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1. Introduction and Preliminaries 

Let  pS  denote the class of functions of the form: 

   .},1,2,3{=,,,=
1=

NC  
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kp
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p  (1) 

which are analytic and p - valent in the unit disk 1}.<;;{= zz C  

Let    pSzg   be of the form: 
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Convolution (Hadamard product), gf   of f  and g  is defined as usual by 

      .==
1=

zfgzbazzgf kp

kpkp

k
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  (3) 

This convolution generalizes several convolution operators such as: 

The convolution in (3) reduces to the operator    )(, 11, zfAW p

sq   involving a Wright’s generalized 

hypergeometric function (see [18]) 

              .,,......,,,,,......,,,.. 22112211 zBBBAAAz ssqqsq 
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The convolution operator    )(, 11, zfAW p

sq  , for which 
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is studied by Aouf and Dziok [2], [3], Dziok and Raina [8], and Dziok et al. [9] and Sharma [38]  in their 

respective work and taking ,1,2,...= 1,= qiAi  ,1,2...=1,= siBi  for 1 sq , it reduces to Dziok Srivastava 

operator [10] which involve a generalized hypergeometric function  zFsq : 

         zfzzfH pp

sq  zF= sq1  

where    
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the symbol  k  is the Pochhammer symbol defined by  
 
 

.,= 0N



k
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The operator     zfH p

sq 1  includes Hohlov operator [15] which involve Gaussian hypergeometric function 

12 F :         ,;;;;,= 12112112 zfzFzzfH pp   

as well as Carlson and Shaffer operator [7] involving incomplete beta function: 

        zfzFzzfL p

p ;;;;,1=, 111211   

which again reduces to Ruschweyh derivative operator [31] (also see [8], [9]) : 

  
 

 zf
z

z
zfD

pn

p
pn *

1
=1






 

 if 1=0,>= 11  pn  and    zfzfD 0 . 

Further, the convolution reduces to the Salagean operator [33] if 

 0,1,2=,= n
p

kp
b

n

kp 






 
  

and to a generalized Salagean operator [1] if 
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 0,1,2=0,>,= n
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Further, the convolution  reduces to an integral operator involving generalized fractional integral operator, if 
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  10,max>1,<0   . Again, this convolution reduces to the derivative operator involving 

generalized fractional derivative operator, if 
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The generalized fractional calculus operators are studied in [5], [25], [39]     . 

 A function    2

211= zpzpzp , which is analytic and convex in   is said to be in class P  if 

      1.=00,>Re pzp  

and )(zp  is said to be in   ,P  if       0.=1,<=,01>Re   zpzp  

Note that     PP =,0 . 

Goodman ( [12], [13]), Ronning ([28], [29]) introduced and studied the following subclasses: 

A function  zf  of the form (1) is said to be in the class   ,pS  of uniformly  - starlike functions if it 

satisfies the condition: 

 
 
 

 
 

),( 1>Re 
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where 1<1   and 0 . 

A function  zf  of the form (1) is said to be in the class  ,UCV  of uniformly  - convex functions 

if it satisfies the condition: 

 
 

 
 

),( >1Re 
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where 1<1   and 0 . 

It follows that   ,)( UCVzf 
 

   .,p

' Szzf   

Let  pT  denote a subclass of  pS  consisting of functions which are analytic p - valent, can be 

expressed in the form: 



Prachi Srivastava et al./ Elixir Adv. Pure Math. 59 (2013) 15494-15506 
 

 

15497 

   0.=,=
1=

kp

kp

kp

k

p azazzf 







  (4) 

Associated with the convolution in this chapter, a class   ,,mpSg  of functions    pTzf   is considered 

whose members satisfy the condition: 
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where    zgf
r

  denotes the thr  derivative of  gf   and is given by: 
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This class   ,,mpSg  generalizes several classes studied earlier in [5], [14], [17], [34], [36] and [37] etc. 

In particular taking  
z

z
zg

p

1
=  (or 1)=kpb   with 0=m  and 1 respectively the class   ,,mpSg  

reduces to p - valent  -uniformly starlike and convex classes respectively of order 0  which are studied in [13], 

[14], [21], [24] and [29]. Also taking  
z

z
zg

1
=  and  

 21
=

z

z
zg


 respectivelywith 0=m  the class 

  ,1,mSg  reduces to univalent  -uniformly starlike and convex classes respectively of order   which are 

studied by Shams, Kulkarni and Jahangiri [35]. In addition to that if 0=  this class reduces to the p - valent 

starlike and convex classes respectively of order  (see [16]). 

Also for 0=m  and for    zFzzg sqsq

p ;,,;,,= 2121    the class   ,,mpSg  reduces to 

the class studied by Marouf [20]. Further on taking 0=m , 1=p  and    zFzzg ;;;;,1= 1112   the class reduces 

to the special case of the class studied in [36]. Again for 1=p ,   01 ,1= N nkb
n

k  and 0=m  the class 

  ,,mpSg  reduces to the class studied by Kuang et al. [19]. 

Also, note that: 

(i) If   )(= zzg  , the class   1,0,gS  studied by Raina and Bansal [27]. 
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(ii) If  
 

,
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=
2

z

z
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the class  1,0,1 gS  reduces to the class studied by Bharati et al. [6]. 

(iii) If  
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 , 2,.....)1,0,( c  the class   1,0,gS  coincides with the class studied by 

Murugusundaramoorthy and Magesh [22], [23]. 

(iv) If   kn

k

zkzzg
2=

=


 , the class   1,0,gS  studied by Rosy and Murugusundaramoorthy [30]. 

