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Introduction 

  The various interests of Near Space Vehicles (NSVs) had 

been identified for a long time due to their promise for high 

speed transportation and affordable space access. Affected by 

complicated flight environment (rarefied air, temperature 

variation and disturbances such as thrust misalignment, gusts 

and possible wind shear) and aerodynamic forces, the NSVs 

dynamics is nonlinear, multivariable, and is subject to parameter 

uncertainties and external disturbances. In turn, controlling of 

the NSVs is required: (I) to meet the stability, robustness and 

desired dynamic properties; (II) to be able to handle 

nonlinearity; and (III) to be adaptive to changing parameters and 

environmental disturbances. Various advanced control methods 

such as feedback linearization method have been developed to 

meet increasing demands on the performance; however, they 

required full information on the state that may limit their 

practical utility. The general air-data sensing cannot work due to 

aerodynamic heating in hypersonic flight. As a viable option of 

air-data measurement, flush air-data sensing (FADS) suffers 

from the excess pressure orifice layout and highly cost. In 

addition, the accuracy improvement of FADS depends on 

accurate modelling of aerodynamic heating process, which 

remains to be an open problem. Thus motivated, an observer 

based feedback design becomes an attractive approach for 

NSVs. In, a sliding mode observer combining with the adaptive 

sliding mode controller is designed. The overall system 

proposed is robust respect to parametric uncertainty and 

provides good performance. Addresses issues related to output 

feedback control, including sensor placement. Two output 

feedback control methods are developed. One applies 

reconstruction of the flexible body system states, toward 

applications of state feedback control. The other uses a robust 

design that does not rely on an observer to ensure stabilization 

and performance throughout a given flight envelope. In, a 

sliding mode observer is designed to estimate the angle of attack 

and flight path angle, with the observer switching gains on the 

sliding surface are determined according to observer states and 

desired dynamic performance. Observer uniform dynamic 

performance can be guaranteed in the full flight envelope. 

 Sliding-mode observation strategies possess such attractive 

features as: (a) insensitivity (more than robustness) with respect 

to unknown inputs; (b) possibilities to use the values of the 

equivalent output injection for the unknown inputs 

identification; and (c) finite-time convergence to exact values of 

the state vectors. Unfortunately, the realization of step-by-step 

observers based on conventional sliding modes, leads to 

filtration at each step due to discretization or non-idealities of 

the analog devices used to implement the schemes. 

 In order to avoid the necessity for filtration, hierarchical 

observers were recently developed in iteratively using the 

continuous super-twisting algorithm, based on second order 

sliding-mode ideas. Alternatively, higher-order sliding-mode 

differentiators for exact observer scheme are proposed in the 

nonlinear systems with unknown inputs 

However, the method is not suitable for NSVs dynamic as NSVs 

model dissatisfies the conditions for the observer design. 

Thence, a higher-order sliding-mode observer is advanced for 

NSVs based on two steps: 

(1) Transformation of the system to the Brunovsky canonical 

form; 

(2) Application of higher-order sliding-mode differentiators for 

each component of the output error vector. 

Optimal Sliding Mode Control: 

 The design of optimal sliding mode for singular system can 

be divided into two steps: 1) Choose optimal switching function 

to make the sliding mode of the system asymptotically stable; 2) 
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Design the suitable VSC law to guarantee the motion trajectory 

of the system starting from any initial state all reach the 

switching manifold in finite time. 

Table 1. List of symbols 

Symbol Quantity 

A System matrix 

B Input matrix
 

C Output matrix 

  Eigen value 

 , 0 Sliding mode control gains 

ψˆ A constant for maximum SMC gain 

  Slope of sliding line 

J Optimal regulator performance index 

P Vector associated with sliding slide equation 

x, y , z Cartesian coordinates of an orbiting satellites 

A. Optimal Sliding Mode Design: 

Define the quadratic performance index for system 

0

1
[

2 k

J




  x1
T
(k)Qx1(k) + x2

T
(k)Rx2(k)]                             (1) 

where Q, R are positive definite matrices.  

 In the subsystem, x2 (k) is regarded as virtual control and 

x1(k) is the state. The optimal sliding mode control is obtaining 

state feedback x2 (k) = K x1(k) such that the quadratic 

performance index gets the minimum value with constraint 

condition of subsystem. 

