Distributional generalized finite Hankel type transformation

B.B. Waphare

MIT ACSC, Alandi, Tal: Khed, Dist: Pune- 412105.

ARTICLE INFO

Article history:

Received: 24 April 2013;
Received in revised form:
24 May 2013;
Accepted: 31 May 2013;

ABSTRACT
In this paper we have extended generalized finite Hankel transform in [2] with the use of
Zemanian's technique related to the transformations arising from orthonormal series
expansions (see [6]). Inversion formula, characterization theorem and application of
differential operator in solving certain type of differential equations have been established.
© 2013 Elixir All rights reserved.

Keywords

Generalized finite Hankel type transform,
Finite Hankel type transform.

1. Introduction : Inspired by work of authors in [2], We define generalized finite Hankel type transformation by the linear operator

$$
\begin{equation*}
H_{\alpha, \beta}[f(x)]=\int_{0}^{a} x^{1-r} f(x) J_{\alpha-\beta}\left(t_{n} x\right) d x=f\left(t_{n}\right) \tag{1.1}
\end{equation*}
$$

where $f(x)$ belongs to a certain class of functions for which the integral exists and $0 \leq x \leq a$. If $t_{n}(n=1,2,3, \ldots \ldots)$ are the positive roots of the transcendental equations

$$
\begin{equation*}
J_{\alpha-\beta}\left(t_{n} a\right)=\mathbf{0} \tag{1.2}
\end{equation*}
$$

then the corresponding inversion formula is

$$
\begin{equation*}
f(x)=\frac{2}{a^{2}} \sum_{n=1}^{\infty} \frac{\overline{f(n)}}{\left[J_{a \alpha+\beta}\left(t_{n} a\right)\right]^{2}}\left[x^{r} J_{\alpha-\beta}\left(t_{n} x\right)\right] \tag{1.3}
\end{equation*}
$$

For $r=\mathbf{0}$ and $\alpha=\frac{\mathbf{1}}{\mathbf{4}}+\frac{\mu}{2}, \beta=\frac{\mathbf{1}}{\mathbf{4}}-\frac{\mu}{2}$ the relations reduce to the case studied in [4] where the Kernel $J_{\alpha-\beta}\left(t_{n}\right)$ is the Bessel functions of first kind and order $\alpha-\beta$.
Now we state and prove the result about orthogonality of $x^{r} J_{\alpha-\beta}\left(t_{i} x\right)$ as the following lemma:
Lemma 1.1: The general solution of differential equation

$$
\begin{equation*}
\left(D_{x}^{2}+\frac{(1-2 r)}{x} D_{x}\right) y+\left[t^{2}+\frac{\left(r^{2}-\alpha^{2}-\beta^{2}+2 \alpha \beta\right)}{x^{2}}\right] y=0 \tag{1.4}
\end{equation*}
$$

$(\alpha-\beta) \geq 0, \quad t>0$, is given by the equation

$$
\begin{equation*}
y(x)=x^{r}\left[C_{1} J_{\alpha-\beta}(t x)+C_{2} r_{\alpha-\beta}(t x)\right] \tag{1.5}
\end{equation*}
$$

where t_{i} are the roots of $I_{\alpha-\beta}\left(t_{i} a\right)=\mathbf{0}$ (see [2]);
where ${ }^{D_{x}} \equiv \frac{d}{d x}$. Then

$$
\begin{align*}
\int_{0}^{a} x^{1-z r}\left[x^{r} J_{\alpha-\beta}\left(t_{i} x\right)\right] & {\left[x^{r} J_{\alpha-\beta}\left(t_{j} x\right)\right]=0 } \tag{1.6}\\
& \text { if } i \neq j . \\
= & \frac{a^{2}}{2} J_{a \alpha+\beta}^{2}\left(t_{i} a\right), \quad \text { if } i=j
\end{align*}
$$

Proof: Case $\mathrm{I}^{i \neq j}$: If t_{i} and t_{j} are unequal roots of $I_{\alpha-\beta}(t a)=0$. Therefore

$$
\begin{equation*}
J_{\alpha-\beta}\left(t_{i} x\right)=0 \& J_{\alpha-\beta}\left(t_{j} x\right)=0 \tag{1.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
u(x)=x^{r} J_{\alpha-\beta}\left(t_{i} x\right), \quad v(x)=x^{r} J_{\alpha-\beta}\left(t_{j} x\right) \tag{1.8}
\end{equation*}
$$

