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1. Introduction : Inspired by work of authors in [2], We define generalized finite Hankel type transformation 

by the linear operator  

                       (1.1) 

where  belongs to a certain class of functions for which the integral exists and  If 

 are the positive roots of the transcendental equations 

                                                     (1.2) 

then the corresponding inversion formula is  

                      (1.3)                              

For  and  ,   the relations reduce to the case studied in [4] where the Kernel 

 is the Bessel functions of first kind and order . 

Now we state and prove the result about orthogonality of as the following lemma: 

Lemma 1.1: The general solution of differential equation  

   (1.4) 

 , is given by the equation 

                               (1.5) 

where  are the roots of  (see [2]) ;  

where  Then 

                                                (1.6) 

 

Proof: Case I  If  and  are unequal roots of  Therefore
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                                   (1.7)                                                      

Let  

                                                             (1.8) 

Thus and are the solutions of differential equation (1.4). For  can be written as 

                            (1.9)           

and for  can be written as  

.                        (1.10) 

Multiplying (1.9) by and (1.10) by and subtracting and then multiplying throughout by  we 

obtain 

          (1.11) 

where  denotes differentiation w.r.t.x. 

Now, 

          (1.12) 

Now we use (1.12) in (1.11) and integrating (1.11) from  to  to obtain 

.                                         (1.13) 

Making use of (1.7) and (1.8) in (1.13) we obtain 

                                       (1.14)   

As  the above equation gives 

                               (1.15) 

This proves case I. 

Case II:  

Similarly we can prove that for , 

 

The polynomial form an orthogonal set over  on the real line with respect to weight 

function  

Thus proof is completed. 

2. Two spaces  

Let   We define for  

.                                (2.1)                        

Now we compare with where  is linear operator for finite Hankel type transform for 

.  

Therefore, 

.            (2.2)    

For ,  converts to linear operator for finite Hankel type transform.  

Now, we define for a non-negative integer  
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      (2.3)                                    

from inversion formula for where  is the  order Bessel type function of first kind and 

 denote all positive roots of with 

 and                                                    (2.4)  

Then 

                                               (2.5)                                 

One can easily note that  as  

The sequence of smooth functions in  form a complete orthonormal system on it. 

 

 

Definition 2.1:  

We define  as the collection of all complex valued smooth function  defined on such that  

(i) For any non-negative integer k 

                    (2.6) 

(ii) For each pair of non-negative integers  

                                (2.7)                                               

Note that every member of sequence  of eigen functions is a member of  

The operator is continuous linear mapping of  into itself. Continuity is established from the fact that  

 

as  whenever converges to the zero function in   is a linear space under addition and 

multiplication by a complex number.  is a norm and  is a separating collection of seminorms, hence 

it is a countable multinorm on  We equip with  (I) the topology generated by . Thus  (I) is a 

countably multinormed space. Every Cauchy sequence in  (I) converges in it hence  (I) is complete and 

therefore it is a Frechet space. Also  (I) is a testing function space. 

Lemma 2.2: Let  then for  can have series expansion 

                               (2.8)                                                    

This converges in  (I). 

Lemma 2.3:  is self adjoining differential operator.  

That is  

.                                         (2.9) 

Lemma 2.4: For  to be complex numbers, the series  converges in  (I) if and only if the series 

 converges for every non-negative integer  

Proof : By using (2.7) we have  
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But due to orthonormality we have  

 

Now we define the dual space  as the collection of all linear continuous functional on Since  is 

testing function space,  is space of generalized functions. As usual, the number that  assigns to 

any  is denoted by  We define 

                                          (2.10) 

For any complex number  

                                     (2.11) 

Definitely  is linear space. As  is complete,   is also complete by the Theorem 1.8.3 of Zemanian 

[5]. We define the generalized differential operator  on through 

. 

Since  is self adjoint   

Thus                                                          (2.12)                                                                      

It can be easily proved that  is continuous linear mapping by making use of the fact  

is a continuous linear mapping of  into itself. 

 Now we state some properties of  and  which will be useful in the sequel. 

(i) when we identify that each function in  with corresponding equivalence class in 

. Convergence in  implies the convergence in  

(ii)  Convergence in  implies the convergence in . The topology of  is stronger 

than that induced on it by  . The restriction of any member (I) to  is a member of . 

Moreover convergence in  implies the convergence in . Hence in the sense of Zemanian [5], the 

members  of   are distributions. 