For (A11, A12) is controllable, the optimal control exists. 

On the basis of the optimal control theory and the necessary 

condition for the optimization, we have 

x1 (k + 1) = A11 x1 (k) - A12R
-1

 A12
T
 (k + 1), 

 (k) = Qx1 (k) + A11
T
 (k+1),                                                                  (2) 

x1(0) = x10, 

 ( ) = 0. 

In order to obtain feedback control, assume that 

 (k) = Px1 (k)                                                                      (3) 

where P is the undetermined matrix. Substituting (3) into (2), we 

have the virtual optimal control law 

x2(k) + Kx1(k) = 0                                                                  (4) 

where K= (R + A12
T
PA12 )

-1
 A12

T
PA11. 

The virtual optimal closed-loop system is 

  x1(k+1) = (I + A12R
-1

A12
T
P)

-1 
A11x1(k)                            (5)     

Substituting the first formula of (4) into (5), we have 

 (k+1) = PA11x1(k) – PA12R
-1 

A12
T
 (k+1)                         (6) 

Multiplied by the matrix A12
T 

the equation in (6) at both ends of 

the left and simplify, we have 

A12
T
 (k+1) = (I + A12

T
PA12R

-1
)

-1 
A12PA11x1(k)                    (7) 

Substituting (3) and (7) into the second formula of (2), we can 

obtain 

Px1(k) = Qx1(k)+ A11
T
PA11x1(k) – A11

T
PA12Kx1(k)                (8) 

For any x1(k), (10) holds and we can obtain Riccati equation 

P=A11
T  

PA11 – A11 
T  

PA12K + Q                                              (9) 

Based on Assumption 1 and positive definite matrix Q, Riccati 

equation (9) has the unique and positive definite solution P. 

    On the basis of (4), the optimal switching function is  

             s(k) = Kx1 (k) + x2 (k) = Cx(k)                                  (10) 

where C=[K,Ir]. 

When the system reaches the sliding surface (4) and moves on it, 

systems are asymptotically stable. 

As mentioned above, we have the theorem 2[3]. 

 

Second order sliding mode control: 

x Ax Bu


 
 

Where,  

1 2

0 1
A

a a

 
  
 

          0

1
B

 
  
 

 and     1 0C   

1

1

x
x

x


 
 
  

  is the state vector, u is the control signal, y is output 

signal and a1 ,a2 are constants. 

Let the switching surface be defined by 

11( ) ( )x x x 


 
 

Where   is positive 

Consider the switching control low 

u= 0 y  

Now from above equation 

 


 = (
2

1 2 0a a     ) y    0 

It is easy to verify that switching function is given by 

0 0 


  ( )sgn y  

For satisfying the switching control low 


   0 

2

0 1 2a a  


   
 

Note that simple second order sliding mode is suffer from 

chattering effect to improve this effect the another method is 

developed. 

Second ORDER improved Chatter-free Control LOW 

(Eigen vector smc): 

 For the second order plant in equation consider a control 

law of the form 

U=-k
T
x+ y   

     =-[k1 k2]x+ y  

Where the elements k1 and k2 of vector k 
T
 are fixed while 

constant   is actively switched between several constant values 

in order to enforce motion on the sliding line described by 

0Tp x    

Where, 

 1Tp   

  is constant 

From above equation 

 


= ( )T T Tx p p A k x y  0  

The inequality requires that 

( )T T Tx p p A k x 0  

And 

0y   

Inequality is satisfied if the matrix ( )T Tp p A k is negative 

semi definite i.e 
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( )T Tp p A k =
1 1 2 2

1 1 2 2

( )
0

a k a k

a k a k

  



   
 

   

 

This requires that 

1 1( ) 0a k    
1

1 1 2 2 2

1 0

0

x

k a k a x





     
     

       

 

And 

1 1 2 2 2 2 1 1( )( ) ( )( ) 0a k a k a k a k             

Equation requires that k1 ≥ a1 and k2 may take any value. 

Inequality is satisfied if 

sgn( )y  


 
 

where constant 


 is strictly positive. 

Making use of the control law the closed-loop state equation is 

cx A x b y


 
 

Where, 
T

cA A bk   

 The natural modes of the closed-loop system are determined 

by the matrix Ac and identified in terms of its "Eigen values". 