Thus $u(x)$ and $v(x)$ are the solutions of differential equation (1.4). For $u(x),(1.4)$ can be written as $\left[x^{2} D_{x}^{2}+x(1-2 r) D_{x}+\left(t_{i}^{2} x^{2}-\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)-r^{2}\right)\right] u=0$
and for $v(x),(1.4)$ can be written as
$\left[x^{2} D_{x}^{2}+x(1-2 r) D_{x}+\left(t_{j}^{2} x^{2}-\left(\alpha^{2}+\beta^{2}-2 \alpha \beta-l^{2}\right)\right)\right] v=0$.
Multiplying (1.9) by $v(x)$ and (1.10) by $u(x)$ and subtracting and then multiplying throughout by $x^{-2 r}$. we obtain
$x^{1-2 r}\left(u^{r} \cdot v-u v^{\prime \prime}\right)+x^{-2 r}(1-2 r)\left(u^{\prime} v-u v^{\prime}\right)+\left(t_{i}^{2}-t_{j}^{2}\right) x^{1-2 r} u v=0$
where ${ }^{\prime}$ denotes differentiation w.r.t.x.
Now,
$\frac{d}{d x}\left[x^{1-z r}\left(u^{\prime} v-v^{\prime} u\right)\right]=x^{1-2 r}\left(u^{l^{\prime}} v-v^{\prime \prime} u\right)+(1-2 r) x^{-2 r}\left(u^{\prime} v-v^{\prime} u\right)$.
Now we use (1.12) in (1.11) and integrating (1.11) from $\mathbf{0}$ to ${ }^{a}$ to obtain
$\left[x^{1-2 r}\left(u^{\prime} v-v^{\prime} u\right)\right]_{0}^{a}=\left(t_{i}^{2}-t_{j}^{2}\right) \int_{0}^{a} x^{1-2 r} u(x) v(x) d x$.
Making use of (1.7) and (1.8) in (1.13) we obtain
$\left(t_{i}^{2}-t_{j}^{2}\right) \int_{0}^{a} x^{1-z r}\left(x^{r} J_{\alpha-\beta}\left(t_{i} x\right)\right)\left(x^{r} J_{\alpha-\beta}\left(t_{j}\right)\right) d x=0$.
As $t_{i} \neq t_{j}$ the above equation gives
$\int_{0}^{a} x^{1-2 r}\left(x^{r} J_{\alpha-\beta}\left(t_{i} x\right)\right)\left(x^{r} J_{\alpha-\beta}\left(t_{j} x\right)\right) d x=0$ when $i \neq j$.
This proves case I.
Case II: $i=j$.
Similarly we can prove that for $i=j$,
$\int_{0}^{a} x^{1-2 r}\left[x^{r} J_{\alpha-\beta}\left(t_{i} x\right)\right]^{2} d x=\frac{a^{2}}{2} J_{a \alpha+\beta}^{2}\left(t_{i} a\right)$.
The polynomial $x^{r} J_{\alpha-\beta}{ }^{(x)}$ form an orthogonal set over $I=(0, a)$ on the real line with respect to weight function $w(x)=x^{1-z r}$.
Thus proof is completed.
2. Two spaces $I^{\prime}(I)$ and $J^{\prime}(I)$:

Let $I=(0, a)$. We define for $x \in I$,

$$
\begin{equation*}
\Delta_{\alpha, \beta, r}=x^{2 \beta-1-r} D x^{4 \alpha-2 r} D x^{2 \beta-1-r} . \tag{2.1}
\end{equation*}
$$

Now we compare with $\boldsymbol{\Delta}_{v}$ where $v=\alpha-\beta-r \boldsymbol{\Delta}_{v}$ is linear operator for finite Hankel type transform for $v \geq-\frac{1}{2}$.
Therefore,

$$
\begin{equation*}
(\alpha-\beta)-r \geq \frac{1}{2} \Rightarrow(\alpha-\beta) \geq-\frac{1}{2}+r \Rightarrow(\alpha-\beta) \geq-\left(\frac{1}{2}-r\right) \tag{2.2}
\end{equation*}
$$

