8V= (Bog, f.3),

Since 2a8ir is self adjoint 2afr = Bapir -
Thus(Af. @) = (f.A¢), ferm, ¢ €] D). (2.12)
It can be easily proved that Bopi: ]I — J"0Y s continuous linear mapping by making use of the fact Bepi
is a continuous linear mapping of / {1} into itself.

Now we state some properties of / 7} and /" 1) which will be useful in the sequel.
() 7@ <= Ly when we identify that each function in / 3 with corresponding equivalence class in
Lz (D). Convergence in / ) implies the convergence in Lz ().
(i) DU = JUL convergence in P {3 implies the convergence in / 3. The topology of 2 (I} is stronger
than that induced on it by /. The restriction of any member £ €7 (1) to PU) is a member of D'(1)
Moreover convergence in / (I} implies the convergence in D'}, Hence in the sense of Zemanian [5], the
members of J'U? are distributions.
i)y JUY = =) Fyrthermore if {Pvdf=1 converges in /U to the limit say ¢ then {#v}¥=1. also
converges in £ {3 to the same limit @-
(iv)  Since D) € JUY © £ and DU js dense in € ) JUJ js also dense in £}, The topology of
JIY is stronger than the topology induced on /U by £ (). Hence £} s subspace of / (I}

(v)  We make Lz (1) as a subspace of /'(I} by defining the number that f € Lz U assigns to any
¢ € JU) g5

(f.¢) = L f )@ Cxddx . (2.13)

Now since /) is subspace of Lz (). it is clear that /U is imbedded in J (1)-
Also f is linear and continuous on /.
_ ak '
wi) 179 =Bapr 9% foromeg € Li (D andsomek thenf € J'U). Indeed, BBt is linear and
continuous mapping of / (I} into itself and Lz () = J' (1) implies that f € J ().

(vii) Foreachf € I there exists a positive constant € and a non-negative integer ' such that for every
¢ €]
IF. @) =C pr (P).
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where Pr =max{ry, 72 .....7} and C,7 depend on £ but not on -
3. Orthogonal series expansion of a generalized Function in J (I} =

In this section we provide fundamental theorem to represent an orthonormal series expansion of any f € J )
with respect to ¥» which in turn yields an inversion formula for the generalized integral transformation.

Theorem 3.1: Every f € J U has a series expansion

f=D.F ),
n=o (3.1)
which converges in J ().

Proof: By Lemma 2.2, forany /' €JUJ we have
(f.¢)= (f, D@, wnmn)= D@0 (L)

[wi]

= D Fv) Wy 9) .
n=0 (3.2)

Now the right hand side converges for every ¢ € J{.
Thus

(f'¢}:(i{f:wﬂ}¢ﬂr qb)

proves our assertion.
The orthonormal series expansion (3.1) gives inversion formula for a distributional generalized finite Hankel
transform H defined by

Hf=Fn)= (fy,)=f € Jn=012, ... (3.3)

In this way # is a mapping of / (I} into the space of complex valued functions £} defined on 7 and

HAIFM=f= ) F)
n=e (3.4)
H is a continuous linear mapping.
Thus proof is completed.

Theorem 3.2 (Uniqueness): Let -9 € I and # f =Fm),  H g = Gn) satisfy Fn) = GO for every

. then f = & in the sense of equality in / (-
4. Characterization of Distributional Generalized finite Hankel type transforms:

In this section we give characterization of the functions £} which are generalized finite Hankel type
transforms of distributions in / (I} as the following theorem.

Theorem 4.1: For bn to be complex numbers, the series *n:nbirt v 4.2)
converges in /) if and only if there exists a non-negative integer 9 such that
D Pl Iy P

Anzo

converges. Moreover if / denotes the sum (4.1) in / (I} then bn = (f.¥n)-

Proof: Necessary condition: We assume that the series (4.1) converges in / (I} say to /' then since ¥n € J{)

(f Um)= (Zbﬂlﬂﬂr wm): Zbﬂ (Wn, Ym) = by = F(m)
n=o n=o
by orthonormality of ¥n This proves the last statement of the theorem. Now we denote by £ the statement

6= D an Yy €JO), Y @n br
“ For every the series converges” . (P)
Here we select @n such that 1&n bnl = lan bal.
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Firstly we prove that the sequence (F@ ‘:L;q}‘nzl is bounded for some 4- say @e- If not then the sequence is

unbounded for every 4 = 1.2,3, -.... Hence there is increasing sequence fna} of positive integers such that
F(ro)2zi|z1,  a=123...