These are the values of λ which satisfy the characteristic 

equation 

0cI A    

Or 2

2 2 1 1( ) 0k a k a       

 If the two values of λ (i.e. λ1 and λ2) are real, natural modes 

of the form eλt will be present in the response of x1 and x2. 

When the Eigen values are complex the corresponding modal 

component is oscillatory. For most practical systems an 

oscillatory response is n desirable. When the real part of any 

Eigen value is positive the system modes are unstable which is 

undesirable. Consequently, the constant gains of the controller, 

k1 and k2, are selected to ensure that the closed-loop Eigen 

values are real and negative with  k1 > a1 . 

The eigenvectors, x corresponding to Eigen values 1 λ1 and λ2 

are given by 

0cI A x    

where I is the identity matrix. 

1

1 1 2 2 2

1 0

0

x

k a k a x





     
     

       

 

 The eigenvectors are also natural trajectories of the closed-

loop system. They divide the state space into two sectors with 

differing trajectory patterns. The other lines are trajectories 

along which the RP approaches the origin from any initial point. 

Actually the RP tends tangentially to the slowest eigenvector 

shown in fig.4.4, which is the eigenvector corresponding to the 

smallest eigenvalue agnitude, as the origin is approached.  

 Thus the strategy is to use the continuous control law gain 

vector, k 
T
, to assign the desired closed-loop Eigen values and 

then use the switching component to constrain the sliding mode 

on a closed-loop eigenvector. Being a natural trajectory of the 

system, control signal chattering is totally eliminated in the 

sliding mode. 

Therefore the chatter-free sliding mode control procedure is as 

follows: 

i) Design state feedback matrix k T such that the closed loop 

system has prescribed Eigen values.  

ii) Determine the corresponding system eigenvectors. 

iii) Let the eigenvector with negative slope be the sliding line 

iv)Select a suitable value of ψˆ > 0 for the sliding mode 

component of the control law. 

 The strategy ensures that the state vector is smoothly driven 

to the origin along the sliding line (a closed-loop eigenvector), 

from any initial location in the phase plane. 

 After pointing out the increasing importance of satellites as 

tools of modern global communication. Geostationary satellites 

allow use of small and fixed earth antennas in global 

communications networks. The geostationary orbit is circular, 

approximately 35,768 km above Earth, and coincides the 

equatorial plane. There are several factors that cause a satellite 

to change its position and attitude in space. The geostationary 

arc is becoming increasingly congested as more and more 

countries launch satellites for global and domestic 

communications. For these reasons there is a growing need for 

effective and efficient satellite control algorithms. An overview 

of satellite attitude and orbit control methods available in the 

technical literature was presented. The essential features of the 

robust and fast sliding mode control method were presented with 

an overview of techniques that have been devised to overcome 

its major shortcoming of signal chattering in the sliding mode. 

Details of a recent method of chattering alleviation via 

eigenvector-assignment in SMC systems have been presented. 

Conclusion: 

 Most of the existing research for the attitude control 

problem has been done since 1957. One of the works on satellite 

attitude control after expressing the attitude error in terms of an 

error matrix synthesized a class of control laws for which the 

control inputs (torques) are functions of the real eigenvector of 

the error matrix and the angular velocity of the controlled body. 

However, the method is not directly applicable to on-off control, 

e.g. reaction jet control systems, since the results are valid 

mostly for reaction wheel control systems. In addition these 

techniques are not appropriate for the adaptive attitude control 

problem (when the system dynamics change in an unknown 

way), since the control laws derived assume that the analytic 

form of the dynamic system under consideration is known. 

 Than linearization theory to represent the non-linear 

dynamics of a space station and discussed the attitude control 

problem for space vehicles employing control moment gyros. A 

similar approach using also linearization theory is considered for 

a spinning satellite with two small jets is discussed. Attitude 

control using eigenvector analysis on the linearized attitude 

equations of motion, for a spinning symmetrical satellite in an 

elliptic orbit. The dynamics and the design considerations for the 

attitude control for a two-dimensional tethered satellite can be 

found. 