For $r=0, \quad \alpha=\frac{\mathbf{1}}{\mathbf{4}}+\frac{\mu}{2}, \beta=\frac{\mathbf{1}}{\mathbf{4}}-\frac{\mu}{2}, \quad \Delta_{\alpha, \beta, r}$ converts to linear operator for finite Hankel type transform.
Now, we define for a non-negative integer n

$$
\begin{equation*}
\psi_{n}(x)=\frac{\sqrt{2} x^{(1-2 r)^{\frac{1}{2}}}\left(x^{r} J_{\alpha-\beta}\left(y_{\alpha, \beta, n} x\right)\right)}{a \quad J_{3 \alpha+\beta}\left(a y_{\alpha, \beta, n}\right)} ; n=1,2, \ldots \tag{2.3}
\end{equation*}
$$

from inversion formula for $f(x)$, where $J_{\alpha-\beta}$ is the $(\alpha-\beta)^{\text {th }}$ order Bessel type function of first kind and $y_{\alpha, \beta, n}$ denote all positive roots of $I_{\alpha-\beta}(a y)=0$ with
$0<y_{\alpha, \beta, 1}<y_{\alpha, \beta, z}<y_{\alpha, \beta, a}<\cdots$ and $\lambda_{n}=-y_{\alpha, \beta, n}^{2}$.
Then

$$
\begin{equation*}
\Delta_{\alpha, \beta, r} \psi_{n}=\lambda_{n} \psi_{n}, \quad n=0,1,2, \ldots . \tag{2.4}
\end{equation*}
$$

One can easily note that $\mid \lambda_{n} \mathbf{I} \rightarrow \infty$ as $n \rightarrow \infty$.
The sequence $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ of smooth functions in $L_{\mathbf{2}}(I)$ form a complete orthonormal system on it.

Definition 2.1:

We define $I^{(I)}$ as the collection of all complex valued smooth function $\phi(x)$ defined on I such that
(i) For any non-negative integer k

$$
\begin{equation*}
\rho_{k}(\phi)=\rho_{0}\left(\Delta_{\alpha, \beta, r}^{k} \phi(x)\right)=\left[\int_{0}^{a}\left|\Delta_{\alpha, \beta, r}^{k} \phi(x)\right|^{2}\right]^{\frac{1}{2}}<\infty \tag{2.6}
\end{equation*}
$$

(ii) For each pair of non-negative integers n, k

$$
\begin{equation*}
\left(\Delta_{\alpha, \beta, r}^{k} \phi, \psi_{n}\right)=\left(\phi, \Delta_{\alpha, \beta, r}^{k} \psi_{n}\right) . \tag{2.7}
\end{equation*}
$$

Note that every member of sequence $\left\{\psi_{n}\right\}_{n=0}^{\infty}$ of eigen functions is a member of $/(I)$.
The operator $\Delta_{\alpha, \beta, r}$ is continuous linear mapping of $l(I)$ into itself. Continuity is established from the fact that
$\left(\boldsymbol{\Delta}_{\alpha, \beta, r} \phi_{v}, \psi_{n}\right)=\left(\phi_{v}, \Delta_{\alpha, \beta, r} \psi_{n}\right)=\lambda_{n}\left(\phi_{v}, \psi_{n}\right) \rightarrow \mathbf{0}$
as $v \rightarrow \infty$ whenever $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ converges to the zero function in $/(I) . J(I)$ is a linear space under addition and multiplication by a complex number. ρ_{0} is a norm and $\left\{\rho_{k}\right\}_{k=0}^{\infty}$ is a separating collection of seminorms, hence it is a countable multinorm on $I(I)$. We equip with l (I) the topology generated by $\left\{\rho_{k}\right\}_{k=0}^{\infty}$. Thus I (I) is a countably multinormed space. Every Cauchy sequence in l (I) converges in it hence l (I) is complete and therefore it is a Frechet space. Also l (I) is a testing function space.
Lemma 2.2: Let $\phi \in J(I)$ then for $0<x<a, \quad \phi$ can have series expansion

$$
\begin{equation*}
\phi(x)=\sum_{n=0}^{\infty}\left(\phi(x), \quad \psi_{n}(x)\right) \psi_{n}(x) \tag{2.8}
\end{equation*}
$$

This converges in l (I).
Lemma 2.3: $\Delta_{\alpha, \beta, r}$ is self adjoining differential operator.
That is

$$
\begin{equation*}
\left(\Delta_{\alpha, \beta, r} \phi_{1}, \phi_{\mathbf{2}}\right)=\left(\phi_{1}, \Delta_{\alpha, \beta, r} \phi_{\mathbf{2}}\right) \tag{2.9}
\end{equation*}
$$