(iii)  Furthermore if  converges in  to the limit say  then   also 

converges in to the same limit  

(iv) Since and  is dense in  is also dense in . The topology of  

 is stronger than the topology induced on  by Hence  is subspace of  

(v) We make  as a subspace of by defining the number that   assigns to any 

 as  

                                              (2.13) 

            Now since  is subspace of   it is clear that  is imbedded in    

            Also  is linear and continuous on . 

(vi) If for some and some  then . Indeed,  is linear and 

continuous mapping of  into itself and              implies that  

(vii) For each  there exists a positive constant  and a non-negative integer  such that for every 
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where  depend on  but not on  

3. Orthogonal series expansion of a generalized Function in  

In this section we provide fundamental theorem to represent an orthonormal series expansion of any  

with respect to  which in turn yields an inversion formula for the generalized integral transformation. 

Theorem 3.1: Every  has a series expansion  

                                                    (3.1) 

which converges in  

Proof: By Lemma 2.2, for any  we have 

 

           (3.2) 

Now the right hand side converges for every  

Thus 

 
proves our assertion. 

The orthonormal series expansion (3.1) gives inversion formula for a distributional generalized finite Hankel 

transform  defined by  

                       (3.3)                                   

In this way  is a mapping of  into the space of complex valued functions  defined on  and 

                                       (3.4)                                              

 is a continuous linear mapping. 

Thus proof is completed. 

Theorem 3.2 (Uniqueness): Let  and  satisfy  for every 

 then  in the sense of equality in  

4. Characterization of Distributional Generalized finite Hankel type transforms:  

In this section we give characterization of the functions which are generalized finite Hankel type 

transforms of distributions in  as the following theorem. 

Theorem 4.1: For  to be complex numbers, the series                           (4.1) 

converges in  if and only if there exists a non-negative integer  such that 

 

converges. Moreover if   denotes the sum (4.1) in  then  

Proof: Necessary condition: We assume that the series (4.1) converges in  say to  then since  

 
by orthonormality of  This proves the last statement of the theorem. Now we denote by  the statement 

“ For every  the series converges” .                               (P)  

Here we select  such that  
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Firstly we prove that the sequence  is bounded for some  say  If not then the sequence is 

unbounded for every  Hence there is increasing sequence  of positive integers such that  

 

Now for every we get 

                                               

The for any fixed non-negative integer  

 

Since is bounded for sufficiently large  the series 

converges. Hence  converges for every non-negative integer  But  

                            (4.2)                                  

Thus the series  converges in say to . 

 

This contradicts the statement (P). Thus is bounded for some positive  Now from the fact that 

 as  we can say that  for each  Next we prove that the series in 

(4.2) converges for some  Let the series in (4.2) diverges for every  Then there will be 

increasing sequence 

 of positive integers such that 

 
Thus we select 

 

Then for every non-negative integer , 

 

for sufficiently large  

Hence the series 

 

converges for each  Then again by (4.2) the series 

 converges in  say to  On the other hand diverges because 

 

This again contradicts the statement (P). Hence the series (4.2) converges for every   

Sufficient condition: Assume that the series (4.2) converges for some positive  
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Let  Then for every   

 
Now for sum of real numbers we use Schwarz inequality to obtain 

 
by assumption the first series on the right side converges. 

Now, since  from Lemma 2.2, the series expansion converges in  Then 

using (4.2) for  we confirm that the second series on the right side also converges. Thus the series 

 converges which further implies that the series (4.1 ) converges in  

This completes the proof.  

Theorem 4.2: is a member of  if and only if there exists some non-negative integer  and a 

 such that 

                                         (4.3) 

where  are complex numbers. 

5. Application of differential operator  

For a non-negative integer , by using the series expansion (3.1) of  we have 

                                             (5.1)      

from the differential equation 

,                                               (5.2)                                                              

where P is a polynomial,  is known and  is unknown. Since  

 

 
Applying  to (5.2) we get 

 

Case I: then 

. 

Now by applying  to both the side we get 

                                      (5.3)                                                            

Now by characterization Theorem 4.1 and uniqueness Theorem 3.2, the solution in (5.3) exists and is unique. 

Case II:  for some . 

Let  for  Then the solution will be 

                                    (5.4)                                            

which is not unique in . We may add to (5.4) any complementary solution 
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where  are arbitrary numbers. 
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