(v) If     kn

k

zkzzg 1)(1=
2=




  , the class   1,0,gS  reduces to the class studied by Aouf and Mostafa 

[5]. 

(vi) If   k

k

z
k

zzg 






 







 1
=

2=

, the class   1,0,gS  coincides with the class studied by Ruscheweyh [31]. 

Following earlier works of Ruscheweyh [32], Frasin and Darus [11] and Prajapat et al. [26], consider the  ,q -

neighborhood of functions    pTzf   of the form (4) for 0, q : 

         .and=,:=
1

1=1= 
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It follows from the definition (7) that for the identity function   pzze =  

         .kand=,:=
1

1=1= 
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It is observed that    fNfN  =0  the  -neighborhood defined by Ruscheweyh [32]. 

2  Coefficient Inequality 

In this section, a necessary and sufficient coefficient condition for a functiom  pTf   to be in   ,,mpSg  

is established. 

Theorem 2.1  Let    pTzf   be of the form (4). Then  ,,,  mpSf g  for    pSzg   of the form (2), 

,,>1,<10, 0N mmp  if and only if 
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  (9) 

The result is sharp. 
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Proof. Let (9) holds. 

Set     
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To show   ,,mpSf g , it is necessary to show that  

     .1>Re zpzp   (10) 

It is easily verified that (10) holds if and only if 
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which is equivalent to 
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Using series expansion of   1
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if (9) holds. This proves that   ,,mpSf g . 
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Conversely, suppose   ,,mpSf g . Now using the fact that 

     mpwmpw   >Re  

if and only if       .<0,>Re    iewmpmpw  
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The above inequality holds for all z  in  . Letting 1z  for  <  
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which is the required inequality (9). 

Finally, sharpness follows for the extremal function: 
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Corollary 2.1  If   ,,mpSf g , then for    pSzg   of the form (2),  
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The equality in (13) is attained for the function kpf   given by (12). 

By Theorem 2.1 following result is obtained, provided kpb   has its positive lower bound. 

Corollary 2.2  If   ,,mpSf g , then for    pSzg   of the form (2) and ,:=
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Again by Theorem 2.1 and using (14) following result is obtained. 

Corollary 2.3  If   ,,mpSf g , then for    pSzg   of the form (2) and ,min:=
1
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b 
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Remark 1  Taking   0,=,1,,1= 0 mnkkb
n

kp N  in Theorem 2.1 the result of Aouf and Mostafa [5] 

follows. Taking 0,=0,=,= m
k

k
b kp 









 
  Theorem 2.1, yields a result which is the special case of the result 

obtained by Sharma and Singh in [37]. Taking 1=p , 0=m , in Theorem 2.1 yields a result which is again a 

special case of the result obtained by Aouf et al.[4]. 

Moreover, when 
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1
=
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21

kbbb

aaa
b

kskk
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kp



 , 1= sq ,  sibi  1,2,=2,1,0,  and 0=m , 

Theorem 2.1 corresponds to the result obtained by Goyal and Bhagtani [14]. 

Remark 2  If kpb   is non-decreasing, we replace   by 1pb  in Corollaries 2.2 and 2.3.  

3  Growth and Distortion Bounds 

In this section, growth and distortion bounds of functions belonging to the class   ,,mpSg  by using results 

of Corollaries 2.2 and 2.3 are derived. 

Theorem 2  Let    pTzf   of the form (4) be in the class   ,,mpSg , then for    pSzg   of the form (2) 

and ,min:=
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The bounds are sharp and extremal function is given by 
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Proof. Taking absolute value of  zf  from (4) and using Corollary 2.2, 
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which prove assertion (16). 

Again, from (4)      1
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and using Corollary 2.3 
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which prove assertion (17).The bounds in (16) and (17) are sharp and extremal function is given by (18). 

Corollary 3.1  (Covering Result ) If  ,,,  mpSf g  then for    pSzg   of the form (2) and ,min=
1

kp
k

b 


  

the disk 1<z  is mapped by f  onto a domain that contains the disk
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The result is sharp with extremal function given by (18). 

4  Neighborhood Properties 

In this section, the neighborhood properties for the functions belonging to the class   ,,mpSg  are 

determined. 

Theorem 4.1  Let    pTzf   of the form (4) be in the class   ,,mpSg , then for    pSzg   of the form 

(2) and kp
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Proof. Let     ,,mpSzf g . Then from Corollary 2.3, 
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which directly proves that    ,eNzf   where   is given in (19). Hence the result. 

4.1 Definition of Class 
    ,,mpSg  

A function    pTzf   is said to be in the class 
    ,,mpSg  if there exists a function     ,,mpSzh g  

such that  
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Theorem 4.2  If     ,,mpSzh g  with    pSzg   of the form (2) and kp
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Since     ,,mpSzh g , then from Corollary 2.2, 
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provided that   is given by (20). Thus       ,,mpSzf g . This proves Theorem 4.2. 

5  Extreme Points 

Theorem 5.1  Let   p

p zzf =  and 
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Then     ,,mpSzf g  with    pSzg   of the form (2) if and only if it can be expressed as: 

       .1= and 0where,,=
1=1=

kp

k

pkpkpkp

k

pp zzfzfzf 







    

Proof. Let 

       







 











 p

kp

k

p

kp

k

kpkp

k

pp zzzfzfzf 
1=1=1=

1==  

              
   

         







 



kp

kp

z
bpmpkmp

mkpp

!k11!1

!!1




 

 
   

        
.

!11!1

!!1
=

1=

kp

kp

kpk

p z
bkpmpkmp

mkpp
z 










 




 

Then from Corollary 2.2,     ,,mpSzf g . 
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This completes the proof. 
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