Lemma 2.4: For b_{n} to be complex numbers, the series $\sum_{n=0}^{\infty} b_{n} \psi_{n}$ converges in I (I) if and only if the series $\left.\sum_{n=0}^{\infty}\left|\lambda_{n} \mathbf{|}^{2 k}\right| b_{n}\right|^{\mathbf{2}}$ converges for every non-negative integer k.
Proof : By using (2.7) we have
$\int_{0}^{a}\left|\Delta_{\alpha, \beta, r}^{k} \sum_{n=p}^{q} b_{n} \psi_{n}\right|^{\mathbf{2}} d x=\int_{0}^{a}\left|\sum_{n=p}^{q} b_{n} \Delta_{\alpha, \beta, r}^{k} \psi_{n}\right|^{\mathbf{2}} d x$

$$
\begin{aligned}
=\int_{0}^{a} \mid \sum_{n=p}^{q} b_{n} & \left.\lambda_{n}^{k} \psi_{n}\right|^{2} d x \\
& =\int_{0}^{a} \sum_{n=p}^{q} \sum_{m=p}^{q} b_{n} \bar{b}_{m} \lambda_{n}^{k} \lambda_{m}^{k} \psi_{n} \bar{\psi}_{m} d x .
\end{aligned}
$$

But due to orthonormality we have

$$
\int_{0}^{a}\left|\Delta_{\alpha, \beta, r}^{k} \sum_{n=p}^{q} b_{n} \psi_{n}\right|^{2} d x=\sum_{n=p}^{q}\left|\lambda_{n}\right|^{2}\left|b_{n}\right|^{2} .
$$

Now we define the dual space $I^{\prime}(I)$ as the collection of all linear continuous functional on $I(I)$. Since $I(I)$ is testing function space, $l^{\prime}(I)$ is space of generalized functions. As usual, the number that $f \in J^{\prime}(l)$ assigns to any $\phi \in J(I)$ is denoted by (f, ϕ). We define

$$
\begin{equation*}
(f, \phi)=(f, \phi\rangle, \quad \phi \in J(l) . \tag{2.10}
\end{equation*}
$$

For any complex number ${ }^{b}$

$$
\begin{equation*}
(b f, \phi)=b(f, \phi)=(f, \bar{b} \phi) . \tag{2.11}
\end{equation*}
$$

Definitely $l^{\prime}(I)$ is linear space. As $I^{\prime}(I)$ is complete, $I^{\prime}(I)$ is also complete by the Theorem 1.8.3 of Zemanian [5]. We define the generalized differential operator $\bar{\Delta}_{\alpha, \beta, l}{ }^{\prime}$ on $l^{\prime}(I)$ through

$$
\left.\left(f, \Delta_{\alpha, \beta, r} \phi\right)=\left\langle f, \overline{\Delta_{\alpha, \beta}, r}\right\rangle\right\rangle=\left\langle\overline{\Delta_{\alpha, \beta}, r} f, \bar{\phi}\right\rangle=\left\langle\overline{\Delta_{\alpha, \beta, r}} f, \bar{\phi}\right\rangle .
$$

Since $\Delta_{\alpha, \beta, r}$ is self adjoint $\overline{\Delta_{\alpha, \beta, r}}=\boldsymbol{\Delta}_{\alpha, \beta, r}$.
Thus $(\Delta f, \phi)=(f, \Delta \phi), \quad f \in J^{\prime}(I), \quad \phi \in J(I)$.
It can be easily proved that $\Delta_{\alpha, \beta, l}: J^{\prime}(I) \rightarrow J^{\prime}(l)$ is continuous linear mapping by making use of the fact $\Delta_{\alpha, \beta, l}$ is a continuous linear mapping of $l(I)$ into itself.