Now for every @ = 1.2,3 ... we get
gt e
Ay = |allnq| Lfﬂ_ﬂq
0 if n= ng.
The for any flxed non-negative integer

nZJ‘ln aﬂl Z[P‘"ql P"n qu] = Z g~! |/~Ln rk—af{

Jk—Jq
Since P‘“ql IS bounded for sufficiently large 4. the series
o oa
— 2k—2q 2
Z q P’nﬂil Z I/-Lnk aﬂl . k
q=1 converges. Hence n=1 converges for every non-negative integer #- But

dx.

4 a P
Y el = | |a{;ﬁ,, Y a, v,
n=1i n=1

(4.2)

Y v

Thus the series =3 " converges in /4), sayto @ € JU).
Zlﬂn byl = Z |aﬂq,lﬁq| = Z g1 = .
n=1 g=1 q=1

This contradicts the statement (P). Thus £F @) 4.} is bounded for some positive ga- Now from the fact that
linl == as™—® e cansay that Mn' F#)| —asn—® for each @ > da- Next we prove that the series in

(4.2) converges for some 4 = dg- Let the series in (4.2) diverges for every 9 = 9g- Then there will be
increasing sequence

fma} of positive integers such that

mq—l.
1= ) UAF@F <2, g=qp+1,  qu+2  qp+3 ...
ﬂ=mq_1
Thus we select
lapl= |f) A, g | whenm, — 1 <n<mg, q > qg-
Then for every non-negative integer %
mq—l. mq—:l.
Z |i% an| = Z A P29 F)| @72 < 2q7%,
Mg—a Mg—1

for sufficiently large 4-
Hence the series

Z |';Lnk Qn |=
mn=1
converges for each k. Then again by (4.2) the series
an Pn lay Fnl
‘J‘IZI converges in /) say to @- On the other hand 12::1 diverges because
mq—l mq—l mr_‘-—l
D lanFml= ) lanFml= ) IF@F ;¢ 2
N=Mg—y N=Mg-1 N=Mg-1

This again contradicts the statement (P). Hence the series (4.2) converges for every 4 = g -
Sufficient condition: Assume that the series (4.2) converges for some positive 4-
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Let & €JU)- Then for every ¢ €J{)
D 1o Y ) < LZ o e =Y P P2 @J%}l]_

Anzo nEl Anto
Now for sum of real numbers we use Schwarz inequality to obtain
i

Y om0} < LZ Pl bl Y (cﬁ,wﬂ}lT

Anzto n*o
by assumption the first series on the right side converges.

[£a)

b= D @)Yy
Now, since ® € JU). from Lemma 2.2, the series expansion n=1 converges in /U} Then

using (4.2) for k=4 we confirm that the second series on the right side also converges. Thus the series

D Cnn. @)= () bnn.o

Anzo (-lnin ) converges which further implies that the series (4.1 ) converges in /' (I).
This completes the proof.

Theorem 4.2: f is a member of / () if and only if there exists some non-negative integer ™ and a
g € L; I} sych that
f=00g,0+ ) ban,
Ap=o (4.3)
where bn are complex numbers.
5. Application of differential operator Bupr:
For a non-ne%ative integer % | by using the series expansion (3.1) of f € J" ) we have

ﬂ'g,,ﬂ,r f = Z(f’¢ﬂ}ﬂg,ﬁ.r Yn = Z(ﬁwﬂ}j—ﬁ Uy

(5.1)
from the differential equation
P(8igr)f =0 (5.2)
where P is a polynomial, ¢ € J U} jsknown and f € J U js unknown. Since f € J )
P (ﬂgﬁ,r)f =F (ﬂ'g,,ﬁ',r) Z(f'¢n}wn = Z(fr¢n}P (ﬂg.,&‘,r) wﬂ
mn=o mn=o
= Y Fp) PAD P, -
Applying # to (5.2) we get -
PQL) (F) = (gy).
Case I: P (1) # 0, then
(Foyn) = [PUdn)™ (g.9n).
Now by applying # ™ to both the side we get
f= D @) PO 4, .
= (5.3)

Now by characterization Theorem 4.1 and uniqueness Theorem 3.2, the solution in (5.3) exists and is unique.
Case I1: P4 =10 forsome 4n .

Let ¥ (';Lﬂk) =0 for k=123, ......7m Then the solution will be

f= ) @) POIN Yy,
P{l,)=o (5.4)
which is not unique in /* (I}, We may add to (5.4) any complementary solution
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m
fe= z asPn .
5=1
where 2= are arbitrary numbers.
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