 A coordinate frame for the rest-to-rest reorientation of a 

satellite, which transforms the original non-linear problem into a 

linear one. The approach is especially attractive for optimal 

attitude control, since it reduces 7×7 matrix computations to 2×2 

matrix computations. A non-linear observer for reconstructing 

the state variables of a spacecraft. Then state feedback control 

laws were used, giving a system which is asymptotically stable 

in a specific region. An observer-based method, for a reaction 

wheel attitude controller, was proposed, while various control 

laws for a three reaction wheel, three magnetic torque 

configurations are found. 

 Various attitude control laws, for a space station, in the case 

of absence of disturbances using Lyapunov’s second method. 
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The application of a game theoretic control approach, combined 

with internal feedback loop decomposition for uncertainties in 

the moments of inertia of a space station (which are considered 

constant in time) was described. 

A control law, for a class of uncertain non-linear systems which 

can be decoupled by state variable feedback. The law is based 

on the technique of variables structures and was applied for 

control of an orbiting spacecraft which uses reaction jets. Three 

axis attitude control of a rigid body spacecraft using a sliding-

mode control law was described. The approach is valid as long 

as sliding motion is maintained and the extreme values of the 

plant dynamic parameters are known. A sliding mode control 

scheme to obtain a magnetic torquer control law for stabilizing 

roll/yaw angles of a geostationary communications satellite. The 

nonlinear system equations for a spacecraft with constant speed 

momentum wheel and magnetic torquer were first linearized 

with respect to an equilibrium point based on which the sliding 

mode control law was designed. The feasibility of the control 

law was demonstrated by simulations. 

Optimal control using non-linear programming techniques with 

application to satellite attitude control was discussed. An 

enhancement in the solving techniques for the two-point 

boundary value optimal attitude control problem was presented. 

A near optimal orbit and attitude control system, for a plate-like 

rigid spacecraft in geostationary orbit, was presented. All the 

results and conclusions are based on simple linear models. 

A fuzzy logic controller for the control of a spacecraft was 

applied. Than developed an empirical method for the design of 

fuzzy logic controllers that eliminates subjectivity of controller 

design and reduces the number of control rules to a minimum. 

The method was applied to three axes large angle attitude 

control of a flexible spacecraft.  

Than employed a PI compensator augmented by a Kalman filter, 

to control the communications beams and the attitude angles of a 

flexible spacecraft. They explored two design methods: the one 

based on eigenvalues analysis and the second based on singular 

value criteria. A review of attitude control systems and beam 

pointing accuracy can be found. New approaches to satellite 

control problem using neural networks and genetic algorithms 

have recently shown encouraging results where an overview of 

attitude and orbit control techniques was given. 

 

References: 

[1] Lin Zhao, Xin Yan, Yong Hao and Zhonhhau Su, Proceeding 

of the 2011 IEEE International Conference, Beijing , China,  

August 7-10 2011. 

[2] Ji Yue-hui, Zong Qun, Dou Li-qian and Zhao Zhan-shan 

Proceeding of the 2010 IEEE International Conference, Jinah, 

China July 6-9 2010. 

[3] Cun-chen Gao and Nan Xiang, Proceeding of the 2010 IEEE 

International Conference, Zhengzhou, China, August 11-13 

2011.  
[4]  Rui Dong, Hong-Wei Gao and Quan-Xiang Pan, Proceeding 

of the 2010 IEEE International Conference, China  2011. 

[5]Junquan Li and Krishna Dev Kumar, IEEE 

TRANSACTIONS ON FUZZY SYSTEMS, VOL 20 No 3, June 

2012. 

 
Authors Profile: 

1. Anirudha Singh did his B.E. from North Maharastra 

University. He is Mtech Scholor in NRI Institute of Information 

science and technology Bhopal (INDIA).  

2. Puran Gour has received his B.E. from Amravati university 

Maharashtra and M.Tech from MANIT Bhopal and currently 

working as a Assistant Professor in NRI Institute of Information 

science and technology Bhopal (INDIA).                                         

He has over eight years teaching experience. His research 

interest in wireless communication and Microwave. 

3. Braj Bihari Soni has received his Bachelor of Engineering 

from Nagaji Institute of Technology and Management 

of Gwalior (INDIA) and Mtech in NRI college Bhopal. 

Currently working as an Assistant  Professor in NRI-IIST 

BHOPAL. M.P. INDIA 

 