Now we state some properties of $l(I)$ and $l^{\prime}(I)$ which will be useful in the sequel.
(i) $\quad l(l) \subset L_{\mathbf{2}}(I)$ when we identify that each function in $l(l)$ with corresponding equivalence class in $L_{\mathbf{2}}(I)$. Convergence in $I^{(I)}$ implies the convergence in $L_{\mathbf{2}}(I)$.
(ii) $\quad D(I) \subset J(I)$. Convergence in $D(I)$ implies the convergence in $I^{(I)}$. The topology of $D(I)$ is stronger than that induced on it by $l(I)$. The restriction of any member $f \in J^{\prime}(\mathrm{I})$ to $D(I)$ is a member of $D^{\prime}(I)$. Moreover convergence in $I^{\prime}(I)$ implies the convergence in $D^{\prime}(I)$. Hence in the sense of Zemanian [5], the members of $I^{\prime}(I)$ are distributions.
(iii) $\quad l(I) \subset \varepsilon(I)$. Furthermore if $\left\{\phi_{v}\right\}_{V=1}^{\infty}$ converges in $l(l)$ to the limit say ϕ then $\left\{\phi_{v}\right\}_{V=1}^{\infty}$, also converges in $\varepsilon(I)$ to the same limit ϕ.
(iv) Since $D(I) \subset J(I) \subset \varepsilon(I)$, and $D(I)$ is dense in $\varepsilon(I), \quad J(I)$ is also dense in $\varepsilon(I)$. The topology of $J(I)$ is stronger than the topology induced on $J(I)$ by $\varepsilon(I)$. Hence $\varepsilon^{\prime}(I)$ is subspace of $I^{\prime}(I)$.
(v) We make $L_{\mathbf{2}}(I)$ as a subspace of $I^{\prime}(I)$ by defining the number that $f \in L_{\mathbf{2}}(I)$ assigns to any $\phi \in J(I)$ as

$$
\begin{equation*}
(f, \phi)=\int_{0}^{a} f(x) \overline{\phi(x)} d x \tag{2.13}
\end{equation*}
$$

Now since $I^{(I)}$ is subspace of $L_{\mathbf{2}}(I)$, it is clear that $I^{(I)}$ is imbedded in $I^{\prime}(I)$.
Also f is linear and continuous on $I(I)$.
(vi) If $f(x)=\Delta_{\alpha, \beta, r}^{k} g(x)$ for some $g \in L_{\mathbf{2}}(I)$ and some k then $f \in J^{\prime}(I)$. Indeed, $\Delta_{\alpha, \beta, l}$ is linear and continuous mapping of $l^{\prime}(I)$ into itself and $L_{\mathbf{2}}(I) \subset J^{\prime}(I) \quad$ implies that $f \in J^{\prime}(I)$.
(vii) For each $f \in J^{\prime}(I)$ there exists a positive constant C and a non-negative integer r such that for every $\phi \in J(l)$
$|(f, \phi)| \leq C \rho_{r}(\phi)$,
where $\rho_{r}=\max \left\{r_{1}, r_{2,}, \ldots . r_{r}\right\}$ and C, r depend on f but not on ϕ.
3. Orthogonal series expansion of a generalized Function in $I^{\prime}(I)$:

In this section we provide fundamental theorem to represent an orthonormal series expansion of any $f \in J^{\prime}(I)$ with respect to ψ_{n} which in turn yields an inversion formula for the generalized integral transformation.
Theorem 3.1: Every $f \in J^{\prime}(I)$ has a series expansion

$$
\begin{equation*}
f=\sum_{n=0}^{\infty}\left(f, \psi_{n}\right) \psi_{n} \tag{3.1}
\end{equation*}
$$

which converges in $I^{\prime}(I)$.
Proof: By Lemma 2.2, for any $f \in J(I)$ we have

$$
\begin{align*}
(f, \phi)=\left(f, \quad \sum_{n=0}^{\infty}\left(\phi, \quad \psi_{n}\right\rangle \psi_{n}\right)=\sum_{n=0}^{\infty} \overline{\left(\phi, \psi_{n}\right)}\left(f, \psi_{n}\right) & \\
& =\sum_{n=0}^{\infty}\left(f, \psi_{n}\right)\left(\psi_{n}, \phi\right) . \tag{3.2}
\end{align*}
$$

Now the right hand side converges for every $\phi \in J(I)$.
Thus
$(f, \phi)=\left(\sum_{n=0}^{\infty}\left(f, \psi_{n}\right\rangle \psi_{n}, \quad \phi\right)$
proves our assertion.
The orthonormal series expansion (3.1) gives inversion formula for a distributional generalized finite Hankel transform \mathcal{H} defined by

$$
\begin{equation*}
\mathscr{H} f=F(n)=\left(f, \psi_{n}\right)=f \in J^{\prime}(I), n=0,1,2, \ldots \tag{3.3}
\end{equation*}
$$

In this way \mathcal{H} is a mapping of $l^{\prime}(I)$ into the space of complex valued functions $F(n)$ defined on n and

$$
\begin{equation*}
\mathcal{H}^{-1} F(n)=f=\sum_{n=0}^{\infty} F(n) \psi_{n} . \tag{3.4}
\end{equation*}
$$

\boldsymbol{H} is a continuous linear mapping.
Thus proof is completed.
Theorem 3.2 (Uniqueness): Let $f, g \in J^{\prime}(I)$ and $\mathcal{H} f=F(n), \quad \mathcal{H} g=G(n)$ satisfy $F(n)=G(n)$ for every n, then $f=g$ in the sense of equality in $l^{\prime}(I)$.
4. Characterization of Distributional Generalized finite Hankel type transforms:

In this section we give characterization of the functions $F(n)$ which are generalized finite Hankel type transforms of distributions in $I^{\prime}(I)$ as the following theorem.
Theorem 4.1: For b_{n} to be complex numbers, the series $\sum_{n=0}^{\infty} b_{n} \psi_{n}$
converges in $l^{\prime}(l)$ if and only if there exists a non-negative integer q such that $\sum_{\lambda_{n} \neq 0}\left|\lambda_{n}\right|^{-2 q}\left|b_{n}\right|^{\mathbf{2}}$
converges. Moreover if f denotes the sum (4.1) in $I^{\prime}(I)$ then $b_{n}=\left(f, \psi_{n}\right)$.
Proof: Necessary condition: We assume that the series (4.1) converges in $I^{\prime}(I)$ say to f then since $\psi_{n} \in J(I)$
$\left(f, \psi_{m}\right)=\left(\sum_{n=0}^{\infty} b_{n} \psi_{n}, \quad \psi_{m}\right)=\sum_{n=0}^{\infty} b_{n}\left(\psi_{n}, \quad \psi_{m}\right)=b_{m}=F(m)$
by orthonormality of ψ_{n} This proves the last statement of the theorem. Now we denote by ${ }^{P}$ the statement
"For every $\phi=\sum a_{n} \psi_{n} \in J(I)$, the series $\sum \bar{a}_{n} b_{n}$ converges".
Here we select a_{n} such that $\mathbf{|} \bar{a}_{n} b_{n} \mathbf{I}=\mathbf{|} a_{n} b_{n} \mid$.

Firstly we prove that the sequence $\left(F(n) \lambda_{n}^{-q}\right)_{n=1}^{\infty}$ is bounded for some q. say q_{0}. If not then the sequence is unbounded for every $q=1,2,3, \ldots \ldots$ Hence there is increasing sequence $\left\{n_{q}\right\}$ of positive integers such that

$$
\left|F\left(n_{q}\right) \lambda_{n_{q}}^{-1}\right| \geq 1, \quad q=1,2,3 \ldots .
$$

Now for every $q=1,2,3 \cdots \cdots$ we get

$$
a_{n}=\left\{\begin{array}{l}
\left|a \lambda_{n_{q}}^{q}\right|_{\text {if } n=n_{q} .}^{\text {if } n=n_{q}} \\
0 \quad \text { if }
\end{array}\right.
$$

The for any fixed non-negative integer k,
$\sum_{n=1}^{\infty}\left|\lambda_{n}^{k} a_{n}\right|^{2}=\sum_{q=1}^{\infty}\left[\left|\lambda_{n_{q}}^{k}\right|\left|\lambda_{n_{q}}^{q} q\right|^{-1}\right]^{2}=\sum_{q=1}^{\infty} q^{-1}\left|\lambda_{n_{q}}\right|^{2 k-2 q}$.
Since $\left|\lambda_{n_{q}}\right|^{2 k-2 q}$ is bounded for sufficiently large q, the series $\sum_{q=1}^{\infty} q^{-2}\left|\lambda_{n_{q}}\right|^{2 k-2 q}$ converges. Hence $\sum_{n=1}^{\infty}\left|\lambda_{n}^{k} a_{n}\right|^{2}$

$$
\begin{equation*}
\left.\sum_{n=1}^{p}\left|\lambda_{n}^{k} a_{n} \mathbf{|}^{\mathbf{2}}=\int_{0}^{a}\right| \Delta_{\alpha, \beta, r}^{k} \sum_{n=1}^{p} a_{n} \psi_{n}\right|^{\mathbf{2}} d x . \tag{4.2}
\end{equation*}
$$

Thus the series $\sum_{n=1}^{p} a_{n} \psi_{n}{ }_{\text {converges in }} /(I)$, say to $\phi \in J(I)$.
$\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right| \geq \sum_{q=1}^{\infty}\left|a_{n_{q}} \lambda_{n_{q}}^{q}\right|=\sum_{q=1}^{\infty} q^{-1}=\infty$.
This contradicts the statement (P). Thus $\left\{F(n) \lambda_{n}^{-q_{0}}\right\}$ is bounded for some positive q_{0}. Now from the fact that $\left|\lambda_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$ we can say that $\left|\lambda_{n}^{-q} F(n)\right| \rightarrow$ as $n \rightarrow \infty$ for each $q>q_{0}$. Next we prove that the series in (4.2) converges for some $q>q_{0}$. Let the series in (4.2) diverges for every $q>q_{0}$. Then there will be increasing sequence
$\left\{m_{q}\right\}$ of positive integers such that
$1 \leq \sum_{n=m_{q-1}}^{m_{q-1}}\left|\lambda_{n}^{-q} F(n)\right|^{2}<2, \quad q=q_{0}+1, \quad q_{0}+2, \quad q_{0}+3, \ldots$.
Thus we select
$\left|a_{n}\right|=\left|f(n) \lambda_{n}^{-2 q} q^{-1}\right|$ when $m_{q}-1<n<m_{q}, \quad q>q_{0}$.
Then for every non-negative integer k,
$\sum_{m_{q-1}}^{m_{q-1}}\left|\lambda_{n}^{k} a_{n}\right|^{2}=\sum_{m_{q-1}}^{m_{q-1}}\left|\lambda_{n}\right|^{k-2 q}\left|\lambda_{n}^{-q} F(n)\right|^{2} q^{-2}<2 q^{-2}$,
for sufficiently large q.
Hence the series
$\sum_{n=1}^{\infty}\left|\lambda_{n}^{k} a_{n}\right|^{2}$
converges for each k. Then again by (4.2) the series
$\sum_{n=1}^{\infty} a_{n} \psi_{n}$ converges in $J(I)$, say to ϕ. On the other hand $\sum_{n=1}^{\infty}\left|a_{n} F(n)\right|$ diverges because
$\sum_{n=m_{q-1}}^{m_{q-1}}\left|a_{n} F(n)\right|=\sum_{n=m_{q-1}}^{m_{q-1}}\left|a_{n} F(n)\right|=\sum_{n=m_{q-1}}^{m_{q-1}}\left|[F(n)]^{2} \lambda_{n}^{-z q} q^{-1}\right| \geq q^{-1}$.
This again contradicts the statement (P). Hence the series (4.2) converges for every $q>q_{0}$.
Sufficient condition: Assume that the series (4.2) converges for some positive q -

Let $\phi \in J(I)$. Then for every $\phi \in J(I)$
$\sum_{\lambda_{n} \neq \mathbf{0}}\left|\left(b_{n} \psi_{n}, \phi\right)\right| \leq\left[\sum_{\lambda_{n} \neq 0}\left|b_{n}\left(\psi_{n}, \phi\right)\right|=\sum_{\lambda_{n} \neq 0}\left|\lambda_{n}^{-q} b_{n}\right|\left|\lambda_{n}^{q}\left(\phi, \psi_{n}\right)\right|\right]$.
Now for sum of real numbers we use Schwarz inequality to obtain

$$
\sum_{\lambda_{n} \neq 0}\left|\left(b_{n} \psi_{n}, \phi\right)\right| \leq\left[\sum_{\lambda_{n} \neq 0}\left|\lambda_{n}^{-q} b_{n}\right|^{2} \cdot \sum\left|\lambda_{n}^{q}\left(\phi, \psi_{n}\right)\right|^{2}\right]^{\frac{1}{2}}
$$

by assumption the first series on the right side converges.
Now, since $\phi \in J(I)$, from Lemma 2.2, the series expansion $\phi=\sum_{n=1}^{\infty}\left(\phi, \psi_{n}\right) \psi_{n}$ converges in $I(I)$. Then using (4.2) for $k=q$ we confirm that the second series on the right side also converges. Thus the series $\sum_{\lambda_{n} \neq 0}\left(b_{n} \psi_{n}, \phi\right)=\left(\sum_{\lambda_{n} \neq 0} b_{n} \psi_{n}, \phi\right)$
converges which further implies that the series (4.1) converges in $I^{\prime}(I)$. This completes the proof.
Theorem 4.2: f is a member of $l^{\prime}(l)$ if and only if there exists some non-negative integer m and a $g \in L_{\mathbf{2}}{ }^{(l)}$ such that

$$
\begin{equation*}
f=\Lambda_{a, \beta, r}^{m} g+\sum_{\lambda_{n}=0} b_{n} \psi_{n}, \tag{4.3}
\end{equation*}
$$

where b_{n} are complex numbers.

5. Application of differential operator $\Delta_{\alpha, \beta, r}$:

For a non-negative integer k, by using the series expansion (3.1) of $f \in J^{\prime}(I)$ we have
$\Delta_{\alpha, \beta, r}^{k} f=\sum_{n=0}^{\infty}\left(f, \psi_{n}\right) \Delta_{\alpha, \beta, r}^{k} \psi_{n}=\sum_{n=0}^{\infty}\left(f, \psi_{n}\right) \lambda_{n}^{k} \psi_{n}$
from the differential equation

$$
\begin{equation*}
P\left(\Delta_{\alpha, \beta, r}^{k}\right) f=g \tag{5.1}
\end{equation*}
$$

where P is a polynomial, $g \in J^{\prime}(I)$ is known and $f \in J^{\prime}(I)$ is unknown. Since $f \in J^{\prime}(I)$

$$
\begin{align*}
P\left(\Delta_{\alpha, \beta, r}^{k}\right) f=P\left(\Delta_{\alpha, \beta, r}^{k}\right) \sum_{n=0}^{\infty}\left(f, \psi_{n}\right) \psi_{n} & =\sum_{n=0}^{\infty}\left(f, \psi_{n}\right) P\left(\Delta_{\alpha, \beta, r}^{k}\right) \psi_{n} \tag{5.2}\\
& =\sum_{n=0}^{\infty}\left(f, \psi_{n}\right) P\left(\lambda_{n}\right) \psi_{n}
\end{align*}
$$

Applying \mathscr{H} to (5.2) we get
$P\left(\lambda_{n}\right)\left(f, \psi_{n}\right)=\left(g, \psi_{n}\right)$.
Case I: $P\left(\lambda_{n}\right) \neq 0$, then

$$
\left(f, \psi_{n}\right)=\left[P\left(\lambda_{n}\right)\right]^{-1}\left(g, \psi_{n}\right) .
$$

Now by applying $\boldsymbol{H}^{\boldsymbol{- 1}}$ to both the side we get

$$
\begin{equation*}
f=\sum_{n=0}^{\infty}\left(g, \psi_{n}\right)\left[P\left(\lambda_{n}\right)\right]^{-1} \psi_{n} . \tag{5.3}
\end{equation*}
$$

Now by characterization Theorem 4.1 and uniqueness Theorem 3.2, the solution in (5.3) exists and is unique.
Case II: $P\left(\lambda_{n}\right)=\mathbf{0}$ for some λ_{n}.
Let ${ }^{P}\left(\lambda_{n_{k}}\right)=\mathbf{0}$ for $k=1,2,3, \ldots \ldots, m$. Then the solution will be

$$
\begin{equation*}
f=\sum_{P\left(\lambda_{n}\right) \neq 0}\left(g, \psi_{n}\right)\left[P\left(\lambda_{n}\right)\right]^{-1} \psi_{n} \tag{5.4}
\end{equation*}
$$

which is not unique in $I^{\prime}(I)$. We may add to (5.4) any complementary solution
$f_{c}=\sum_{s=1}^{m} a_{s} \psi_{n}$.
where a_{s} are arbitrary numbers.

References:

1. Chaudhary M.S. and Thorat S.P., Distributional Generalized Jacobi Transformation, Bull. Cal. Math. Soc. 91(2) (1999), 121-130.
2. Chaudhary M.S. and B.A. Sajane, Distributional Generalized finite Hankel Transformation, International J. of Math. Sci.\& Engg. Appls. (IJMSEA), Vol.2, No. 1 (2008), 235-245.
3. Eldabe, N.T. Shahed M. El. Shawkey M.,An extension of the finite Hankel Transform, Applied Mathematics and Computation, 151 (2004), 713-717.
4. Rainville E.D., Special Functions, Chelsea Publishing Co. NewYork, (1960).
5. Sneddon I.N., On finite Hankel transforms, Philos. Mag. 37 (1946).
6. Zemanian A.H. Generalized Integral Transformations, Inter-Science Publisher, New York (1968).
